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Realistic scheme for quantum simulation of Z2
lattice gauge theories with dynamical matter in
(2+ 1)D
Lukas Homeier 1,2,3✉, Annabelle Bohrdt3,4, Simon Linsel 1,2, Eugene Demler5, Jad C. Halimeh1,2 &

Fabian Grusdt 1,2✉

Gauge fields coupled to dynamical matter are ubiquitous in many disciplines of physics,

ranging from particle to condensed matter physics, but their implementation in large-scale

quantum simulators remains challenging. Here we propose a realistic scheme for Rydberg

atom array experiments in which a Z2 gauge structure with dynamical charges emerges on

experimentally relevant timescales from only local two-body interactions and one-body terms

in two spatial dimensions. The scheme enables the experimental study of a variety of models,

including (2+ 1)D Z2 lattice gauge theories coupled to different types of dynamical matter

and quantum dimer models on the honeycomb lattice, for which we derive effective

Hamiltonians. We discuss ground-state phase diagrams of the experimentally most relevant

effective Z2 lattice gauge theories with dynamical matter featuring various confined and

deconfined, quantum spin liquid phases. Further, we present selected probes with immediate

experimental relevance, including signatures of disorder-free localization and a thermal

deconfinement transition of two charges.
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It has been a long sought goal to faithfully study lattice gauge
theories (LGTs) with dynamical matter in the realm of strong
coupling. Since their discovery, Z2 LGTs have sparked the

interest of physicists from various different fields including high-
energy1, condensed matter2–4 or biophysics5. The seminal work
by Fradkin and Shenker6 in 1979 predicted the existence of two
phases in their model, in which Z2 charged particles are either
confined or deconfined in (2+ 1)D. This insight made it a par-
ticularly promising candidate theory that could capture some of
the essential physics of quark confinement in QCD1 while hosting
a much simpler gauge group. Likewise, it provides one of the
most fundamental instances of the Higgs mechanism. Since then
the study of Z2 LGTs has inspired physicists because of their
intimate relation to topological order7, quantum spin liquids8,9

and quantum information10, to name a few. While the physics of
these models could give insights into outstanding problems, e.g.,
how to define confinement in the presence of dynamical matter,
the numerical (e.g. refs. 11–15) and experimental exploration is at
the same time very challenging beyond (1+ 1)D (e.g. refs. 16–19).

The experimental developments over the past years have driven
the field of analog quantum simulation toward exploring many-
body physics in system sizes out of reach for any numerical
simulation and offering a new toolbox to approach complex,
physical phenomena such as quantum spin liquids20. The diffi-
culty to implement gauge constraints and robustness against ever-
present gauge-breaking errors in analog quantum simulators,
however, has hindered the field to push forward into the afore-
mentioned direction and a scalable, reliable implementation of
LGTs with dynamical matter in (2+ 1)D remains a central goal.

The rich structure of gauge theories emerges from locally
constraining the Hilbert space. This constraint can be formulated
by Gauss’s law, which requires all physical states ψ

�� �
to fulfill

Ĝj ψ
�� � ¼ g j ψ

�� �
. For the Z2 LGT with dynamical matter (Z2

mLGT) we consider in this work the symmetry generators Ĝj are
given by:

Ĝj ¼ ð�1Þn̂j
Y
i:hi;ji

τ̂xhi;ji; ð1Þ

where n̂j ¼ âyj âj is the number operator for (hard-core) matter on
site j and the Pauli matrix τ̂xhi;ji defines the electric field on the link
between site i and j; hence gj= ±1. Our starting point throughout
this work are link and site qubits on a two-dimensional honey-
comb lattice, see Fig. 1a.

We propose to realize matter and link variables as qubits,
implementable e.g., by the ground jgi and Rydberg rj i states of
atoms in optical tweezers20–25, see Fig. 1a–c. Thus, the product in
Eq. (1) measures the parity of qubit excitations of matter and
links around vertex j.

By encoding the degrees-of-freedom in qubits the enlarged
Hilbert space contains physical (gj=+1) and unphysical (gj=
−1) states: The latter do not fulfill Gauss’s law. Since any local
perturbations present in a realistic quantum simulation experi-
ment mix the two subspaces, quantum simulations can become
unreliable, effectively breaking gauge-invariance. Nevertheless, by
energetically separating the physical from unphysical states
transitions into the latter can be suppressed and the gauge
structure emerges from the enlarged Hilbert space.

The simplest way, theoretically, to achieve such gauge protec-
tion, is by adding �V∑jĜj to the Hamiltonian with large
V > 026–28. But since this would require “strong four-body
interactions”, it is experimentally not feasible in current experi-
mental platforms.

Here we demonstrate that simple two-body Ising-type inter-
actions, which are readily available in e.g., Rydberg tweezer
arrays20–25, combined with longitudinal and weak transverse

fields provide a minimal set of ingredients which allow to robustly
implement a variety of LGTs with dynamical matter9. The
scheme we propose not only offers inherent protection against
arbitrary gauge-breaking errors; it also provides a surprising
degree of flexibility, including cases with global conserved particle
number, global number-parity conservation, and quantum dimer
models on a bipartite lattice which map to U(1) gauge theories.

In the following, we show that readily available Ising-type two-
body interactions, in addition to local fields, are sufficient to
protect Gauss’s law on experimentally relevant timescales by
employing the so-called local pseudogenerator (LPG) method29.
Moreover, we show that the proposed protection scheme provides
a generic means to engineer a variety of effective Z2 mLGT
Hamiltonians by weakly driving the qubits. As an example, we
demonstrate how this allows to realize the celebrated
Fradkin–Shenker model6, and discuss the phase diagrams of
several related effective Hamiltonians. Finally, we elaborate on
some realistic experimental probes that we view as most realistic
in state-of-the-art quantum simulators.

Results
Local pseudogenerator on the honeycomb lattice. The main
ingredient of the experimental scheme proposed in this Article is
the local pseudogenerator (LPG) interaction term VŴ j. As

shown in Fig. 1a, VŴ j consists of equal-strength 2V interactions
among all qubits (matter and gauge) around vertex j, taking the
form:

VŴ j ¼
V
4

ð2n̂j � 1Þ þ ∑
i:hi;ji

τ̂xhi;ji

� �2
: ð2Þ

We assume that V defines the largest energy scale in the
problem, which separates the Hilbert space into constrained
subspaces. This overcomes the most challenging step, imposing
different gauge constraints in the emerging subspaces (Supple-
mentary Note 1).

We obtain three distinct eigenspaces of the LPG term: (1) Two
(distinct) quantum dimer model (QDM) subspaces with static
matter at low-energy, (2) physical states of a Z2 mLGT at
intermediate energies, and (3) trivial, polarized states at high
energy, see Fig. 1b–d.

The LPG method requires that VŴ j acts identical to the full
protection term on all physical states in the target gauge sector,
i.e., Ŵ j ψ

�� � ¼ Ĝj ψ
�� �

. For unphysical states, instead, the LPG term
splits into many manifolds that can be energetically above and
below the target sector29. This construction allows to reduce
experimental complexity from four- to two-body interactions.

Experimentally, we propose to implement strong LPG terms in
the Hamiltonian such that quantum dynamics are constrained to
remain in LPG eigenspaces by large energy barriers enabling the
large-scale quantum simulation of Z2 mLGTs in (2+ 1)D. To
introduce constraint-preserving dynamics within the LPG sub-
spaces, the latter are coupled by weak on-site driving terms of
strength Ω≪V as discussed below. Through the constrained
dynamics, a Z2 mLGT emerges in an intermediate-energy
eigenspace of VŴ j, which is accessible in quantum simulation
platforms and which distinguishes our work from previous
studies on emergent gauge symmetries, e.g. refs. 30–32.

The LPG method is built upon stabilizing a high-energy sector
of the spectrum, which comes with the caveat that a few
unphysical states are resonantly coupled when considering the
entire lattice. In particular, there is a subset of unphysical states
that violate Gauss’s law on four vertices with energy lowered on
three vertices and raised on one vertex; hence these states are on
resonance with physical states. However, numerical simulations
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in small systems suggest that these gauge-breaking terms only
play a subdominant role and gauge-invariance remains intact
(Supplementary Note 2).

Ultimately, the problem of resonances with a few unphysical
states can be remedied by promoting V→Vj to be site-dependent
such that high-energy sectors can be faithfully protected33,34

against potential gauge non-invariant processes described above
(see Methods section). Site-dependent protection terms do not
require any additional experimental capabilities in our protocol
described below. Even more, experimental imperfections inher-
ently give disorder stabilizing the gauge sectors further. It is also
important to note that the presence of only weak disorder
(compared to the energy scale V) is enough, which does not alter
the effective couplings in the emergent gauge-invariant effective
Hamiltonian.

In the following, we introduce the microscopic model that we
propose to implement in an experiment. From the microscopic
model, effective Hamiltonians for the Z2 mLGT and QDM
subspaces can be derived by a Schrieffer–Wolff transformation
(Supplementary Note 2 and 4). On realistic timescales of
experiments, the effective models are gauge-invariant by
construction and studied further below.

Experimental realization in Rydberg atom arrays. Here, we

propose the microscopic model Ĥmic
which can be directly

implemented in state-of-the-art Rydberg atom arrays in optical
tweezers, see Fig. 1a.

The constituents are qubits, which can be modeled by the
ground jgi and Rydberg jri states of individual atoms. As shown
in Fig. 1a, we label the atoms as matter atom or link atom
depending on their position on the lattice. The Z2 gauge structure
then emerges from nearest-neighbor Ising interactions V realized
by Rydberg–Rydberg interactions and hence the real space
geometric arrangement plays a key role. The dynamics is induced
by a weak transverse field Ωm (Ωl), which corresponds to a
homogeneous drive between the ground and Rydberg states of the
matter (link) atoms. Moreover, tunability of parameters defining
the phase diagram is achieved by a longitudinal field or detuning
Δm (Δl) of the weak drive.

The interesting physics emerges in different energy subsectors
of the LPG protection term / VŴ j in Eq. (2); in particular the

Z2 mLGT is a sector in the middle of the spectrum of Ĥmic
. The

suitability for Rydberg atom arrays comes from the flexibility in
geometric arrangement required for the LPG term as well as from

Fig. 1 Constraint-based implementation of Z2 mLGT with qubits. The Z2 gauge structure emerges from the dominant local-pseudogenerator (LPG)
interaction on the honeycomb lattice introduced in (a). A vertex contains matter âj qubits (blue) and shares link τ̂xhi;ji qubits (red) with neighboring vertices.
All qubits connected to a vertex interact pairwise with strength 2V. In a Rydberg atom array experiment the qubits are implemented by individual atoms in
optical tweezers, which are assigned the role of matter or link depending on the position in the lattice. Here, the ground- and Rydberg state of the atoms,
gj i and rj i, encode qubit states, which are coupled by an off-resonant drive Ω to induce effective interactions. To realize equal strength nearest neighbor,
two-body Rydberg–Rydberg interactions, the matter atoms can be elevated out of plane. In (b) we introduce the notation for the Z2 mLGT, for which the
Hilbert space constraint is given by Gauss’s law Ĝj ¼ þ1. We illustrate the electric field τxhi;ji ¼ þ1 (τxhi;ji ¼ �1) with flat (wavy) red lines and the matter site
occupation nj= 0 (nj= 1) with empty (full) blue dots. c shows the notation for the QDM subspace with exactly one dimer per vertex. d illustrates how the
distinct subspaces are energetically separated by the LPG term VŴj . The two quantum dimer subspaces are disconnected when the matter is static, which
can be exactly realized by the absence of matter atoms in (a) and setting ð2âyj âj � 1Þ ¼ ±1 in VŴj .
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the natural energy scales V≫Ω in the system, which we use to
derive the effective models below, see Eqs. (4) and (5).

Matter atoms âj form the sites of a honeycomb lattice and we
map the empty jnj ¼ 0i (occupied jnj ¼ 1i) state on the ground
state jgij (Rydberg state jriÞj) of the atoms. Link atoms τ̂xhi;ji are
located on the links of the honeycomb lattice, i.e., a Kagome
lattice, and analogously we map the τxhi;ji ¼ þ1 (τxhi;ji ¼ �1) state

on the atomic state jgihi;ji (jrihi;ji ¼ âyhi;jijgihi;ji). Moreover, we
want the matter and link atoms to be in different layers and those
layers should be vertically slightly apart in real space to ensure
equal two-body interactions between matter and link atoms
(Supplementary Note 5). Using the out-of-plane direction has the
advantage that it only requires atoms of the same species and with
the same internal states. However, the equal strength interaction
can also be achieved in-plane by using e.g., two atomic species or
different (suitable) internal Rydberg states for the matter and
link atoms.

We first propose a non gauge-invariant microscopic Hamilto-
nian from which we later derive an effective model with only
gauge-invariant terms. To lowest order in perturbation theory
and on experimentally relevant timescales, the system evolves
under an emergent gauge-invariant Hamiltonian. The micro-
scopic Hamiltonian is given by:

Ĥmic ¼V∑
j
Ŵ j � Δm ∑

j
n̂j �

Δl

2
∑
hi;ji

τ̂xhi;ji

þΩm ∑
j
ðâj þ âyj Þ þ Ωl ∑hi;ji

ðâhi;ji þ âyhi;jiÞ;
ð3Þ

where bosonic operators âyj and âðyÞhi;ji annihilate (create)

excitations on the matter and link atoms, respectively; Ŵ j is the
LPG term introduced in the main text Eq. (2). The last two terms
describe driving of matter (jgij $ rj ij) and link atoms
(jgihi;ji $ jrihi;ji) in the rotating frame. Rewriting (3) in the
atomic basis yields Rydberg–Rydberg interactions of strength 2V
and renormalized, large detunings ~Δm ¼ �3V þ Δm and
~Δl ¼ �3V þ Δl . In a Rydberg setup the driving terms can be
realized by an external laser, which couples jgi $ jri, while the
detunings Δm, Δl of the laser relative to the resonance frequency
controls the electric field Δl and chemical potential Δm in the
rotating frame.

In the limit Ωm, Ωl≪V, the energy subspaces defined by the
LPG term VŴ j, Eq. (2), are weakly coupled by the drive to induce
effective interactions and it is convenient but not required to
choose Ωm=Ωl=Ω. The Z2 mLGT emerges as an intermediate-
energy eigenspace of the LPG term VŴ j. The effective
interactions in the constrained Z2 mLGT and QDM subspaces
of Ŵ j can be derived by a Schrieffer–Wolff transformation
(Supplementary Note 2 and 4) and yielding the models discussed
in the next section.

In the experiment we propose, the Rydberg–Rydberg interac-
tions are not only restricted to nearest neighbors but are long
ranged. We emphasize that beyond nearest neighbor interactions
are inherently gauge invariant and hence do neither influence the
LPG gauge protection scheme nor the Schrieffer–Wolff transfor-
mation. However, the long-range interactions can have strong
influence on the Z2 invariant dynamics. While the interaction
strength decreases as 1/R6, where R is the distance between atoms,
the interaction is still comparable to the effective perturbative
dynamics (Supplementary Note 5). We note that the dynamics
might be slowed down but the qualitative features of the Z2
mLGT remain intact.

Effective Z2 mLGT model. A model is locally Z2 invariant if its
Hamiltonian Ĥ commutes with all symmetry generators Ĝj, i.e.,

½Ĥ; Ĝj� ¼ 0 for all j. This ensures that all dynamics is constrained
to the physical subspace without leaking into unphysical states. In
Eq. (2), the target sector is gj=+1 for all j but our scheme can be
easily adapted for any fg jgj (Supplementary Note 1).

In the presence of strong LPG protection, the system is
energetically enforced to remain in a target gauge sector and
unphysical states are only virtually occupied by the drive Ω. To be
precise, resonant couplings to unphysical sectors are suppressed
by the (experimentally feasible) disorder protection scheme
discussed above and in the “Methods” section. Otherwise
emergent gauge-breaking terms appear in third-order perturba-
tion theory. However, in small systems we have numerically
confirmed that even without disorder in the LPG terms Gauss’s
law is well conserved (Supplementary Note 2), which in larger
systems we expect to crossover to an approximate gauge
invariance. In the following we assume disorder protection or
small systems, where leading order gauge-breaking terms are
absent or can be neglect, respectively.

For the proposed on-site driving terms discussed above and
shown in Fig. 1a, we derive the following effective Hamiltonian
from the microscopic model (3) in the intermediate-energy LPG
eigenspace (Supplementary Note 2):

Ĥeff
Z2

¼ ∑
hi;ji

tâyi τ̂
z
hi;jiâj þ Δ1â

y
i τ̂

z
hi;jiâ

y
j þ Δ2â

y
i τ̂

x
hi;jiτ̂

z
hi;jiâ

y
j þH:c:

� �
� J∑

⬡

Y
hi;ji2⬡

τ̂zhi;ji � h ∑
hi;ji

τ̂xhi;ji � μ∑
j
n̂j:

ð4Þ

The first terms in Eq. (4) describe gauge-invariant hopping of
matter excitations with amplitude t and (anomalous) pairing ∝ Δ1

(∝ Δ2). The term ∝J is the magnetic plaquette interaction on the
honeycomb lattice. The last two terms are referred to as electric
field term h and chemical potential μ, respectively. Note that
deriving Hamiltonian (4) from the microscopic model in Eq. (3)
yields additional higher-order terms / τ̂x τ̂x; τ̂xn̂, etc. In the

effective model Ĥeff
Z2

we treat these higher-order terms on a mean-
field level of the electric field and matter density (Supplementary
Note 2). Moreover, we emphasize that the effective model is solely
derived from the microscopic Hamiltonian, which only requires a
simple set of one- and two-body interactions between the
constituents.

For any site j, one can take âj ! �âj and τ̂zhi;ji ! �τ̂zhi;ji; hence
the effective Hamiltonian (4) has a local Z2 symmetry,

½Ĥeff
Z2
; Ĝj� ¼ 08j, qualifying it as Z2 mLGT in (2+ 1)D. In

particular, in our proposed scheme we do not have to apply
involved steps to engineer Z2-invariant interactions but rather we
exploit the intrinsic gauge protection by dominant LPG terms,
which enforces any weak perturbation to yield an effective Z2
mLGT. This approach also inherently implies robustness against
gauge-symmetry breaking terms in experimental realizations.

In the following, we discuss the rich physics of the effective
model (4). However, due to the complexity of the system, it is
challenging to conduct faithful numerical studies in extended
systems. As a first step, we examine well-known limits of the
model and conjecture T= 0 phase diagrams of the effective
Hamiltonian when the Z2 gauge field is coupled to U(1) or
quantum-Z2 dynamical matter, respectively. We note that the
strength of the plaquette interaction can only be estimated
(Supplementary Note 2) and competes with the long-range
Rydberg interactions. Moreover, the disorder protection scheme
underlying the derivation of the effective Hamiltonian ensures
gauge-invariance of the leading order contributions but higher-
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order gauge breaking terms can in principle appear and affect the
physics at very long timescales.

Our effective model describes the physics of experimental
system sizes and timescales; the efficiency of the LPG gauge
protection in the thermodynamic limit is a subtle open question.
Hence, in the following we discuss phases of the effective

model (4) that may (or may not) emerge from the microscopic
model (3).

U(1) matter. By fixing the number of matter excitations in the
system, i.e., Δ1= Δ2= 0 in Hamiltonian (4), the model has a
global U(1) symmetry of the matter (hard-core) bosons, which
can be achieved by choosing the detuning at the matter sites Δm

comparable to V in our proposed experimental scheme Eq. (3).
Here, we consider the phase diagram when the filling of matter
excitations is controlled by the chemical potential μ. To map out
different possible phases, we fix the hopping t and study
limiting cases.

First, we consider the pure gauge theory with no matter
excitations (μ→−∞), see Fig. 2a (bottom). The Hamiltonian
then reduces to the pure Ising LGT2 with matter vacuum—an
even Z2 LGT. The dual of this model exhibits a continuous
(2+ 1)D Ising phase transition, corresponding to a confined
(deconfined) phase below (above) a critical (J/h)c, respectively2,4.
At the toric code point (J/h=∞) the system is exactly solvable35

and the gapped ground state has topological order.
Because for J/h=∞ the gauge field has no fluctuations, we can

fix the gauge by setting τzhi;ji ¼ þ1 and map out the pure matter
theory in Fig. 2a (right). For finite μ we find a model with free
hopping of hard-core bosons, for which the filling can be tuned
by changing the chemical potential μ. Hence, for increasing μ and
results based on the square lattice36,37 we expect two continuous
phase transitions: vacuum-to-superfluid and superfluid-to-Mott
insulator. The Mott insulator phase is an odd Z2 LGT because the
matter is static and acts as background charge and thus can be
treated as a pure gauge theory with gj=−19. In the opposite limit
J/h= 0, the same Mott state gives rise to a hard-core quantum
dimer constraint for the Z2 electric field lines. On the square
lattice, the quantum dimer model and odd Z2 LGT exhibit a
phase transition from a confined to deconfined phase15. The
honeycomb lattice and next-nearest neighbor Rydberg–Rydberg
interactions might feature additional symmetry-broken phases.
Hence it requires a sophisticated analysis to map out the
substructure of the Mott insulating phase in Fig. 2a.

In the limit of low fillings and small but finite J/h≪ 1, the
matter excitations form two-body mesonic bound states15, which
are Z2-charge neutral and can be considered as point-like
particles. We can derive an effective meson model yielding hard-
core bosons on the sites of a Kagome lattice (Supplementary
Note 3).

At T= 0 and sufficiently low densities, the mesons can
condense and spontaneously break the emergent global U(1)
symmetry associated with meson number conservation. To
determine the phase boundary of the meson condensate, we
consider a single pair of matter excitations doped into the
vacuum. This pair cannot alter the pure gauge phases and thus
the two charges can be considered as probes for the (de)confined
regime. For the latter, the matter excitations are bound into
mesons, in contrast to free excitations above the deconfined
regime. Hence, the effective description of bound mesonic pairs
breaks down at the phase transition of the pure gauge theory
indicating the phase boundary of the meson condensate phase at
small filling.

At higher densities, dimer-dimer interactions and fluctuations
of the gauge field play a role, requiring a more sophisticated
analysis to predict the ground state. We emphasize that the rich
physics in this model emerges from the gauge constraint
generated by the LPG terms. Moreover, we note that by lifting
the hard-core boson constraint, which is beyond our experi-
mental scheme, the model maps onto a classical XY model
coupled to a Z2 gauge field

9. This model has been studied on the

Fig. 2 Conjectured ground-state phase diagrams.We show two qualitative
sketches of phase diagrams for the effective model (4). In (a), we consider
U(1) matter (Δ1=Δ2= 0) coupled to a dynamical Z2 gauge field as
discussed in the main text. Along the vertical direction the filling is tuned,
which yields an even (odd) Z2 pure gauge theory in the vacuum (Mott
insulator) illustrated by the gray regions. In between the matter and gauge
degrees-of-freedom interplay, for which we examined the limiting cases.
Above the deconfined region, we expect a superfluid regime (yellow), while
above the confined region composite mesons of Z2 charges may condense
(red). In (b), we show the phase diagram for an Ising Z2 LGT as proposed
by Fradkin and Shenker6. The 2D quantum Hamiltonian of the Ising Z2

mLGT has equal hopping t and pairing Δ1 strength and can thus be mapped
on a classical 3D Ising theory. Because our model with quantum Z2 matter
coupled to dynamical Z2 gauge fields has slight anisotropy between
hopping and pairing, t≠Δ1, as well as additional anomalous pairing terms
Δ2, the classical mapping can only work approximately. We anticipate that
the phase diagram should be qualitatively very similar to (b).
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square lattice in the context of topological phases of matter9 and
high-Tc superconductivity38–40, to name a few.

Classical mapping. For t= Δ1 and Δ2= 0 the model is well-
studied and maps onto a classical Ising lattice gauge theory
coupled to Ising Z2 matter6. In our experimental proposal Δ1 and
Δ2 cannot be independently tuned, but due to the relevance of the
model and its proximity to our effective model we briefly sum-
marize the most important results for the square lattice here, see
Fig. 2b.

In the limit with frozen gauge fields (pure matter axis, J/h=∞)
the resulting pure matter theory corresponds to a transverse field
Ising model with a global Z2 symmetry, which maps to a classical
3D Ising model and exhibits a continuous phase transition. On
the pure gauge axis (t/μ= 0) the model exhibits a topological
phase transition without local order parameters2. Instead, the
scaling of non-local Wegner-Wilson loops with their area/
perimeter distinguishes the confined from the deconfined phase.

Remarkably, the pure gauge model is also dual to a classical 3D
Ising model, rendering the pure gauge axis dual to the pure
matter axis. The same pure gauge phases are realized for μ→−∞
in the case with U(1) matter.

For more general J/h, the model’s self-duality yields a
symmetry in the phase diagram, which allows to study the pure
gauge and matter theory in Fig. 2b but does not reveal the interior
away from the axis. Fradkin’s and Shenker’s accomplishment was
to show the existence of two distinct, extended phases: the
confined and deconfined “free charge” phase, which have been
confirmed numerically12,13. From today’s perspective, the latter
would be characterized as topological phase of matter in the toric
code universality class.

Quantum-Z2 matter. Now, we consider the full effective
Hamiltonian (4), where hopping and pairing are anisotropic
t ≠ Δ1 and the pairing strength can depend on the electric field
configuration Δ2 ≠ 0, and relate it to Fig. 2b. Here, the pure matter

Fig. 3 Experimental probes. We analyze several observables that could be probed experimentally. a, b show results from ED simulations of the time-
evolution of the microscopic model (3) with experimentally realistic parameters in a system with coordination number z= 3 (see inset). In (a) we observe
disorder-free localization by initializing the system in a gauge-invariant (blue curve) and gauge-noninvariant (red curve) initial state with two matter
excitations localized in subsystem A and calculating the time-averaged imbalance between subsystem A and B as shown. In (b), we probe the Schwinger
effect by quenching the vacuum state with the microscopic model for different experimentally relevant parameters: matter detuning Δm (chemical
potential) and link detuning Δl (electric field). We find lines of resonance, where the production of matter excitations out of the vacuum is large. In (c), we
plot the average U(1) matter density (blue curve) obtained from DMRG calculations on a ladder with J < 0. We can qualitatively understand the sharp
decay of matter as a transition into the vacuum phase as discussed in Fig. 2a. Additionally, a kink in the plaquette expectation value (red curve) signals a
phase transition. In (d), we use two fluctuating test charges to probe a temperature-induced deconfinement transition in a classical limit of our effective
model using Monte Carlo simulations. Both in the percolation strength (red curve) and the Euclidean distance of two matter excitations (blue curve), we
find that above a certain temperature T/h the system undergoes a percolation transition.
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theory can no longer be mapped on the classical 3D Ising model.
Hence, we introduce the term quantum-Z2 matter, which
emphasizes the matter’s Z2 symmetry group but points out that a
mapping to a known classical model is lacking.

We note that close to the toric code point (J/h=∞ and t/μ= 0)
in Fig. 2b, the expectation value of the electric field vanishes,
hτ̂xhi;jii ¼ 0, and thus in mean-field approximation the anomalous

terms should be negligible and renormalize the pairing Δ1 ! ~Δ1.
For the pure gauge theory it has been shown11 that the
expectation value hτ̂xhi;jii continuously changes by tuning the
electric field term h. Hence, by performing a mean-field
approximation in the electric field, the quantum-Z2 mLGT maps
onto the classical Ising Z2 mLGT (Supplementary Note 2C).

Due to its proximity to the Ising Z2 mLGT and its common
symmetries generated by the proposed LPG term, we anticipate
that the phase diagram of the quantum-Z2 mLGT shares all
essential features of the Ising Z2 mLGT as shown in Fig. 2b.

Quantum dimer model (QDM). Rokhsar and Kivelson intro-
duced the QDM in the context of high-Tc superconductivity,
which has the constraint that exactly one dimer is attached to
each vertex41,42. The QDM is an odd Z2 LGT, i.e., a pure gauge
theory with gj=+1 replaced by gj=−1 ∀ j, with h→∞, and its
fundamental monomer excitations are gapped and can only be
created in pairs.

Our proposed scheme allows to directly implement the gauge
constraint of the QDM experimentally by preparing the system in
the ground-state manifold of the LPG term as shown in Fig. 1b, d.
Note that the LPG term splits the ground-state manifold into two
distinct subspaces, QDM1 and QDM2, which can be seen by
entirely removing the matter atoms and setting n̂j ¼ 0; 1 in
Eq. (2), such that only the link atom Kagome lattice remains;
hence it can be implemented in-plane. A dimer then corresponds
to either τxhi;ji ¼ �1 (QDM1) or τxhi;ji ¼ þ1 (QDM2). Due to the
LPG protection the QDM subspaces are energetically protected
and monomer excitations cost a finite energy 2V.

By weakly driving the system, the motion of virtual, gapped
monomer pairs perturbatively induces plaquette terms of strength
JQDM, and we can derive an effective model (Supplementary
Note 4) given by:

Ĥeff
QDM ¼ �JQDM ∑

⬡

Y
hi;ji2⬡

τ̂zhi;ji þ K ∑
NNN

τ̂xhi;jiτ̂
x
hm;ni: ð5Þ

Here, the NNN link–link interaction K can be tuned by the
blockade radius of the Rydberg–Rydberg interactions.

Experimental20 and theoretical32,43–45 studies of QDMs in
Rydberg atom arrays for different geometries and parameters
regimes have shown to be an promising playground to probe Z2
spin liquids. Our proposed setup is a promising candidate to
further study QDMs due to its versatility and its inherent
protection by the LPG term and the phase diagram of
Hamiltonian (5) remains to be explored

Here, we examine two limiting cases of Hamiltonian (5). For
JQDM/K≫ 1, the system is in the so-called plaquette phase46,
which is characterized by a maximal number of flippable
plaquettes and resonating dimers. On the other hand, for JQDM/
K≪ 1 we find a classical Ising antiferromagnet on the Kagome
lattice with NN and NNN interactions from the hard-core dimer
constraint and K-term, respectively.

Experimental probes. In the following, we discuss potential sig-
natures of the rich physics that can be readily explored with the
proposed experimental setup Eq. (3).

Disorder-free localization. Recently, the idea of disorder-free
localization (DFL), where averaging over gauge sectors induces
disorder, has sparked theoretical interest47,48. DFL is an example
where the entire Z2 mLGT Hilbert space participates in the
dynamics including sectors with gj ≠+1. It has been demon-
strated that the (2+ 1)D U(1) quantum link models can show
DFL49,50; further it was proposed that in a (1+ 1)DZ2 LGT, LPG
protection leads to enhanced localization34. However, experi-
mental evidence is still lacking. The scheme we propose is suitable
to experimentally study ergodicity breaking without disorder in a
strongly interacting (2+ 1)D system with U(1) matter.

In Fig. 3a we show results of a small-scale exact diagonalization
(ED) study using realistic parameters for the experimentally
relevant microscopic Hamiltonian (Supplementary Note 6). The
system is prepared in two different initial states: (1) A gauge-
invariant state ψinv

�� �
, and (2) a gauge-noninvariant state ψninv

�� �
,

both with (without) localized matter excitations in subsystem A (B).
We find distinctly different behaviors for the time-averaged

matter occupation imbalance between subsystem A and B
(Supplementary Note 6): While the gauge-invariant state ψinv

�� �
thermalizes, the gauge-noninvariant state ψninv

�� �
breaks ergodi-

city on experimentally relevant timescales. Experimentally much
larger systems can be addressed.

Schwinger effect. The Schwinger effect describes the creation of
pairwise matter excitations from vacuum in strongly-coupled
gauge theories51. Here, we use the Schwinger effect to test the
validity of our LPG scheme. Starting from the microscopic model
(3), we time-evolve the vacuum state with no matter excitations
and extract the maximum number of created matter excitations in
the initial gauge sector gj=+1 ∀ j. As shown in Fig. 3b, by tuning
the electric field and chemical potential we find resonance lines,
where many matter excitations are produced in the system, and
we verify that gauge-invariant processes dominate (Supplemen-
tary Note 7).

Phase transitions in a ladder geometry. Our proposed scheme is
suitable for any geometry with coordination number z= 3; hence
one can experimentally study square ladders of coupled 1D
chains. Here, we have examined the ground state of Hamiltonian
(4) with U(1) matter using the density matrix renormalization
group (DMRG) technique52 (Supplementary Note 8) on a ladder
and we find signatures of a quantum phase transition. As shown
in Fig. 3c, both the average density of matter excitations and the
plaquette terms, which are experimentally directly accessible by
projective measurements, change abruptly by tuning the electric
field h indicating a transition into the vacuum phase. We
emphasize that the ladder geometry is different from the (2+ 1)D
model studied in Fig. 2a, however numerical simulations suggest
the presence of a phase transition and hence the ladder geometry
offers a numerically and experimentally realistic playground for
future studies of our model.

Thermal deconfinement from string percolation. We examine a
temperature-induced deconfinement transition in a classical limit
of our effective model (4), which neglects charge and gauge
dynamics t= Δ1,2= J= 0. We use Monte Carlo simulations on a
35 × 35 honeycomb lattice (Supplementary Note 9).

To study thermal deconfinement, we consider exactly two
matter excitations which, due to Gauss’s law, have to be
connected by a string Σ of electric field lines; i.e., Σ is a path of
links with electric fields τxhi;ji ¼ �1 for 〈i, j〉∈ Σ. This setting can
be used as a probe of a deconfined (confined) phase, in which the
Z2 matter is free (bound)53.
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To determine the classical equilibrium state, we note the
following: (1) Due to the electric field term h in the Hamiltonian,
a string of flipped electric fields τxhi;ji ¼ �1 costs an energy 2h ⋅ ℓ,
where ℓ is the length of the string. (2) Gauss’s law enforces that at
least one string is connected to each matter excitation.

Hence, in the classical ground state the two matter excitations
form a mesonic bound state on nearest neighbor lattice sites.
Therefore, the matter excitations are confined by a linear string
potential. In the co-moving frame of one matter excitation, this
model can approximately be described as a particle in a linear
confining potential.

At non-zero temperature T > 0, the entropy contribution to the
free energy F= E− TS must also be considered. Even though the
electric field term h yields an approximately linear string tension,
the two charges can separate infinitely in thermal equilibrium
provided that Eð‘Þ<T logðN‘Þ for ℓ→∞, where logðN‘Þ ¼ S
denotes the entropy S of all the string states Nℓ with length ℓ

(setting kB= 1) and E(ℓ) is their typical energy53. This happens
beyond a critical temperature T > Tc, when a percolating net ofZ2
electric strings forms.

At the critical temperature Tc we anticipate a thermal
deconfinement transition, where matter excitations become free
Z2 charges (bound mesons) for T > Tc (T < Tc). To study this
transition we use the percolation strength—a measure for the
spatial extend of a global string net (see “Methods”)—as an order
parameter for the deconfined phase. For experimentally realistic
parameters, we find a sharp transition for both the percolation
strength and Euclidean distance between two matter excitations
around (T/h)c ≈ 2 as shown in Fig. 3d. Although our classical
simulation neglects quantum fluctuations, we expect that the
revealed finite-temperature deconfinement transition is qualita-
tively captured.

For a finite density of matter excitations in the system, the
Euclidean distance is not a reasonable measure anymore.
However, we speculate that a percolation transition might be
related to (de)confinement at finite densities. How this transition
is related to the quantum deconfinement transition at T= 054,55,
driven by quantum fluctuations, will be subject of our future
research. Hence, experimentally exploring this transition not only
in the classical case, but also in the presence of quantum
fluctuations could give insights in the mechanism of charge (de)
confinement.

Conclusion
We introduced an experimentally feasible protection scheme for
Z2 mLGTs and QDMs in (2+ 1)D based on two-body

interactions, where the Z2 gauge structure emerges from well-
defined subspaces at high and low energy, respectively. The
scheme not only allows reliable quantum simulation of gauge
theories but provides an accessible approach to engineer gauge-
invariant Hamiltonians. We derived an effective Z2 mLGT,
Eq. (4), and QDM, Eq. (5), and discussed some of their rich
physics. In particular, we suggested several experimental probes, for
which we provide numerical analysis using ED of the experimen-
tally relevant microscopic model (3) as well as DMRG and Monte
Carlo simulations of the effective models. Experimentally, we
anticipate that significantly larger systems are accessible.

Our proposed scheme is not only suitable and realistic to be
implemented in Rydberg atom arrays, see Eq. (3), but it is also of
high interest for future theoretical and numerical studies. Hard-
core bosonic matter coupled to Z2 gauge fields in (2+ 1)D plays
a role in theoretical models, e.g., in the context of high-Tc
superconductivity38. While certain limits such as the fine-tuned,
classical limit studied by Fradkin and Shenker6 or coupling to
fermionic matter14,15 are well-understood, surprisingly little is
known about the physics of our proposed model. What are the
implications of anisotropic hopping and pairing t ≠ Δ1 or
anomalous pairing terms Δ2, i.e., when the classical mapping
fails? How can (de)confinement in the presence of dynamical
matter be captured? Is disorder-free localization a mechanism for
ergodicity breaking in (2+ 1)D? The possibility to study these
questions experimentally will spark future theoretical interest.

Methods
Local pseudogenerators for Z2 mLGTs. The implementation of LGTs in quan-
tum simulation platforms have two inherent challenges to overcome:

(1) The physical Hilbert space of gauge theories is highly constrained and given
by the gauge constraint Ĝj ψ

physical
�� � ¼ g j ψ

physical
�� �

. In contrast the Hilbert
space of the experimental setup is larger and also contains unphysical states
ψunphysical
�� �

, which do not satisfy Gauss’s law. Therefore, the dynamics of the
system is fragile in the presence of experimental errors which couple
physical and unphysical states. However, it has been shown that this can
be reliably overcome by energetically gapping the physical from unphysical
states using stabilizer/protection terms in the Hamiltonian27,28. These
strong stabilizer terms can be understood as “strong projectors” onto its
energy eigenspaces, which are chosen to be the physical subsectors of a Z2
gauge theory in our case; hence the effective dynamics is constraint to
quantum Zeno subspaces56. Note that here the quantum Zeno effect is fully
determined by a unitary time-evolution and not driven by dissipation, in
agreement with the original effect56.
The obvious choice of such a protection term is the symmetry generator, Eq.
(1). However, this requires strong and hence unfeasible multi-body
interactions. In contrast, the LPG term Ŵ j , Eq. (2), only contains two-
and one-body terms and is engineered such that an energy gap between the
physical and unphysical states is introduced under the reasonable condition

Fig. 4 Disorder-based protection scheme.We calculate the spectrum of the minimal model studied in Fig. 3a, b with Ω= 0 and plot all eigenstates around
energy E= 4V. Green (red) dots are states that fulfill (break) Gauss’s law as illustrated with two examples in the inset of (a). Without disorder, i.e., Vj= V
for all j, the physical and unphysical states are on resonance. In (b), we show the effect of disordered protection terms Vj= V+ δVj, which only shifts the
unphysical states out of resonance and hence fully stabilizes the gauge theory. We note that even without disorder, the emergent gauge structure is
remarkably robust (Supplementary Note 2G).
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that only one (target) gauge sector is protected. In particular, the LPG term
in the 2D honeycomb lattice fulfills the condition:

VŴ j ψ
physical

�� � ¼ þV ψphysical
�� � ð6Þ

VŴj ψ
unphysical

�� � ¼ þ4V ψunphysical
�� �

0V ψunphysical
�� �

(
; ð7Þ

where V is the strength of the LPG term. The spectrum of Ŵ j for the gauge
choice gj=+ 1 is illustrated in Fig. 1c.

(2) To study gauge theories, a Z2-invariant Hamiltonian has to be engineered
first, e.g., the Hamiltonian (4) discussed in the main text. In our scheme we
exploit the LPG term with its large gap between energy sectors to construct
an effective Hamiltonian perturbatively as explained in Supplementary
Note 2.

To faithfully stabilize large systems for—in principle—infinitely long times, we
want to discuss the stabilization of high-energy sectors by considering undesired
instabilities/resonances in the spectrum V∑jŴ j. The eigenvalues of VŴ j are
wj= (0, V, 4V) and we want to protect a sector with intermediate energies. If the
interaction strength V is equally strong at each vertex gauge-symmetry breaking
can occur. For example, by exciting vertex j0 and simultaneously de-exciting three
vertices j1, j2 and j3. This process has a net energy difference of
ΔE=+3V− 3 ⋅V= 0 and the resonance between the two states can lead to an
instability toward unphysical states, hence gauge-symmetry breaking
(Supplementary Note 2G).

Therefore, the LPG method without disorder cannot energetically protect against
some states that break Gauss’s law on four vertices. An efficient way to stabilize the
gauge theory even against such scenarios is to introduce disorder in the coupling
strengths by Ŵ ¼ ∑jV jŴ j with Vj=V+ δVj. The couplings δVj are random and
form a so-called compliant sequence27,29. In 1D systems, this has been shown to
faithfully protect Z2 LGTs also for extremely long times, see ref. 29 for a detailed
discussion of (non)compliant sequences. Moreover, we note that for small system sizes
and experimentally relevant timescales even noncompliant sequences such as the
simple choice Vj=V ∀ j lead to only small errors (Supplementary Note 2G).

For our (2+ 1)D model, we illustrate the effect of disordered protection terms
in Fig. 4, which shows that only the gauge non-invariant states are shifted out of
resonance. Moreover, we propose to use weak disorder such that the overall
perturbative couplings remain unchanged in leading order. We emphasize that the
disorder scheme does not require any additional experimental capabilities but only
arbitrary control over the geometry as well as local detuning patterns. Even more,
an experimental realization will always encounter slight disorder, i.e., the gauge
non-invariant processes might already be sufficiently suppressed in experiment.

We further note that the example above, where Gauss’s law is violated on four
vertices, yields gauge-breaking terms in third-order perturbation theory. Ensuring
that none of the protection terms Vj have gauge-breaking resonances within such a
nearest-neighbor cluster, these terms can be suppressed. However, now it remains
space for fifth-order breaking terms on next-nearest neighbor vertices. Hence, the
non-resonance condition is now desired on a larger cluster and so forth. Therefore,
systematically choosing the disorder potentials can suppress gauge-breaking terms
to arbitrary finite order and stabilize gauge invariance up to exponential times. Its
fate in the thermodynamic limit, however, is an open question beyond the scope of
this study.

Percolating strings from classical Monte Carlo. The finite temperature perco-
lation transition in Fig. 3d is obtained from classical Monte Carlo simulations on
the honeycomb lattice with matter and link variables. In this section, we discuss the
percolation strength order parameter57 and details of the numerical simulations in
more detail.

The classical model we consider is motivated by the microscopic Hamiltonian
(3) and its effective model (4)—in particular we used the precise effective model as
derived in Eq. (S13) of Supplementary Note 2 for Ω/V= 1/8, Δm= V/2 and Δl/
V ≈ 0.044. For elevated temperatures T≲ V, we expect that classical fluctuations
dominate in the system while the Gauss’s law constraint is still satisfied due to the
LPG protection. Therefore, we neglect quantum fluctuations and set
t= Δ1= Δ2= J= 0. Hence, the resulting matter-excitation conserving
Hamiltonian is purely classical and a configuration is fully determined by the
distribution of matter and electric field lines under the Gauss’s law constraint, i.e.,
fðnj; τxhi;jiÞjð�1Þnj ¼ g j

Q
i:hi;jiτ

x
hi;ji8jg and we consider the sector with gj=+1 ∀ j.

From the numerical Monte Carlo simulation, we want to quantify the features
discussed in the main text: (1) string net formation and (2) bound versus free
matter excitations. To this end, we define the percolation strength as the number of
strings in the largest percolating cluster of Z2 electric strings, normalized to the
system size. Furthermore, we consider the Euclidean distance between two matter
excitation and show that an abrupt change of behavior in this quantity indicates the
disappearance of the bound state.

The Monte Carlo simulations are performed on a 35 × 35 honeycomb lattice (in
units of lattice spacing) using classical Metropolis-Hastings sampling
(Supplementary Note 9). Further analysis of the obtained samples allows to extract
the number of strings in the largest percolating cluster to calculate the percolation
strength. As shown in Fig. 3d, we find that for low temperatures T the percolation

strength vanishes. At a critical temperature (T/h)c ≈ 2, the percolation strength
abruptly increases, i.e., the string net percolates. Moreover, at the same critical
temperature (T/h)c ≈ 2 the Euclidean distance shows a drastic change of behavior
and saturates at about 30 for high temperatures. This saturation can be explained
by the finite system size.

Data availability
The datasets generated and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability
The data analyzed in the current study has been obtained using the open-source tenpy
package; this DMRG code is available via GitHub at https://github.com/tenpy/tenpy and
the documentation can be found at https://tenpy.github.io/#. The code used in the exact
diagonalization and Monte Carlo studies are available from the corresponding author on
reasonable request.
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