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Insight on charge-transfer regimes in electron-
phonon coupled molecular systems via numerically
exact simulations
Michel Panhans1,2, Sebastian Hutsch1,2 & Frank Ortmann 1,2✉

Various simulation approaches exist to describe charge transport in organic solids, offering

significantly different descriptions of the physics of electron-phonon coupling. This variety

introduces method-dependent biases, which inevitably result in difficulties to interpret charge

transport processes in a unified picture. Here, we combine numerical and analytical quantum

approaches to investigate the charge-transfer dynamics in an unbiased framework. We unveil

the fading of transient localisation and the formation of polarons in a broad range of vibra-

tional frequencies and temperatures. By studying the joint electron-phonon dynamics from

femtoseconds to nanoseconds, we identify three distinct charge-transport regimes: transient

localisation, Soft Gating, and polaron transport. The dynamic transitions between such

regimes are ruled by a buildup of the correlations between electronic motion and nuclei,

which lead to the crossover between transient localisation and polaron transport. This

transition is seamless at all temperatures and adiabaticities, even in the limit of low-frequency

vibrational modes.
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The thorough understanding of the interplay of electronic
motion and nuclear vibrations with their characteristic
time scales is a challenging fundamental task in many

domains of condensed matter research1–3 with great relevance for
modern materials for energy conversion, comprising electronic
materials such as oxides, halide perovskites, and organic semi-
conductors (OSCs)4–6. For these materials, vibrations play an
important role because the electron–phonon coupling (EPC)
impacts almost all electronic and optoelectronic features, relaxa-
tion processes and charge-carrier transport5,7–12. Despite con-
siderable research efforts, a consistent non-perturbative transport
theory covering the whole range of possible vibration modes does
not exist, and for different OSC materials such as naphthalene13,
rubrene14,15 and other OSC materials16, different theoretical
approaches are used. Various numerical schemes have been stu-
died in recent years and improved upon different aspects of the
problem14,17–27. Each of these approaches is associated with a
specific regime of the so-called adiabaticity parameter α that
relates electronic and vibrational energies (vide infra). For the
adiabatic case (small α), one may treat the EPC effectively with a
vibrational disorder potential as in the transient localisation (TL)
scenario10,14,28 or other adiabatic models29,30. The opposite so-
called anti-adiabatic limit is the basis of (analytic) polaron and
hopping theories13,31–37. Recent progress for a more consistent
description of the vibrations includes the introduction of non-
adiabatic effects by surface hopping schemes24,38, a time-
consistent hopping approach39 or a mode-specific treatment of
the vibrations26,27,40. Despite this progress, however, treatment of
all modes on equal footing within a quantum framework remains
a great challenge because of the large range of possible α values.
This phase space between the two limiting cases of α is crowded
by a large number of material systems, and most systems cannot
be clearly assigned to one or the other limiting case—the main
challenge for our understanding. Addressing these questions, one
realises that the challenge even exists for a prototypical minimal
model, the two-site Holstein model, which has a long history in
theoretical research41. Maybe surprising at first glance, the reason
is that the two-site Holstein model is the very basis for introdu-
cing the adiabaticity parameter α ¼ _ωph=ε12 with the transfer
integral ε12 between the two sites and the frequency of vibrations
ωph on each site. This model is, therefore, central to the under-
standing of the crossover regime with intermediate α values.

In this work, we analyse the vibration-coupled charge-carrier
dynamics in the prototypical two-site Holstein model and find
different charge-transport regimes that emerge from the interplay
of electronic transfer integrals and the EPC energies. By simu-
lating the electron’s exact quantum dynamics (EQD) for different
adiabaticities and temperatures, we provide insights into the
seamless transition between theories for limiting cases. We relate
the charge-carrier dynamics to the dynamics of the phonon
modes and identify signatures of both types of particles in both
the electronic and the phononic spectra. We identify three dif-
ferent regimes in the charge-transfer dynamics, which are the
regime of TL, Soft Gating (SG), and polaron transport. For all
regimes, we extract their corresponding time scales and discuss
their impact on carrier transport. These detailed insights into the
dynamical evolution of electron-phonon coupled systems provide
a better general understanding of carrier-transport mechanisms
in OSCs and related systems beyond limiting cases of the adia-
baticity parameter.

Results and discussion
Modelling and numerically exact simulations. In the two-site
Holstein Hamiltonian, which serves as a model for the charge
transfer between two molecules or two electronic states in general,

the electronic states are locally coupled to molecular vibrations as
described by

ĤHol ¼Ĥel þ Ĥel�ph þ Ĥph ¼ ε12 ĉy1 ĉ2 þ ĉy2 ĉ1
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Here, ε12 is the electronic transfer integral between the sites and
_ωph is the energy of the vibration mode (taken equal for the
same type of molecules). The EPC is given by a dimensionless
coupling constant g, and we set ε11 ¼ ε22 ¼ 0 to focus on the
interplay between the electronic coupling and the EPC. To
describe charge transfer, we simulate the optical conductivity σ(ω)
of the system and the mean square displacement (MSD) Δx2(t) of
the electron, which is a central quantity in the theoretical
description of charge- and energy transfer14,42–44. The connection
between both is given by the Kubo formula for longitudinal
charge transport45,46 by means of an Einstein relation,

R σxxðωÞ
� � ¼ e2β

4V

tanh β_ω
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β_ω
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dte�iωt d
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dt2
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To include variable temperatures, we study the EQD of this
system by evaluating the thermally averaged electronic MSD for a
single electron,

Δx2 tð Þ ¼ Tr1el ρ̂0Δx̂
2 tð Þ� �

; ð3Þ
with spatial displacement Δx̂ tð Þ ¼ eitĤHol=_x̂ 0ð Þe�itĤHol=_ � x̂ 0ð Þ and
the (canonical) density operator ρ̂0 ¼ e�βĤHol=Tr1elðe�βĤHolÞ: The
trace runs over the phononic degrees of freedom and over all one-
electron states. The numerical evaluation of the MSD is performed
by a linear-scaling quantum-transport method44,47. The imple-
mentation of the Holstein Hamiltonian is realised in electron-
phonon product spaces using a phonon-space truncation
method48–50. (see “Methods” section for technical details)

In the simulations for varying adiabaticity α, we fix the electronic
coupling at ε12= 40meV. This energy serves as a reference energy
scale here and is a typical value found in OSCs10,19,24,39,51. We then
vary _ωph and g such that the molecular relaxation energy Λ ¼
_ωphg

2 ¼ 80meV is kept constant. This has the advantage that the
interaction energy is always the same, while α varies in the range
0.125≤ α≤ 5.0 (see Supplementary Table 1), which covers the
known limits, i.e. TL (smallest α) and small polarons (large α). At
this point, we note that in particular for small mode energies and
large EPC constants, the present model might be extended in the
future by anharmonic effects in the vibration dynamics and non-
linear EPC terms, which may become relevant for organic
molecular crystals52,53 and lead-halide perovskites54,55. We also
note that all results are qualitatively unaffected by rescaling all
energies as only their relative values are relevant for the qualitative
behaviour. We start discussing our results for short evolution times
up to several tens of fs, where the features support the previously
described TL scenario10,14.

Exact dynamics at transient-localisation time scales. We first
simulate the MSD with EQD for short times and compare dif-
ferent vibration energies _ωph in Fig. 1a (with a0 the distance
between the sites). We observe qualitatively different electron-
transfer dynamics in dependence on the mode energy between
5 meV and 200meV, which are chosen to be well below and well
above the reference transfer integral of 40meV, respectively. After
an initial behaviour (up to ~20 fs), the curves diversify greatly at
later times. For clarity in the figure, not all curves are shown for all
times. We find that in the case of the slowest mode (5 meV, black

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01241-w

2 COMMUNICATIONS PHYSICS |           (2023) 6:125 | https://doi.org/10.1038/s42005-023-01241-w | www.nature.com/commsphys

www.nature.com/commsphys


curve in Fig. 1a), the MSD increases slowly with time after ~130 fs.
This gradual increase is accompanied by a reduced oscillatory
modulation. For the fastest mode (200meV), in contrast, the MSD
shows strong periodic oscillations. This case is qualitatively similar
to the completely uncoupled case, for which the analytical result

Δx2 tð Þ ¼ a20
2 1� cos 2ε12t

_

� �� �
has a periodicity of π_=ε12 ¼ 52fs.

Quantitatively, however, this period differs from the numerically
observed period in Fig. 1a, which will be discussed further below.

We first focus on the low-frequency case (α < 1). To understand
the charge-transfer dynamics for _ωph ¼ 5meV in more detail, we
relate it to the charge-transfer dynamics obtained from the static
limit of EPC (see “Methods” section for details). In this limit, the
EPC manifests in a vibration-induced electronic disorder potential
V̂ Tð Þ ¼ ∑i_ωphgð1þ 2nphÞ1=2ϕi ĉyi ĉi, where i runs over all electro-
nic sites, and ϕi is a normalised Gaussian random variable. This
purely electronic disorder model corresponds to the TL scenario
for low-energy modes and is compared to the approximation-free
EQD in Fig. 1b. The MSD in the TL simulation is similar to the
one obtained with EQD up to an evolution time of around ~130 fs,
which corresponds to 1=ωph. At longer times in Fig. 1b, the
transiently frozen modes cause the electron to localise, and
the MSD saturates. For the exact dynamics, in contrast, we
observe an increasing MSD. In TL approaches, this quantum
localisation is usually actively suppressed via the relaxation-time
approximation10,14,28,40 with an effective relaxation time of 1=ωph,
leading to non-zero mobilities. In Fig. 1b, we have additionally
plotted the analytic result for the MSD derived from the adiabatic
Born-Oppenheimer approximation29,30 (see Supplementary Note 2
for details) in magenta. The hardly distinguishable curves
demonstrate its equivalence to the MSD from the static-disorder
model for the chosen parameters.

Evidently, for modes with a small frequency, the range of
validity of the static-disorder model is larger because the
adiabaticity is small enough to justify this assumption for
somewhat larger times. However, as the mode energy increases,
this static description is unable to describe the EQD properly, as
shown in Fig. 1b by the deviation of the MSD for longer times
(t > 130 fs). While this interesting behaviour for longer times is
discussed further below, we first keep our focus on early times
and discuss the case of high-frequency modes (α > 1).

Polaronic transport features. For high-frequency modes, the
electron-transfer from EQD is analysed in Fig. 2a. We observe

forth-and-back oscillations in the MSD (green curve in Fig. 2a)
with a periodicity of 81.1 fs in the case of _ωph ¼ 200meV, which
would correspond to the MSD dynamics of an effective electronic
two-site model described by 1� cos 2γ12t=_

� �� �
. The extracted

effective transfer integral is γ12 ¼ π_=tγ ¼ 25:8meV. This value
is very close to the renormalised (narrowed) transfer integral ofeε12 ¼ e�g2ð1þ2nphÞε12 ¼ 26:8meV calculated from analytical
polaron theories13,31,36. The EQD-MSD (green curve in Fig. 2a) is
compared to the analytical result (magenta curve in Fig. 2a)
obtained from polaron theory (see Eq. (M8) in the Methods
section). Both the EQD and the analytical result match well due
to the similar effective transfer integrals. On the other hand, the
dashed grey curve in Fig. 2a corresponds to the case of vanishing
EPC (with the bare ε12) and shows more rapid oscillations. From
the comparison of these results for the bare and analytically
narrowed transfer integrals, we conclude that the charge-transfer
dynamics is polaronic in nature, and the period (and renorma-
lisation), as predicted by polaron theory, is closely matched.

Starting from this clear-cut polaronic case, we next study how
the polaronic renormalisation effect develops when the mode
energy is smaller, and we extend the numerical calculations to
much larger times and lower temperatures. Figure 2b, c shows
exemplary results when _ωph has dropped below the transfer
integral (i.e. _ωph ¼ 20meV and 10 meV). For such low-
frequency modes, polaronic effects are usually assumed to be
absent because the adiabaticity parameter is below 0.5. Unex-
pectedly, even for these modes, we do observe strong oscillations
with polaronic character in the EQD–MSDs. For a temperature of
10 K, for example, the oscillations exhibit large amplitudes that
are dominated by periods of tγ= 1.4 ps in Fig. 2b and 12.9 ps in
Fig. 2c. These periods correspond to effective transfer integrals of
γ12= 1.47 meV and 0.16 meV, respectively, and are more than
one order of magnitude smaller than the bare electronic values
and thus polaronic in nature. The EQD–MSD at 300 K (Fig. 2b, c)
reveals that these reduced effective transfer integrals are quite
independent of temperature.

We further emphasise that this behaviour is not described by
the renormalisation factors of analytic or variational polaron
theories13,31,36,56,57, that predict an exponential decrease with
phonon occupation nph according to the analytical values
e�g2ð1þ2nphÞ or the variational values e�ϕ2scð1þ2nphÞ (variational
coupling constant ϕsc, see Supplementary Note 3 for details on
variational approaches to the two-site Holstein model) and are
strongly temperature dependent for the values considered here.

Fig. 1 Short-time exact-quantum-dynamics–mean-square-displacement (EQD–MSD) simulations. a Short-time behaviour for the considered range of
vibration mode energies _ωph (MSD data for intermediate values of mode energies are only indicated up to 50 fs for clarity). b Identification of transient
localisation (TL) within the static limit of the electron–phonon coupling (green curve, open circle) as discussed in the main text and evaluated in the
“Methods” section. The MSD based on the adiabatic Born-Oppenheimer (BO) limit (magenta curve, open square) is shown for comparison (see Eq. (S27)
in Supplementary Note 2).
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In contrast, this reduction is not observed in the MSD for none of
the shown mode energies.

In order to investigate the generality of these results, we further
extend our scope in Fig. 2d to many more frequencies, where we
plot the extracted effective transfer integrals γ12 (obtained at
300 K) as black dots versus the EPC coupling strength g2 and
compare them to the renormalised transfer integrals eε12 at 0 and
at 300 K (solid and dashed green lines). We find that for mode
energies above 10 meV, the effective polaronic oscillations of the
exact MSDs are nicely described with the renormalised transfer
integrals at zero temperature given by ε12e

�g2 (solid green line,
see also inset of Fig. 2d). In contrast, for 5 meV and 10 meV the
numerical values are much larger than the analytical reference
value by factors of 400 and 10, respectively. Furthermore, we also
include results for the effective transfer integrals obtained from
variational polaron theories56,57 (solid and dashed magenta lines),
which we have applied to the two-site Holstein model. From the
comparison with the effective variationally obtained transfer
integrals εvar12 ¼ ε12e

�ϕ2sc (solid magenta line in Fig. 2d) at zero
temperature, we do not find any relation to γ12 obtained from the
EQD. The discrepancy between the analytic (variational) effective
transfer integrals and the effective transfer integral γ12 illustrates
that transport properties (such as the MSD) are not directly
accessible from simple polaronic energy parameters. Thus,
charge-transport needs to be evaluated independently, as also
found in variational polaron theories57.

In any event, the strong difference to the bare transfer integral
(dashed grey line in Fig. 2d) proves the existence of polaron
transport on picosecond time scales, and we observe its
independency of the adiabaticity parameter _ωph=ε12. This is a

central finding of the present work. We conclude that the main
oscillation periods in the MSD are of polaronic nature for all
studied vibrational mode energies and all studied temperatures.
This insight may be used in future theories for the long-time
charge dynamics in the presence of EPC independently of the
adiabaticity. This is particularly important for the possible
improvement of TL theory, which currently does not take into
account dynamical effects after the TL time.

Our simulations further show that after the emergence of
polaronic transport features discussed above, the system does not
show additional dynamical regimes at even later times (see
Supplementary Fig. 3 for a dynamical evolution at the
nanosecond scale). This observation can be identified with an
already completely formed polaron (at low and at high
temperatures). Turning back to the ultrafast timescales, the
central questions are how the formation process of the polaron
proceeds and how the TL fades away? Therefore, the time
evolution of the correlated electron-phonon dynamics between
TL and polaron transport is of particular interest.

Intermediate transport regime and SG. The quantum dynamics
after the static regime and before the long-time regime (polaron
limit) are notoriously difficult to access and evades a precise
analytical description. We investigate the MSD for these inter-
mediate times at exemplary temperatures of 10 and 300 K. This
intermediate charge-transport regime is best visible if the time
difference between the initial phase and the long-time regime is
large enough, i.e., the polaronic oscillations have a large oscilla-
tion period due to strong renormalisation of the transfer integrals.

Fig. 2 Polaronic transport features at different temperatures. a Comparison of the MSD based on polaron theory (magenta, open square) and formation
of polaronic oscillations in the EQD–MSD (green, open circle). The dashed grey curve is the zero-EPC result (see main text). b MSD for a mode energy of
20meV and g= 2.0 at two different temperatures. c Same as in b but with _ωph ¼ 10meV and g= 2.83. d Extracted polaronic transfer integrals γ12 at
300 K as a function of the EPC coupling strength g2 (full circles) in comparison to analytical values of the renormalised, variational, and bare transfer
integrals eε12 (green), εvar12 (magenta, see Eq. (S46) in Supplementary Note 3), and ε12 (dashed grey line). The labels a–c inside the plot correspond to the
values of γ12 extracted from the MSD shown in Fig. 2a–c. The inset in d zooms into the range of 0.6≤ g2≤ 4 for better comparison.
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This is best seen in the case of _ωph ¼ 10meV, which we select
for the following discussion.

Figure 3 summarises the results obtained for the EQD–MSD.
At small times, Fig. 3a shows the increase of the MSD, which
indicates the lifting of TL that was observed in Fig. 1 below 100 fs.
While this occurs for both temperatures, the concrete dynamics is
qualitatively different for both cases. At low temperature and after
the TL time of ω�1

ph ¼ 65:8 fs, the MSD does not exhibit the
oscillations that appear at higher temperatures in the time
window ω�1

ph < t < 1:5 ps (black). Therefore, the difference in
the dynamical behaviours must be caused by the finite
temperature and can be explained as follows.

From the dynamical evolution of the system at 300 K in Fig. 3a,
we find that the dominant oscillations in the MSD are related to
the vibration period of the modes. We extract a period of
teff= 0.73 ps, which corresponds to an energy of _ωeff ¼ 5:8meV.
The relation to the vibration, however, is not immediately
obvious because this is only 58% of the nominal mode energy
(_ωph ¼ 10meV) and, at first glance, it is not evident if both
energies are related at all. To understand this connection, we
study the phonon spectral function and compare it to the optical-
electronic conductivity. In general, the phonon spectral function
is defined as the imaginary part of the retarded Green’s function
(mode index λ)58,

Aph ω; λð Þ ¼ � 1
π
I Gret

ph ω; λð Þ
� �

; ð4Þ

with the conventional time-domain bosonic Green’s function

Gret
ph t; λð Þ ¼ � i

_Θ tð ÞTr1elðρ̂0½b̂λðtÞ; b̂
y
λð0Þ�Þ. The latter is evaluated

numerically analogously to the electronic MSD in Eq. (3).
Technically, one can calculate Aph(ω) after a simple transforma-
tion in phonon space by introducing the phonon−relative
coordinates (defined by b̂λ ¼ ðb̂1 � b̂2Þ=

ffiffiffi
2

p
). Only this coordinate

is coupled to the electron dynamics, while the centre-of-mass
coordinate is effectively decoupled from the electrons (see
Supplementary Note 1 for details).

The phonon spectral function is shown in Fig. 3b. At 300 K, we
find that the main weight in Aph(ω) is contained in the broad
spectral feature directly above 5 meV, which sharpens at lower T
to a phonon peak at _ωeff ¼ 5:8meV in accordance with the
electron MSD. Furthermore, Aph(ω) has almost completely lost its
weight at the original mode energy of _ωph ¼ 10meV. We
therefore identify this lowering in energy as EPC-induced
renormalisation of the phonon-mode energy. A similar effect
has been described as phonon softening59–62. Already this
occurrence of a principal phonon peak that agrees exactly with
the MSD oscillations in Fig. 3a strongly suggests that the
vibration controls the MSD dynamics.

To relate the phonon spectrum more closely to the dynamical
electron-transfer behaviour in the intermediate regime, the
Fourier transform of the electron’s diffusion coefficient D(ω),
which is directly proportional to the conductivity R σxx ωð Þ� �
given in Eq. (2), is analysed in the low-frequency region in Fig. 3c.
There, we see that D(ω) exhibits the same spectral components as
Aph(ω). We note that the largest features in D(ω) appear at and
around the renormalised mode energy of 5.8 meV. This very
similar behaviour of the diffusion coefficient and the phonon
spectral function in Fig. 3b leads us to the conclusion that the

Fig. 3 Time- and energy-resolved charge-transfer dynamics of three different charge-transport regimes at low and elevated temperatures. a Mean
square displacement (MSD) for intermediate times up to 4 ps for _ωph ¼ 10meV and g= 2.83. b Phonon spectral function Aph(ω) obtained from Eq. (4)
for _ωph ¼ 10meV and g= 2.83. c Low-frequency spectrum of the diffusion coefficient D(ω), which is obtained from the time-dependent diffusion
coefficient D tð Þ ¼ d

dtΔx
2 tð Þ as the time derivative of the MSD displayed in panel (a). d Relative peak height Dðωeff Þ=Dð2γ12Þ as a function of the adiabaticity

and for different temperatures. The relative peak heights for 10 K are only plotted for the lowest vibrational frequencies due to the absence of a peak at ωeff

for frequencies larger than 20meV. e Comparison of effective time scales for transient localisation (TL), Soft Gating (SG), and polaron transport given by
ω�1
ph (black), ω�1

eff (magenta), and γ�1
12 (blue) for all adiabaticities. The temperature in e is fixed at 300 K. The dashed vertical line indicates the time scale of

charge transport without electron–phonon coupling. The colour gradients indicate the regions where TL (green colour gradient) and polaron transport
(white-blue colour gradient) take place in the charge-transfer dynamics. The semi-transparent grey area indicates the SG regime.
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renormalised mode drives the transfer of the electron at ambient
temperatures, which can be interpreted as an SG process
appearing on transient time scales up to 1–2 ps. SG in this sense
means that the transfer of the electron is facilitated (gated) by the
phonon mode and appears synchronised in time to the motion of
the renormalised (softened) phonon frequency.

In contrast, at lower temperatures a different behaviour is
observed (cf. Fig. 3a), which can be understood with the freeze
out of the renormalised phonon mode. Indeed, Fig. 3c shows that
the spectral weight of the diffusion coefficient around the effective
mode energy _ωeff is strongly decreased at 10 K. But the mode is
not inactive at low T. TL is still rapidly lifted, leading to a gradual
increase of the MSD with values that are almost independent of
temperature at 3 – 4 ps. The dominating D(ω) peak at 2γ12 for
10 K reveals that this MSD increase is not a SG mechanism but is
already of polaronic nature, i.e. the SG regime is suppressed at
low T. Taking the relative peak heights Dðωeff Þ=D 2γ12=_

� �
at the

renormalised phonon ð_ωeff Þ and polaron (2γ12) energies as a
characteristic measure for their relevance, we observe in Fig. 3d
the dominance of SG for adiabaticities around and below 0.5 (at
300 K). In all other cases polaron transport dominates over SG, in
particular, for high-frequency modes and at low temperatures.
Thus, the SG mechanism is a thermally activated effect that leads
to an additional transport channel on the picosecond time scale.

Note that the emergence of gating modes induced by the EPC
has been postulated in semiclassical approaches, where these
modes have either been found as a result39 or have been
introduced as an assumption63–65. However, these gating
processes are due to rigid phonons, i.e. there is no coherent
back-action to the vibrations, which is an important qualitative
difference from the SG mechanism described in this work.

We present a final comprehensive picture by plotting the
relevant time scales for TL, SG, and polaron transport in Fig. 3e
for all considered adiabaticities α. We emphasise that indepen-
dently of α, all three regimes appear during the charge-carrier
dynamics at ambient temperatures, but they occur at different
absolute times relative to our reference time scale ε�1

12 of the bare
transfer integral (vertical dashed line). While TL is characterised
by the sole electron dynamics at the smallest time (green colour
gradient), it is replaced by correlated electron-phonon dynamics
at intermediate times. Correlated motion continues in this
intermediate regime in which SG (semi-transparent grey area)
and the polaron formation (white-blue colour gradient) take
place. This formation is eventually completed at γ�1

12 (blue points).
All three regimes can be relevant for the charge-carrier dynamics
in materials because they occur around the typical reference time
scale ε�1

12 . This is eventually controlled by the adiabaticities. For
low α, polaron transport, with its strong renormalisation effects,
plays a minor role, and TL determines the carrier dynamics on
the sub-hundred-femtosecond time scale. At intermediate values
of α one observes mainly correlated electron-phonon dynamics
and polaron formation. This dependence on α points out the
importance of separating the vibrational spectrum into different
parts to accurately include the impact of EPC on the carrier
dynamics.

Conclusions
In summary, we have investigated the rich charge-carrier
dynamics resulting from different time scales and varying mate-
rial parameters in the prototypical two-site Holstein Hamiltonian
and found three regimes of charge transport, namely the TL
regime, the SG-transport regime, and polaronic transport. Fur-
thermore, we obtained effective polaronic transfer integrals from
the long-time carrier dynamics that are different to the ones
established in the literature. We also extracted effective and

renormalised phonon-mode energies, which determine the
dynamics of the highly non-classical SG regime, which is
observed at ambient temperatures but suppressed at low T. These
fundamental insights help unify the understanding of electron-
phonon coupled systems, which is currently relying on limiting
cases of the adiabaticity parameter and should be a reference for
better analytical models. This offers an intriguing perspective to
study more complex systems such as organic crystals and other
electron-phonon coupled systems in the future.

Methods
Electron–phonon product spaces. The numerical evaluation of the MSD is per-
formed in electron-phonon product spaces, which includes the dynamical evolu-
tion of both electronic and phononic degrees of freedom. In the present case, we
have implemented the one-electron–multiple-phonon Hilbert space for the two-
site Holstein model of Eq. (1). The practical realisation of a sufficiently large
electron–phonon product spaces requires a closer look on the parameters of the
considered model. When considering large coupling strengths (up to g= 4.0) and
low mode energies, which lead to large occupation numbers at 300 K, we must
consider a large phonon space for the numerical calculations. To get reliable
numerical results, we consider a truncated phonon space with a total maximum
occupation of 100 vibrational levels, i.e., in minimum, there are 50 oscillator energy
levels available for each site. The Hilbert-space dimension of this phonon subspace
is 5151. This choice guarantees that there are enough oscillator levels available even
for the highest possible thermal and EPC-induced occupation numbers. For the
lowest mode energy of 5 meV, the thermal occupation at 300 K is 4.7. Additionally,
the EPC-induced average occupation of the free oscillator energy levels is 16 due to
the large value of g2. A minimum oscillator-level number of 50 per site is thus
sufficient to converge the numerical results. Since the applied algorithm uses a
stochastic approach to calculate the trace (random-phase state) and to model
thermal averages in the one-electron multiple-phonon subspace, we average over
768 statistically independent two-site models to converge this thermal average.
Thus, the total system size corresponds to 768 × 2 × 5151= 7.9 × 106.

For the dynamical evolution of the MSD in the electron-phonon product space
(see Eq. (3) of the main text), we apply a time step of 0.1 fs, which is sufficiently
small to resolve all relevant (high-energy) modulations in the quantum dynamics.
Furthermore, the largest evolution times reaches up to 2.15 ns covering the slowest
charge-transfer dynamics of the model.

The static limit of EPC. The static limit of the EPC is based on a separation of the
vibrational modes in the Hamiltonian yielding

Δx2stat tð Þ ¼
Tr1elðe�βĤph e�β ĤelþĤel�phð ÞΔx̂2stat tð ÞÞ

Tr1elðe�βĤph e�β ĤelþĤel�phð ÞÞ
; ðM1Þ

with

Δbxstat tð Þ ¼ e
itðĤelþĤel�ph Þ

_ bx 0ð Þe�
itðĤelþĤel�ph Þ

_ � bx 0ð Þ; ðM2Þ

where we see that the phonons do not enter the time evolution any further.
One can analytically show that if we consider an ensemble of multiple but

independent two-site Holstein models (e.g., uncoupled pairs of molecules), the EPC
can be substituted with a vibrational disorder potential V̂ Tð Þ, which does not
contain any phononic degrees of freedom. This potential reads,

bV Tð Þ ¼ ∑
i
_ωphg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nph

q
ϕi ĉ

y
i ĉi; ðM3Þ

where nph is the Bose occupation of the vibrational mode and ϕi is a normalised
Gaussian random variable with standard deviation one. For this case, the MSD
reads

Δx2dis tð Þ ¼
Tr1elðe�βðĤelþV̂ Tð ÞÞΔx̂2dis tð ÞÞ

Tr1elðe�β ĤelþV̂ Tð Þð ÞÞ
; ðM4Þ

with

Δx̂dis tð Þ ¼ e
itðĤelþV̂ Tð ÞÞ

_ x̂ 0ð Þe�
itðĤelþV̂ Tð ÞÞ

_ � x̂ 0ð Þ: ðM5Þ
The approximation in Eq. (M4) is compared to the full MSD given in Eq. (3) of

the main text.

Velocity auto-correlation function and MSD in the polaron limit. In general, the
MSD and the velocity auto-correlation function (VACF) are related by

d2

dt2
Δx2 tð Þ ¼ 2R Tr1el ρ̂0 v̂x 0ð Þv̂x tð Þ� �� �

; ðM6Þ

which is obtained by differentiation and cyclic permutation under the trace of
Δx2(t).
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The VACF in the polaron limit is derived as,

R Tr1el ρ̂0 v̂x 0ð Þv̂x tð Þ� �� � ¼ 1
2

eε12a0
_

� �2

∑
1

n¼�1
In xð Þe

β_ωphn

2 1� �1ð Þnð Þcos nωpht
� ��

þ 1þ �1ð Þnð Þ
2

cos nωph þ
2eε12
_

� �
t

� �
þ cos nωph �

2eε12
_

� �
t

� �� ��
;

ðM7Þ
where eε12 ¼ ε12e

�g2 1þ2nphð Þ is the so-called renormalised transfer integral13,31,36,
nph is the Bose occupation of the mode, and In(x) are the modified Bessel functions

of the first kind with the argument x ¼ 4g2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nph 1þ nph

� �r
. With the identity in

Eq. (M6), we can easily determine the MSD based on the analytical result in
Eq. (M7) as

Δx2 tð Þ ¼ eε12a0
_

� �2

∑
1

n¼�1
In xð Þeβ_ωphn=2 1� �1ð Þnð Þ ð1� cosðnωphtÞÞ

n2ω2
ph

"

þ 1þ �1ð Þnð Þ
2

1� cos nωph þ 2eε12
_

� �
t

� �� �
nωph þ 2eε12

_

� �2 þ
1� cos nωph � 2eε12

_

� �
t

� �� �
nωph � 2eε12

_

� �2

0B@
1CA
375;

ðM8Þ
which is used to plot the MSD (normalised to a20) in Fig. 2a (magenta curve, open
square) of the main text. This relation represents one reference model to be
compared to the numerical results of the MSD for the two-site Holstein model in
Eq. (1) of the main text.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request. Digital access to the data of the figures is possible via:
https://doi.org/10.5281/zenodo.7752215.
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