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Robust oscillator-mediated phase gates driven by
low-intensity pulses
Iñigo Arrazola 1✉ & Jorge Casanova2,3,4

Robust qubit-qubit interactions mediated by bosonic modes are central to many quantum

technologies. Existing proposals combining fast oscillator-mediated gates with dynamical

decoupling require strong pulses or fast control over the qubit-boson coupling. Here, we

present a method based on dynamical decoupling techniques that leads to faster-than-

dispersive entanglement gates with low-intensity pulses. Our method is general, i.e., it is

applicable to any quantum platform that has qubits interacting with bosonic mediators via

longitudinal coupling. Moreover, the protocol provides robustness to fluctuations in qubit

frequencies and control fields, while also being resistant to common errors such as frequency

shifts and heating in the mediator as well as crosstalk effects. We illustrate our method with

an implementation for trapped ions coupled via magnetic field gradients. With detailed

numerical simulations, we show that entanglement gates with infidelities of 10−3 or 10−4 are

possible with current or near-future experimental setups, respectively.
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H igh-fidelity entanglement generation among qubits is
crucial for quantum information processing1. In most
platforms, entangling gates come via direct interactions

(e.g. hyperfine fields among nuclear spins) or via a bosonic
mediator. Examples of the latter include solid-state qubits cou-
pled to microwave resonators2–6, or trapped ions sharing vibra-
tional modes7. In this scenario, the paradigmatic Mølmer-
Sørensen (MS) gate8–11 and related schemes12–14 reach entan-
glement operations with inherent robustness to uncertainties in
the bosonic state.

In recent years, several gate schemes have been developed that
operate on the same MS principle but are also robust against
other sources of error15. Some examples are frequency or
amplitude-modulated gates decoupling from mode
decoherence16–21, from spectator modes22–28 or from deviations
in the qubit-boson coupling strength29–33. In another vein,
dynamical decoupling (DD) is a well established paradigm to
protect qubits against decoherence34,35. Some continuous DD
techniques have been demonstrated to be suitable for quantum
gate implementations36–40, while pulsed DD methods achieve
increased robustness employing suited sequences such as
XY841–48 or AXY49–51. However, the use of pulsed DD to protect
oscillator-mediated gates has been mostly limited to dispersive
regimes52–55, and to few spin-echo56–58 or rotary-echo37 pulses.
Note that the application of several π pulses is desirable for
efficient elimination of time-varying noise.

In this regard, Manovitz et al.59 have experimentally shown
that the MS gate can be combined with pulse sequences given the
ability to tune and turn on-and-off the qubit-boson coupling as
many times as the number of DD pulses introduced. Another
possibility explored theoretically is to combine an always-on
qubit-boson coupling with strong π pulses51,60,61. Although this is
possible in certain trapped-ion architectures, turning on-and-off
the qubit-boson coupling maybe not practical in other platforms.
On the other hand, the use of strong π pulses is experimentally
challenging since high-power controls are needed, while these
induce crosstalk and hinder the applicability in multimode
scenarios.

In this article, we design a DD sequence with low-intensity π
pulses—named TQXY16—that achieves faster-than-dispersive
entangling gates using static (i.e. non-tunable) qubit-oscillator
coupling. Importantly, our gates decouple from dephasing, pulse
imperfections, and unwanted finite-pulse effects, leading to high
fidelity. Furthermore, we demonstrate the versatility of our pro-
tocol by incorporating techniques that lead to additional resi-
lience to decoherence on the bosonic mediator and potential
crosstalk effects. Although our method is general, we exemplify its
performance in radio-frequency controlled trapped ions demon-
strating infidelities within the 10−3 threshold at state-of-the-art
experimental conditions, and of 10−4 in near-future setups.

Results
Gate with instantaneous pulses. We consider a system that
comprises two qubits and a bosonic mode –with frequencies
ω1, ω2 and ν– coupled via longitudinal coupling2–7 (here, and
throughout the paper, H is H/ℏ, meaning all Hamiltonians are
given in units of angular frequency),

H0 ¼ νayaþ ηνðaþ ayÞSz: ð1Þ
Here, a†(a) is the creation (annihilation) operator of the bosonic
mode, Sμ � σμ1 þ σμ2 with μ∈ x, y, z are collective qubit operators,
and ην is the coupling strength. Also, note that H0 is written in a
rotating frame with respect to (w.r.t) the qubit free-energy
Hamiltonian Hq ¼ ∑μωμσ

z
μ=2. We assume the usual experi-

mental scenario η≪ 1, thus we stay away from other paradigms

that require stronger qubit-boson couplings62–66. H0 contains no
driving fields, while in our method we drive the qubits for two
main reasons: (i) Accelerate the gate by making the qubits rotate
at a frequency close to the bosonic frequency ν, and (ii) Protec-
tion of the gate from qubit noise of the form ϵjðtÞσzj =2 leading to
dephasing. When driving the qubits, H0 is completed with the
term Hd(t)=∑μ=x,yΩμ(t)Sμ/2. In an interaction picture w.r.t.
Hd+ νa†a we get

HðtÞ ¼ ηνðae�iνt þ ayeiνtÞ ∑
μ¼x;y;z

f μðtÞSμ; ð2Þ

where ∑μ¼x;y;zf μðtÞSμ ¼ Uy
dðtÞSzUdðtÞ with UdðtÞ ¼

T exp½�i
R t
0 Hdðt0Þdt0� being the time-ordered propagator. See

supplementary note 1 for additional details.
If driving fields are delivered as instantaneous π pulses (note

this requires Ωx,y≫ ν during the application of the pulse) spaced
τ/2 apart, fx,y(t) can be neglected and fz(t)= 1(− 1) if the number
of applied pulses is even (odd), see the grey solid line in Fig. 1(a).
For the moment we consider instantaneous pulses, while later we
treat the realistic case of non-instantaneous ones. As π pulses are
applied periodically, fz(t) takes the form of a function with period
τ such that f zðtÞ ¼ ∑1

n¼1 f n cosðnωtÞ, where ω= 2π/τ and
f n ¼ 2

τ

R τ
0 dt

0f zðt0Þ cosðnωt0Þ. Hence, under the assumption of
instantaneous pulses we get

HðtÞ ¼ ην ∑
1

n¼1
f n cosðnωtÞðae�iνt þ ayeiνtÞSz; ð3Þ

whilst setting an interpulse spacing τ/2= τk/2 such that
ω= ωk ≈ ν/k leads to a resonant qubit-boson interaction via the
kth harmonic (from now on τ→ τk and ω→ ωk, where the
subscript k refers to the kth harmonic). As η≪ 1, the terms in
Eq. (3) that rotate with frequencies ± ∣ν− nωk∣ (where n ≠ k)
and ± ∣ν+ nωk∣ can be substituted, using the rotating-wave
approximation, by their second-order contribution (here, and in
the rest of the paper, second-order stands for second order in η)
leading to

HðtÞ � 1
2
ηνf kðae�iξkt þH:c:ÞSz �

1
2
η2νJkS

2
z ; ð4Þ

where ξk= ν− kωk is the detuning w.r.t. the kth harmonic and
Jk ¼ f 2k=4þ∑n≠kf

2
n=ð1� n2=k2Þ is an effective spin-spin cou-

pling constant that contains contributions from all harmonics.
Note that, as η≪ 1 contributions of higher order in η can be
neglected. See supplementary note 2 for additional details. The
propagator associated to Hamiltonian (3) is

UðtÞ ¼ expf½αðtÞay � α�ðtÞa�Szg ´ exp½iθðtÞS2z � ð5Þ
where αðtÞ ¼ �iην

R t
0 dt

0f zðt0Þeiνt
0 � �ηνf k=ð2ξkÞðeiξkt � 1Þ and

θðtÞ ¼ Im
Z

C
α dα � η2ν2f 2k

4ξk
t � sinðξktÞ

ξk

� �
þ 1

2
νη2Jkt; ð6Þ
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Fig. 1 Entangling gates with instantaneous π pulses. a Rabi frequency Ω(t)
and modulation function fz(t) during a period τk for k= 5. For comparison,
we plot cosðkωktÞ in green. b Phase-space trajectory of α(t) during the
application of a pulse sequence with k= 1 and k= 5 in blue and green,
respectively.
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where C is the phase-space trajectory followed by α(t). Note that, if
the gate time is chosen as tg= 2π/∣ξk∣, α(tg)≈ 0 at the end of the gate,
making the gate insensitive to the bosonic state. To satisfy condition

θ(tg)= π/8, we choose τk such that ξk ¼ 2ηνf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2k þ 4η2J2k

q
þ 2ηJkg

for Jk > 0. After a time tg the propagator U(t) approximates to
expði π8 S2zÞ. For two qubits, this is equivalent (up to a global qubit
rotation) to the CPHASE gate, and transforms the state þþj i into
the Bell state Φþ�� � ¼ 1ffiffi

2
p ð þþj i þ i ��j iÞ. It is noteworthy that the

choice of ξk (thus τk) is, in general, not trivial, as both fk and Jk
depend on τk. However, in the cases discussed here, this dependance
does not hold, making the choice of ξk direct. See supplementary
note 3 for analytic expressions for fk and Jk.

For instantaneous π pulses one finds f k ¼ f insk ¼ 4
kπ sinðkπ2 Þ.

Thus, if resonance is achieved via a low harmonic, e.g. k= 1, the
gate time is tk¼1

g � π2=4ην, a factor π/2 longer than the original
MS gate. On the other hand, for sufficiently large harmonics the
gate is mostly governed by the dispersive term 1

2 η
2νJk!1S2z �

η2νS2z in Eq. (4), leading to tdg ¼ π=8η2ν. We define faster-than-

dispersive gates as those that satisfy tkg=t
d
g<1. For example, in the

case η= 0.01 and k= 1 we find a faster-than-dispersive gate with
tk¼1
g =tdg � 1=16. This is, the gate is 16 times faster than the
dispersive one. In Fig. 1(b), we show α(t) for η= 0.03, with k= 1
and 5.

It is noteworthy that the analysis conducted above is valid for
Nq qubits homogeneously coupled to the same bosonic mode, i.e.

Sμ ! ∑
Nq

j¼1 σ
μ
j . For two qubits with inhomogeneous coupling, i.e.

Sz ! Sz ¼ ðη1σz1 þ η2σ
z
2Þ=η where ηj≪ 1, the method also yields

to a CPHASE gate, however, in this case, the correct expression
for the detuning ξk is that in which every η is substituted byffiffiffiffiffiffiffiffiffi
η1η2

p
. For larger η, the rotating-wave approximation is not

justified and terms neglected from Eq. (3) to Eq. (4) will lead to
significant residual qubit-boson entanglement at the end of the
gate. See supplementary note 4 for additional details.

Gate with low-intensity pulses. In what follows, we discuss the
realistic case of non-instantaneous pulses. For standard top-hat
pulses the Fourier coefficient fk that quantifies the strength of the
qubit-boson interaction reads (see supplementary note 3 for the
derivation)

f thk � f insk

1� ν2=Ω2 cos
πν

2Ω

� �
: ð7Þ

Notice that for low-intensity pulses—defined as those holding
Ω < ν—the value of fk decays with (Ω/ν)2. As a result, achieving
faster-than-dispersive gates is no longer possible. Note that fk
directly relates to the non-dispersive contribution in θ(t), and,
through condition θ(tg)= π/8, to the gate time tg.

To solve this problem and optimise the strength of the qubit-
boson interaction, we propose to modulate the Rabi frequency
during the execution of each π pulse. Specifically, we pose the
following ansatz for fz(t)

f zðtÞ ¼ cos½πðt � tiÞ=tπ� þ βðtÞ sin½kωkðt � tmÞ�; ð8Þ
where tπ is the π pulse duration, and ti and tm= ti+ tπ/2 are the
initial and central points of the pulse. Note that the Rabi

frequency is then given by ΩðtÞ ¼ � ∂f zðtÞ
∂t ´ ½1� f 2zðtÞ�

�1=2
. For

the envelope function β(t), we propose

βðtÞ ¼ d
πkb

sinðπk=2Þ erf
t � tl
ctπ

	 

� erf

t � tr
ctπ

	 
� �
; ð9Þ

where tr= tm+ btπ and tl= tm− btπ. The free parameters b and c
serve to control the width of the envelope function β(t), while d is

proportional to its amplitude. Suitable values for b, c and d for the
first harmonics are shown in Table 2 (Methods).

From now on, we assume tπ= τk/2, i.e., the pulse extends over
a whole period τk/2, leading to solutions with the lowest
intensities. As a result of our pulse design with suitable b and c,
the value for the Fourier coefficient fk is given by fmk ¼ �4d=πk
where ∣d∣ can take values from 0 to jdmaxj>1. See supplementary
note 3 for the derivation. Since now fk depends on d, this serves to
control the strength of the interaction, thus the duration of the
gate tg. Also, d relates to the amplitude of the pulse, thus to the
maximum value of the Rabi frequency Ωpp. Typically, we look for
large values of d, bounded by dmax or by the experimentally
available Ωpp.

Now we describe the recipe to design faster-than-dispersive
gates using low-intensity pulses. First we choose a value for the
harmonic k. Larger k allow for lower pulse intensities at the price
of longer gates. Second, we use Eq. (8) to generate the modulation
function fz(t) and the Rabi frequency Ω(t) for different values of
d, and calculate both the gate time tg and Ωpp ¼ max½jΩðtÞj�. We
note that the obtained Ω(t) can lead to pulses along arbitrary axes
(e.g. X or Y). In particular, for reasons described later, we target
gates formed by concatenating blocks of 16 pulses. For that, the
gate time tg must be 8Nτk, where N is an integer number. This
translates into the condition ðν � ξkÞ=8kjξkj 2 N (note tg= 8Nτk,
while tg= 2π/∣ξk∣ and τk= 2πk/(ν− ξk)). The final step is to select
the values of d for which this last condition is satisfied. As a result,
we obtain all possible gates within the harmonic k as well as the
corresponding values for Ωpp.

Figure 2(b) shows values of tg and Ωpp obtained following the
previous prescription for η= 0.005 and k= 7, 9. Notice that there
are plenty of solutions giving faster-than-dispersive gates, i.e.
tg=t

d
g<1, using low-intensity pulses with values of Ωpp well below

the frequency ν.
As an example, we choose two solutions within the 9th

harmonic, where τk extends over approximately nine oscillator
periods. In Fig. 2c the shapes of Ω(t) and fz(t) are displayed for
cases N= 5 and 10. Notice that Ω(t) achieves a larger amplitude
when N= 5. As a consequence, it generates a faster gate. This is
shown in Fig. 2d, where the two-qubit gate phase θ(t) related to
the N= 5 gate reaches the target value π/8 faster than the N= 10
gate or the dispersive gate.

The reason for choosing the gate time as an integer multiple of
8τk has to do with an efficient decoupling from finite-pulse effects

Fig. 2 Amplitude modulated π pulses. a Ω(t) for a single XY8 block. The
whole sequence here is a concatenation of 2N blocks. b Gate time tg as a
function of Ωpp, for values of d between 0 and dmax. Values satisfying
tg= 8Nτk are represented by square and round markers for k= 9 and k= 7,
respectively. c Ω(t) and fz(t) for cases N= 5 with d= 1.888 (blue) and
N= 10 with d= 0.908 (red) of the 9th harmonic. d Gate phase θ(t) for
N= 5 (dashed blue line), N= 10 (solid red line), and the dispersive case
(dotted line).
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produced by the terms fx,y(t) neglected in Eq. (3). In the same
way, the XY8≡ XYXYYXYX pulse structure assures cancelation
of σz type noise, as well as of Rabi frequency fluctuations. In
Fig. 2a the Rabi frequency is plotted (Ωx(t) when ‘X’; Ωy(t) when
‘Y’) for an XY8 block.

To understand the elimination of finite-pulse effects, we
calculate the second-order Hamiltonian of Eq. (2) after an XYXY
block leading to (see supplementary note 5 for the derivation)

HXYXY ¼ � 1
2
η2ν J?k ðS2x þ S2yÞ � BkðayaÞSz

n o
: ð10Þ

If our gate contains only XYXY blocks, HXYXY adds to
Hamiltonian (4) spoiling a high-fidelity performance. To over-
come this problem, we use a two-step strategy. Firstly, we
concatenate XYXY and YXYX blocks (which form a XY8 block)
such that the term Bk(a†a)Sz gets refocused. Note that in the
presence of bosonic decoherence, this term will induce qubit
dephasing. Secondly, we cancel the remaining term J?k ðS2x þ S2yÞ
by driving the two qubits with opposite phases every second XY8
block. This is, when rotating by an angle π the phase of the
second qubit’s driving HðþÞ

d ¼ ∑μ¼x;yΩμðtÞSðþÞ
μ =2 becomes

Hð�Þ
d ¼ ∑μ¼x;yΩμðtÞSð�Þ

μ =2 instead, where Sð ± Þμ � σμ1 ± σ
μ
2. This

changes the sign of the σu1σ
μ
2 terms with u, μ∈ {x, y}, leading to

refocusing of the term J?k ðS2x þ S2yÞ after every pair of XY8 blocks.
Note that the second step requires the ability to address each

qubit individually, and assumes that Nq= 2, i.e. Sμ is given by the
sum of two qubit operators. In the absence of individual
addressing, one can incorporate the term J?k ðS2x þ S2yÞ into the
gate, but then the operation applied is not equivalent to the
CPHASE gate. For a discussion regarding this alternative gate, as
well as the extension to the multiqubit case, see supplementary
note 6.

Summarising, our two-qubit gates are generated by nesting
TQXY16≡ XY8(+)XY8(−) blocks, where TQXY16 stands for
‘two-qubit’ XY16, while XY8(±) implies qubits driven in phase or
in anti-phase as discussed in the previous paragraph, while,
importantly, each π pulse is implemented according to the
designs for fz(t) and β(t) presented in Eqs. (8), (9).

Trapped-ion implementation and numerical results. We
benchmark our method by simulating its performance in a pair of
trapped ions in a static magnetic field gradient7. In this scenario,
qubit frequencies ωμ take values around (2π) × 10 GHz,
ν= (2π) × 220 kHz is the frequency of the centre-of-mass vibra-
tional mode, η ¼ γegB=8ν

ffiffiffiffiffiffiffiffiffiffiffiffi
_=Mν

p
is an effective Lamb-Dicke

factor where γe= (2π) × 2.8 MHz/G, gB is the magnetic field
gradient, and M is the ion mass. The two-ion system has a second
vibrational mode ‘b’ with its corresponding qubit-boson coupling.
Thus, Hamiltonian (1) is replaced by H0+H2M, where
H2M ¼ ffiffiffi

3
p

νbyb� 3�1=4ηνðbþ byÞSð�Þ
z . The addition of H2M

changes the dispersive coupling in Eq. (4) as
Jk ! Jk � 1=3∑1

n¼1 f
2
n=ð1� n2=3k2Þ, which must be taken into

account when following the prescription to calculate the valid
gates. This step can be done for an arbitrary amount of spectator
modes, given that the mode frequencies νm fulfil the condition
ηfn≪ ∣νm− nωk∣ for all odd n.

Although we simulate the performance of the gate with the
two-mode Hamiltonian Hf ¼ Hð± Þ

d þ H0 þ H2M (see column
ΔI 2M in Table 1), due to computational limitations we use the
single-mode Hamiltonian Hs ¼ Hð ± Þ

d þH0 þ Heff
2M instead, where

Heff
2M ¼ 1

3 νη
2rS2z is the second-order contribution of H2M. See

supplementary note 7 for additional details. Here, Hð ± Þ
d stands for

HðþÞ
d (Hð�Þ

d ) every first (second) half of a TQXY16 block.
We investigate two regimes: (i) η= 0.005 (gB= 19.16 T/m),

which is the state-of-the-art of current experiments18,54, and (ii)
η= 0.04 (gB= 153.2 T/m), which can be reached in near future
setups39.

In regime (i), we consider three different gates, all within the
9th harmonic. The first gate (G1), with a duration tg= 1.64 ms,
appears after five TQXY16 blocks with pulse length tπ= 20.5 μs
reaching Ωpp= (2π) × 124 kHz. The second gate (G2) with gate
time tg= 3.28 ms uses ten TQXY16 blocks with pulse length
tπ= 20.5 μs reaching Ωpp= (2π) × 77.8 kHz. The third gate (G3),
with the gate-time tg= 3.94 ms and Ωpp= (2π) × 78.69 kHz, uses
twelve blocks, each with a different pulse length and detuning,
while it incorporates a technique to mitigate errors due to mode
decoherence, see supplementary note 8. In regime (ii) we consider
a gate within the 5th harmonic (G4). This gate occurs after two
TQXY16 blocks where tg= 368 μs, tπ= 11.5 μs, and Ωpp= (2
π) × 80.9 kHz. For further details regarding pulse parameters, see
supplementary note 7.

The performance of the four gates in the presence of distinct
error sources is shown in Table 1. Each simulated experiment
starts from the state jþxþyi and targets the Bell-state

j~Φþi ¼ 1ffiffi
2

p ðjþxþyi þ ij�x�yiÞ, while in all cases we consider

an initial motional thermal state with �n ¼ 154. Other initial states
result in similar values for fidelity.

In the 2nd and 3rd columns of Table 1, we show the gate error
I ¼ 1� F obtained by concatenating XY8 or TQXY16 blocks,

respectively. Here, F ¼ h~Φþjρj~Φþi=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ2Þ

p
67, where ρ is the

final state after tracing out the bosonic states. Notice that
TQXY16 blocks achieve a clearly superior performance due to
efficient decoupling from finite pulse effects. For these,
ITQXY16 ≤ 10

�6 for all gates except G4, where finite the residual
qubit-boson entanglement limits the error to approximately 10−5.
In the fourth column we evaluate the effect of the second mode b
by numerically simulating the two-mode Hamiltonian Hf

(initialising the second mode b in a thermal state with �n ¼ 1),
which results in I2M. The infidelities relative to the previous case

Table 1 Error budget: Column XY8 and TQXY16 show the infidelities after an evolution with Hamiltonians HðþÞ
d þ H0 þ Heff

2M and
Hs, respectively.

Gate IXY8 ITQXY16 ΔI2M ΔICT ΔICT� ΔIT2
ΔI δΩ ΔI δν ΔI _--

n
I total (10

−4)

G1 5.50 0.01 0.04 24.8 2.26 2.34 0.21 0.28 5.65 10.8
G2 28.7 <10−2 <10−2 3.20 0.95 2.45 0.32 1.01 19 23.7
G3 41.3 <10−2 <10−2 134 1.82 2.35 0.31 0.26 4.71 9.45
G4 >103 0.12 0.38 0.23 0.01 0.43 0.09 <10−2 0.11 1.14

The remaining columns show infidelities relative to the TQXY16 case (e.g. ΔI2M ¼ I2M � ITQXY16), taking into account various experimental imperfections. In columns ΔI2M, ΔICT, and ΔICT� ,
infidelities obtained considering a second mode, crosstalk, and crosstalk with the sin2 ramp are shown. In ΔI δΩ , ΔI δν , and ΔIT2

we show relative infidelities considering static shifts of δΩ= 5 × 10−3,
δν= 10−5, and δω ¼ ð2πÞ ´ 2

ffiffiffi
2

p
kHz. _�n shows the error considering heating with rates _�n1 ¼ 35 ph/s and _�n2 ¼ 100 ph/s for regimes (i) and (ii), respectively. The last column shows the overall error

obtained by summing the values of all columns except those in IXY8 and ΔICT.
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(i.e. ΔI 2M ¼ I 2M � ITQXY16) are given in the ‘ΔI 2M’ column of
Table 1. Again, the effect of the second mode is relevant only for
G4, which contributes 3.8 × 10−5 to the total error. Importantly,
this demonstrates that our gate is compatible with the presence of
spectator modes.

To investigate the effect of crosstalk, we add the term Hð ± Þ
c ¼

∑μ¼x;y
ΩμðtÞ
2 ðσ�2 e�iΔωt ± σ�1 e

iΔωt þH:c:Þ to Hs, where Δω/
(2π)= (ω2−ω1)/(2π)= 2.54 and 20.34 MHz for regimes (i) and
(ii), respectively. The results are given in the ‘ΔICT’ column of
Table 1. In contrast to the effect of the spectator mode, crosstalk is
most harmless with the G4 gate. This is expected, as G4 operates
with a larger qubit detuning Δω than the rest, while using a similar
Rabi frequency. To reduce the impact of crosstalk, we combine our
pulses with sin2-shaped ramps at the beginning and end of each
pulse, see supplementary note 7, and optimise the length of the
ramp using numerical simulations. The resulting infidelities are
shown in the ‘ΔICT�’ column. Note that the sin2 ramp reduces the
value of I by at least an order of magnitude in most cases.

Robustness w.r.t. common errors such as dephasing over qubits
due to static shifts ωj→ωj± δω, Rabi-frequency shifts (i.e. Ω(t)→ (1
± δΩ)Ω(t)), and shifts on the mode frequency, ν→ (1 ± δν) ν, is
shown in Fig. 3a–c, where the infidelity is plotted versus the degree of
uncertainty. In columns 7–9 of Table 1, we display the relative
infidelities for a dephasing time T�

2 � 500μs 54, a Rabi-frequency shift
δΩ= 5 × 10−3, and a mode-frequency shift of δν= 10−568. For further
details, see ‘Methods’. Furthermore, in Fig. 3d we plot the infidelity
versus _�n, while in column _�n, we show the relative infidelities for G1-3
and G4 for mode heating rates _�n ¼ 35 and 100 ph/s, respectively. For
further details, see Supplementary note 7. Figure 3e shows the phase-
space trajectory of α(t) for all gates G1-4.

Table 1 shows that mode heating is the main source of error for
gates in regime (i). This, along with dephasing and crosstalk, limits
the fidelity of these gates to the 10−3 regime. Despite its longer gate
duration, G3 achieves better performance in terms of motion-
induced errors than G1 and G2, proving the validity of the mode
decoherence protecting technique described in supplementary note 8.
Finally, table 1 shows that G4 is the most robust w.r.t. experimental
imperfections. This is reasonable since it uses a larger η and is an
order of magnitude faster than the other gates. In particular, we find
that G4 achieves infidelities on the 10−4 regime, mainly limited by
residual qubit-boson entanglement caused by off-resonant harmo-
nics and the spectator mode. Note that the influence of this error has

been taken into account in supplementary note 3, where we also
discuss the potential effects of micromotion.

Discussion
We have presented a DD sequence (TQXY16) based on the delivery
of low-intensity π pulses that achieve faster-than-dispersive two-qubit
gates. Without the need of any numerical optimisation, we have
designed entangling gates which are robust to fluctuations in qubit
frequencies and control fields, as well as to finite-pulse effects hin-
dering a high-fidelity performance. In addition, we have demon-
strated the versatility of our protocol to adopt forms that provide
increased robustness against crosstalk and mode decoherence.

Our scheme is best suited for systems i) using longitudinal
qubit-boson coupling with η≪ 1, ii) where dephasing is the main
source of qubit decoherence, and iii) where the Rabi frequencies
Ω(t) are of the order (or far below) the mode frequencies ν. This
is the case, e.g., for spin qubits coupled to microwave cavities5,6.
In ref. 6, η ~ 10−2 and Ω/ν ~ 0.1. Superconducting qubit archi-
tectures exploiting longitudinal qubit-boson coupling has also
been proposed3,4. Our method is also well suited for these systems
when working with small η.

Finally, we tested the performance of our protocol in trapped
ions coupled via static magnetic field gradients, where conditions
(i), (ii), and (iii) are perfectly satisfied. Compared to existing
multi-level schemes18,39, our method has the advantage of using
only two levels, which lowers the experimental requirements.
Compared to previous pulsed DD methods51, our method has the
advantage of using realistic pulse intensities. Using detailed
numerical simulations, we have obtained infidelities within the
10−3 threshold at state-of-the-art conditions, and in the 10−4

regime in near-future setups.

Methods
In Table 2 we show suitable values of b and c given the harmonic k. Also, we show the
maximum value of ∣d∣ for which a physical pulse (i.e, ∣fz∣(t) ≤ 1) can still be generated
with the ansatz given in Eqs. (8), (9). For gates G1, G2 and G4, the selected values of d
are 1.915, 0.933, and −0.321, respectively. The list of detunings used in gate G3 is
ξ
!

k ¼ ð2πÞ ´ ½1:24; 0:31; 0:64; 0:09; 0:55; 0:05; 0:54; 0:06; 0:57; 0:14; 0:73; 0:80� kHz.
Our numerical simulations for dephasing consider an additional ± δω/2Sz term

in Hs, where δω ¼ ffiffiffi
2

p
=T�

2 . In all three cases, each point is the average error
obtained by a positive (e.g. ωj→ ωj+ δω) and a negative (e.g. ωj→ ωj− δω)
displacement.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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