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Polarization bases compensation towards
advantages in satellite-based QKD without
active feedback
Sourav Chatterjee 1, Kaumudibikash Goswami1, Rishab Chatterjee1 & Urbasi Sinha 1✉

Long-distance photonic implementations of quantum key distribution protocols have gained

increased interest due to the promise of information-theoretic security against unauthorized

eavesdropping. However, a significant challenge in this endeavor is photon-polarization

getting affected due to the birefringence of fibers in fiber-based implementations, or variation

of reference frames due to satellite movement in long-haul demonstrations. Conventionally,

active feedback-based mechanisms are employed for real-time polarization tracking. Here,

we propose and demonstrate an alternative approach via a proof-of-principle experiment

over an in-lab entanglement-based (BBM92) protocol. In this approach, we perform a

quantum state tomography to arrive at optimal measurement bases for any one party

resulting in maximal (anti-)correlation in measurement outcomes of both parties. Our

polarization-entangled bi-photons have 94% fidelity with a singlet state and a Concurrence of

0.92. By considering a representative 1 ns coincidence window span, we achieve a quantum-

bit-error-rate (QBER) of ≈5%, and a key rate of ≈35 Kbps. The performance of our imple-

mentation is independent of any local polarization rotation. Finally, using optimization

methods we achieve the best trade-off between the key rate, QBER, and balanced key

symmetry. Our approach obviates the need for active polarization tracking. It is also

applicable to such demonstrations with non-maximally entangled states and prepare-and-

measure-based protocols with partially polarized single-photon sources.
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State-of-the-art classical (public key) cryptosystems, based
upon Rivest-Shamir-Adleman (RSA) algorithm1, offer
security dependent upon computational assumptions,

which can be easily broken once large-scale quantum computers
become available2. The solution to this threat is offered by a
relatively new cryptographic primitive: quantum key distribution
(QKD). The security offered by it is free from any algorithmic or
computational advancements3. The first QKD protocol was
experimentally demonstrated over a 30 cm long free-space optical
channel4,5. Over the years, several sophisticated methods for
performing QKD have been proposed6–9 and successfully
implemented within laboratory environment3,10–13. Beyond the
shielded lab atmosphere, on one hand, several experiments have
been performed to test the practical limits of wide-scale deploy-
ment of QKD between the two communicating parties, com-
monly known as Alice (sender) and Bob (receiver), using optical
fibers2,14. However, it has been reported that the attenuation loss
and background noise suffered in fiber-based QKD transmissions
prohibit achieving sufficiently large key rates beyond
metropolitan-scale networks15,16. On the other hand, satellite-
based QKD serves as a promising technique for overcoming this
transmission distance scaling issue. Hence, over the last decade,
many free-space experiments have been performed to test QKD
implementations with a moving platform including hot-air
balloon17, truck18, aircraft19,20, and drone21. Furthermore, the
progress in the Quantum Experiments at Space Scale project has
enabled worldwide efforts toward realizing full QKD demon-
strations in free-space using orbiting satellites15,22.

The polarization of light is a commonly used degree of freedom
to achieve the above-mentioned practical implementations of the
QKD protocols. However, maintaining the polarization of light
over long-distance QKD protocols has practical challenges. For
optical fiber-based QKD protocols, the polarization state is
affected due to randomly varying birefringence of the optical
fiber23,24. In the case of free space, although the polarization is
comparatively robust against atmospheric turbulence25–28, the
reference frame of the satellite plays a detrimental role—polar-
ization changes according to the movement of the satellite.
Hence, it is important to circumvent such polarization changes in
both free-space and fiber-based QKD. Conventional mitigation
techniques involve active polarization tracking devices16,29–33.
For instance, Lee et al.29 used a robotized polarization correction
based on an active control system. Again, Toyoshima et al.16

established a 1 km free space QKD link with an active control
system-based polarization tracking jitter error of 0.092°. In the
above protocols, the authors calibrated the polarization change
during the QKD session. In an alternative approach, Ding et al.30

tracked the polarization basis using the sifted keys revealed
during the QKD error-correction procedure. In the case of fiber-
based protocols, the polarization compensation was done by
Xavier et al.31, where the single photons were wavelength-
multiplexed with two classical beams. The classical beams reveal
information regarding polarization fluctuation. Based on the
polarization fluctuation, the authors used an active polarization
control system to compensate for the polarization change. Again
Shi et al.34 employed a stochastic algorithm in a feedback loop to
dynamically compensate for any fiber-induced polarization state
fluctuations. Fast feedback-based polarization controlling over an
aerial fiber has been demonstrated by Li et al.32. These conven-
tional approaches to mitigate polarization fluctuation require
active control systems.

In this work, we propose an alternative solution where instead
of correcting polarization fluctuation of the encoded state, we
optimize the measurement bases at the receiver end. Using an in-
lab single-photon-based BBM92 protocol implementation8,12, we
demonstrate that our approach mitigates any performance

limitations of the protocol otherwise posed upon by polarization
fluctuations of the entangled photons. In this implementation, we
first produce polarization-entangled single-photon pairs using a
Sagnac interferometer-based type-II Spontaneous Parametric
Downconversion (SPDC) source35. Through the optical fibers, we
transmit the generated polarization-entangled single-photon pairs
to two modules. The operations performed at the modules
represent the operations by the communicating parties, hence-
forth we will refer to these modules as Alice and Bob. In a con-
ventional BBM92 protocol, Alice and Bob agree on two out of
three mutually unbiased measurement bases, σ1 : f Dj i; Aj ig,
σ2 : f Rj i; Lj ig, and σ3 : f Hj i; Vj ig. Here σi is the Pauli operator,
and the corresponding measurement bases are the eigenstates of
the Pauli operator. On every incoming photon, the parties ran-
domly measure the polarization in σi or σj bases to generate the
time-stamps on which the cross-correlation is performed to
detect the (anti-)correlations. However, the fiber birefringence
affects the polarization states of both Alice and Bob. This jeo-
pardizes the expected coincidence counts after the measurements.
To mitigate this effect and thus achieve high coincidences, we
evaluate the optimal measurement bases on Bob’s side.

A significant aspect of our work involves optimization tech-
niques for single-photon-based BBM92 protocol implementation.
The details of these techniques have been discussed in the sub-
section “Optimization methods” under the section “Methods”. In
the case of the BBM92 protocol, once the communicating parties
generate the time-stamps after measuring the entangled photons
in the desired and undesired bases, our optimization techniques
find the optimal coincidence window spans required for deter-
mining the maximal (desired) signal and minimal noise (unde-
sired) coincidences. We quantify the performance of our BBM92
protocol implementation by using three standard measures: key
rate, quantum-bit-error-rate (QBER), and asymmetry of the
obtained key string3. Key rate is the average number of key-bits
generated per second (for exact expression, refer Eq. (14a)).
QBER is the ratio of error rate to key rate (for exact expression,
refer Eq. (14b)). Asymmetry (or key symmetry) quantifies the
disparity between the number of 0 and 1 bits in the generated key
string (for exact expression, refer Eq. (14c)). Using our optimi-
zation technique, we are able to achieve a higher key rate while
maintaining an information-theoretically secure QBER
(<11%)36,37. Nevertheless it is important to mention that even
without employing these optimization techniques, irrespective of
the output polarization state, our choice of optimal measurement
bases allows us to achieve around 5% QBER and 35 Kbps key rate
for 1 ns coincidence window span, and around 10% QBER and 50
Kbps key rate for 4 ns coincidence window span. Upon further
optimization, we are also able to restrict the individual QBERs for
all four measurement pairs below 11% bound, while restricting
the overall QBER to around 8.5%.

Our method overcomes a number of challenges associated with
active feedback systems. Firstly, while the aim of active feedback
systems is to compensate for any instabilities in the properties of
an input state, often such control systems have more elements
than the raw system, which incurs additional costs. Furthermore,
active control systems have more parts than the raw system.
Hence they are more prone to faults, which can lead to instability
of the closed loop. In addition, such control systems often employ
trial and error methods to nullify the output deviations. This
approach often leads to the oscillatory response of the closed
loop. We overcome the above challenges by the following pro-
cedure. We first perform a quantum state tomography (QST) at
the output. Then, from the tomographically reconstructed density
matrix, we evaluate the receiver’s optimal choice of measurement
bases such that the measurement outcomes lead to a high (anti-)
correlation that is required for successful key generation.
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Although demonstrated over a single-photon-based BBM92
protocol implementation, it is important to note that our method
can be generalized toward any QKD protocol.

Results
Theory for optimized measurement bases. In this subsection, we
describe our method to construct the optimal measurement bases
to overcome polarization fluctuation during the transmission of
single photons over a long distance. In practice, the polarization
state of both photons would be affected. However, the polariza-
tion fluctuation of two subsystems could be mitigated by
addressing only one of the subsystems. We convey this in the
following lemma where we show that two local unitary operations
on each subsystem of a maximally-entangled state are equivalent
to a single unitary operation in one of the subsystems.

Lemma 1. The action of local unitary operations U and V on

each subsystem of a Bell state ψ
�� �AB

i is equivalent to a single local
unitary operation W=VσiUTσi on the subsystem B, i.e.,

ðUA � VBÞ ψ
�� �AB

i
¼ ð1A �WBÞ ψ

�� �AB
i
.

Proof Firstly, let us consider the Bell-state
ψ
�� �

0
¼ 1=

ffiffiffi
2

p ð 00j i þ 11j iÞ. It is well-known38 that any unitary
operation U acting on one subsystem of ψ

�� �
0
is equivalent to the

transpose of the same unitary UT acting on the other subsystem:

ðU � 1Þ ψ
�� �

0
¼ ð1� UT Þ ψ

�� �
0
: ð1Þ

Hence, for two local unitary operations U and V on each
subsystem of ψ

�� �
0
:

ðU � VÞ ψ
�� �

0
¼ ð1� VÞ:ðU � 1Þ ψ

�� �
0
¼ ð1� VUT Þ ψ

�� �
0
: ð2Þ

Now, let us consider other Bell-states f ψ
�� �

i
g which are related

to ψ
�� �

0
by local Pauli operations {σi}:

ψ
�� �

i
¼ ð1� σ iÞ ψ

�� �
0
: ð3Þ

As Pauli matrices are self-inverse, we also have:

ψ
�� �

0
¼ ð1� σ iÞ ψ

�� �
i
: ð4Þ

For the sake of consistency, we assume σ0 to be the identity
operation. Now, for two local unitary operations U and V acting
on ψ

�� �
i
, we can write:

ðU � VÞ ψ
�� �

i
¼ ðU � Vσ iÞ ψ

�� �
0
¼ ð1� Vσ iU

T Þ ψ
�� �

0

¼ ð1� Vσ iU
Tσ iÞ ψ

�� �
i
¼ ð1�WÞ ψ

�� �
i
:

ð5Þ

Here, W=VσiUTσi. The first, second and third equalities are
due to Eqs. (2)–(4), respectively. This concludes our Lemma.

Motivated by the above lemma, if we could infer the relevant
unitary operation W, we could absorb W in our measurement,
i.e., if the desired measurement basis were f αj i; α?

�� �g, to mitigate
the effect of W, we would have to measure in fWy αj i;Wy α?

�� �g
basis. However, in practice, the photon sources have non-ideal
purity. Hence, to estimate the unitary, or equivalently the nearest
pure state after the action of the unitary W, we first perform
quantum state tomography at the output. Let us assume the
tomographically reconstructed density matrix is ρ. Next, we
evaluate the nearest pure state of ρ, this nearest pure state will
basically be the bell state affected by the unitary W. Next, based
on the nearest pure state, we find the optimal measurement bases
at Bob’s end: Bob’s f ϕH

�� �
; ϕ?H
�� �g measurement basis showing the

maximum (anti-)correlation with Alice’s f Hj i; Vj ig measurement
basis, and Bob’s f ϕD

�� �
; ϕ?D
�� �g basis showing the maximum

correlation with Alice’s f Dj i; Aj ig measurement. In the next
subsection, we show the method to find the nearest pure state.

Nearest pure state from the eigendecomposition. The nearest pure
state of a density matrix is, as the name suggests, the state that has
the maximum overlap to the said density matrix. In our case, we
are using fidelity to define the overlap. Formally, the pure state
jψρi is the ‘nearest’ to the density matrix ρ when their fidelity F
satisfies:

F ¼ ψρ

D ���ρ ψρ

���
E
≥ αh jρ αj i; for any pure state αj i: ð6Þ

To find the nearest pure state, we perform eigendecomposition
of the density matrix ρ. The nearest pure state would be the
eigenvector corresponding to the maximum eigenvalue. Formally,
if the eigendecomposition of ρ ¼ ∑iλi λiihλi

�� ��, with {λi} being the
eigenvalues and f λi

�� �g being the corresponding eigenvectors.
Without loss of generality, we also assume that {λi} are arranged
in descending order: λi≥λj for i < j. Hence, according to our
notation, λ1 is the maximum eigenvalue and λ1

�� �
is the nearest

pure state. In the following lemma, we will prove λ1
�� �

indeed has
the maximum overlap with ρ.

Lemma 2. For a density matrix ρ having eigendecomposition
ρ ¼ ∑iλi λiihλi

�� ��, with λi≥λj for i < j, the nearest pure state of the
density matrix is λ1

�� �
.

Proof Let us consider an arbitrary pure state αj i expressed in
λi
�� �

basis, αj i ¼ ∑iai λi
�� �

, with ∑i∣ai∣2= 1. The fidelity between
the state αj i and ρ is:

αh jρ αj i ¼∑
i;j
a�i ajhλijρjλji

¼ ∑
i;j;k

a�i ajλkhλijλkihλkjλji ¼ ∑
i
λijaij2:

ð7Þ

Note that the set {∣ai∣2} form a probability distribution:
∑i∣ai∣2= 1 and 0 ≤ ∣ai∣2 ≤ 1, hence Eq. (7) represents a convex
combination of the eigenvalues of ρ. We know that the convex
combination of scalars is bounded by the maximum of such
scalars39. Hence, the set {λi} being in descending order, the
quantity ∑iλi∣ai∣2 is maximum if and only if a1= 1 and ai≠1= 0.
In that case, αj i ¼ λ1

�� �
: the eigenvector corresponding to the

maximum eigenvalue.

Optimal measurement bases for BBM92 protocol. From our
tomographically obtained density matrix ρAB, we find the nearest

pure state ψ
�� �AB

ρ
. We can express the nearest pure state in the

form:

ψ
�� �AB

ρ
¼ 1ffiffiffi

2
p Hj iA ϕH

�� �B þ Vj iA ϕV
�� �B� �

: ð8Þ

In an ideal scenario of maximally entangled state, ϕH
�� �

and
ϕV
�� �

are orthogonal to each other, i.e., ∣〈ϕH∣ϕV〉∣2= 0. However,
depending on the Concurrence of our estimated nearest pure
state, ϕV

�� �
will have a small contribution from ϕH

�� �
. In our

experiment, however, the Concurrence of the estimated nearest
pure state is ~0.99. This ensures that ϕH

�� �
and ϕV

�� �
are almost

orthogonal, i.e., we have ∣〈ϕH∣ϕV〉∣2 ≈ 0. From Eq. (8), we can see
when Alice measures in f Hj i; Vj ig, Bob gets maximum (anti-)
correlation while measuring in f ϕH

�� �
; ϕ?H
�� �g basis.

Similarly, when Alice measures in a different basis, we can
calculate the corresponding rotated mutually unbiased basis. For
instance, when we express the nearest pure state in diagonal/anti-
diagonal basis:

ψ
�� �AB

ρ
¼ 1ffiffiffi

2
p Dj iA ϕD

�� �B þ Aj iA ϕA
�� �B� �

; ð9Þ

we can see that when Alice is measuring in f Dj i; Aj ig basis, Bob
has to measure in f ϕD

�� �
; ϕ?D
�� �g basis to get the highest (anti-)
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correlation. Note that, ϕD
�� � ¼ 1=

ffiffiffi
2

p ð ϕH
�� �þ ϕV

�� �Þ and
ϕA
�� � ¼ 1=

ffiffiffi
2

p ð ϕH
�� �� ϕV

�� �Þ. As discussed, 0.99 Concurrence of
our estimated nearest pure state ensures ∣〈ϕA∣ϕD〉∣2 ≈ 0. In the
next subsection, we are going to discuss our experimental results.

Experimental outcome. We implement the BBM92 protocol
using a polarization-entangled bi-photon source (PEBS) based
upon a doubly-pumped type-II SPDC process in a Sagnac loop35.
An abridged schematic of our experimental setup has been pro-
vided in the figure titled “Experimental schematic for the source
module” under the section “Methods”. Our source produces
polarization-entangled single-photon pairs having 94% fidelity
with the Bell-state ψ

�� �
1
¼ 1=

ffiffiffi
2

p ð HVj i þ VHj iÞ, and a Con-
currence of 0.92. We transmit the single photons to Alice and Bob
module through two optical fibers. Each optical fiber is accom-
panied by a fiber-bench Polarization Controller Kit by Thorlabs
(PC-FFB-780), see the figure titled “Experimental schematic for
the BBM92 protocol” under the section “Methods”. For a detailed
description of the experimental schematic, see the subsection
“Experimental schematic” under the section “Methods”. Our
objective is to have a controlled polarization change introduced in
the experiment to demonstrate the efficacy of our correction
mechanism for different cases. The introduction of the polariza-
tion controller enables the introduction of polarization fluctua-
tion in both single photons, to essentially manipulate/control the
fidelity of the two-qubit state with the ideal ψ1

�� �
state at the

output end. For each altered polarization state, we perform a
quantum state tomography at the output. From the tomo-
graphically reconstructed density matrix, we estimate the nearest
pure state using Lemma 2. Next, we evaluate the measurement
basis at Bob’s end, giving maximum (anti-) correlation with
Alice’s σ3 basis:f ϕH

�� �
; ϕ?H
�� �g as in Eq. (8) and with Alice’s σ1 basis:

f ϕD
�� �

; ϕ?D
�� �g as in Eq. (9). To complete the protocol, one of the

parties (say Alice) sends his/her time-stamp information to the
other party (say Bob) via a publicly accessible classical channel.
Bob then performs a cross-correlation between his time-stamp
and Alice’s time-stamp to generate the coincidence peaks. He
further runs the optimization methods (see the subsection
“Optimization methods” under the section “Methods”. for
details) to optimize the window sizes for each coincidence peak to
optimize the key rate, Eq. (14a), and QBER, Eq. (14b). Based on
the optimized window choices, Bob informs Alice, via the public
classical channel, which of her time-stamps needs to be discarded.
From the remaining time-stamps, the two parties can reconstruct
their respective keys from the information about their measure-
ment outcomes. Note that, these measurement outcomes are
private to the individual parties.

In our result, we first show how optimizing measurement bases
could result in low QBER irrespective of the polarization rotation
through the single-mode fibers. This is in stark contrast to the
conventional approach, where we restrict our choice of measure-
ment to Pauli bases. In such cases, we would see higher QBER for
lower fidelity.

Next, we use our optimization methods for further improve-
ment of the performance of BBM92 protocol, (see the subsection
“Optimization methods” under the section “Methods”). To
summarize, the goals of the three optimization methods are
classified as follows. In method A, we maximize the keyrate (14a)
while maintaining an information-theoretically secure bound of
less than 11% QBER (14b) and ensuring symmetry in the
obtained key bits. It is important to highlight that the optimized
coincidence time window spans along each measurement bases
need not be equal in this case. In method B, we relax the key
symmetry constraint but enforce equal coincidence time window

spans along the individual measurement bases. Finally, in method
C, we retain the constraints of method B and in addition,
maintain the QBERs of each individual measurement bases below
the 11%.

We show the advantages of finding the optimal measurement
bases in Fig. 1 where the orange circles represent QBERs for
different fidelities with ψ

�� �
1
for optimal measurement bases. We

see how the optimal measurements can lower the QBERs below
11% independent of the fidelity of the output state. In contrast,
the blue circles represent the QBERs for different fidelities for
conventional measurement bases (σ1 and σ3 bases). We note that
the QBERs increase with lower fidelity. We note that the decrease
of the QBERs is not monotonic, as in the case of the fidelities in
the range of 40–60% and 70–80%. This is because we are using
the fixed Pauli bases of σ1 and σ3 for all the fidelity points.
However, choosing a different Pauli bases turn out to be more
optimal in certain scenarios. To provide a specific example, below
we write the tomographically reconstructed density matrix having
60% fidelity with the state ψ

�� �
1
:

ρ60% ¼

0:12 �0:14� 0:14i 0:18þ 0:04i 0:08þ 0:1i

�0:14þ 0:14i 0:36 �0:27þ 0:19i �0:23� 0:06

0:18� 0:04i �0:27� 0:19i 0:3 0:12þ 0:16i

0:08� 0:1i �0:23þ 0:06i 0:12� 0:16i 0:22

2
6664

3
7775:

ð10Þ

For the above density matrix, when both parties measure in σ1,
σ2, and σ3 bases, the associated visibilities (see Eq. (13b)) are 37%,
65%, and 24% respectively. Naturally, choosing the measurement
bases associated with higher visibilities, i.e., σ1 and σ2 bases
(instead of σ1 and σ3) leads to lower QBER of 25%. The cyan
crosses in Fig. 1 convey the idea, where we use the

Fig. 1 Unoptimized QBERs vs. fidelity with the singlet state ψ
�� �

1. The blue
dots represent our experimentally measured QBERs with the conventional
bases of measurement (i.e., σ1 and σ3). It can be observed that the
experimentally obtained QBERs are not monotonically decreasing, i.e., the
QBERs portray an increasing trend for the fidelity of 40–60% and 70–80%.
However, a monotonic graph (i.e., the cyan crosses) can be obtained, when
we choose the pair of Pauli measurement bases (i.e., any two out of σ1, σ2,
and σ3) that offers the best signal-to-noise ratio at each fidelity point.
Nevertheless, it can be noted that the optimized measurement bases
outperform the conventional measurement bases by offering a lower QBER
(orange dots) irrespective of their fidelity with the singlet state. At each
fidelity point, we measured ten datasets, the mean of them represents the
data points, while their standard deviation has been indicated with error
bars. Note that the standard deviations being very small, result in error bars
being even shorter than the diameter of the data points, and hence they are
not observable against those points.
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tomographically reconstructed density matrix to estimate the
QBERs for two optimal Pauli bases, and achieve a monotonically
decreasing set of QBERs. In all such cases, the optimal choice of
measurement bases outperforms conventional measurement
bases.

In Fig. 2, we present the unoptimized results and show how
varying coincidence window sizes lead to different QBERs and
key rate. In both Fig. 2a, b, the red circles represent the data for
1 ns wide coincidence windows, the blue circles represent the data
for 4 ns wide coincidence windows. We can see for the 1 ns
coincidence window, both QBERs (≈5%) and key rate (≈35 Kbps)
are lower compared to the 4 ns coincidence window where we
have QBERs of ≈10% and key rate of ≈50 Kbps. To achieve
optimal window sizes resulting in a better trade-off between

QBER and key rate, i.e., low QBER and high key rate, we use the
optimization methods.

In Fig. 3a, we show the advantages of the optimization
methods. The green circles represent optimized overall QBERs for
the overall key string, however, in such cases the QBERs for
individual bases are not optimized (optimization method B). The
magenta circles represent the optimized overall QBERs where the
individual QBERs are optimized as well (optimization method C).
Using optimization, we could reduce the overall QBER while
maintaining a high key rate of ~50 Kbps. In Fig. 3b, we show how
the optimization methods take QBERs for individual measure-
ment bases into account. It is possible that while maintaining the
overall QBER below 11%, the QBERs for individual measurement
bases may shoot up above 11% leading to leakage of information

Fig. 2 Unoptimized QBER and keyrate vs. fidelity with a singlet state. a represents the unoptimized QBER (in %) vs. fidelity (in %) with the ψ
�� �

1 state for
two different coincidence window spans. b represents the unoptimized key rate (in Kbps) vs. fidelity (in %) with the ψ

�� �
1 state plot for two different

coincidence window spans. The red and blue dots represent values corresponding to 1 ns and 4 ns coincidence window spans, respectively. For each fidelity
point, the mean and standard deviation has been obtained over ten measurement runs. The data points represent the mean of those runs, while the
standard deviation in them has been indicated by the corresponding error bars. Note that for a few data points in (a) the standard deviations being very
small, result in error bars being even shorter than the diameter of the points, and hence they are not observable against those points.

Fig. 3 Optimized and unoptimized QBER vs. fidelity with a singlet state. Plots highlighting the advantages of our optimization methods. a plots overall
QBERs (in %) after considering coincidence measurements among both MUB vs. fidelity (in %) with the ψ

�� �
1 state. b plots maximal QBERs (in %)

considering coincidence measurements for a particular (i.e., individual) MUB vs. fidelity (in %) with the ψ
�� �

1
state, corresponding to the two results

depicted in (a). The green dots result from the optimization method in which the QBERs for each individual measurement basis were not optimized
(optimization method B), while the magenta dots are obtained from another variant of the optimization method in which the individual QBERs were
restricted below 11% (optimization method C). Note that in (b), the information-theoretically secure bound of 11% has been indicated with the black
dashed line. Using our optimization methods, we could reduce the overall QBER while maintaining a high key rate of ≈50 Kbps. For each data point against
a given fidelity, the mean and standard deviation has been obtained over ten measurement runs similar to Fig. 2 (although in these cases for optimized
window spans). Again, the data points represent the mean of those runs, while the standard deviation in them has been indicated by the corresponding
error bars. Note that for some data points the standard deviations being very small, result in error bars being even shorter than the diameter of the points,
and hence they are not observable against those points.
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to the eavesdropper. To avoid this, it is important to contain the
individual QBERs below 11%. In Fig. 3b, the green circles
represent the maximum unoptimized QBERs for the individual
measurement bases. The magenta circles represent the optimized
QBERs for the individual measurement bases. We note that the
optimization methods ensure that the individual QBERs lie below
11%. Enforcing such restrictions on the individual QBERs leads
to relatively lower overall QBERs at 60 and 80% fidelities, see
Fig. 3a. This results from the presence of relatively higher
unoptimized individual QBERs along certain projection bases, see
the green datapoints at those two fidelities in Fig. 3b. Hence,
compared to other datapoints, the optimization method C uses
smaller coincidence window spans to bring the individual QBERs
down to 11%, resulting in lower overall QBER.

A parallel aim of our BBM92 protocol implementation is also
to simultaneously attain a balanced key symmetry while
maintaining a high key rate, along with an information-
theoretically secure QBER. We achieve this goal via the use of
optimization method A (for methodology details, refer the
subsection “Optimization methods” under the section “Meth-
ods”). The performance of method A in contrast to methods B
and C is presented Table 1. We particularly show considering two
representative fidelity points at the boundaries of the measured
range of fidelities: 91 and 9%, to convey that we obtain an
improved key symmetry, i.e., 50.98 : 49.02 for 91% fidelity and
50.99 : 49.01 for 9% fidelity, while restricting the overall QBERs
within the information-theoretically secure threshold and extract-
ing comparable key rates, by using optimization method A.

Resource requirement. For performing projective measurements
along rectilinear/diagonal polarization bases in any conventional
BBM92 protocol implementation, half-wave plates (HWPs) are
required along with polarizing beam-splitters (PBSs). In terms of
resources, our approach only requires the inclusion of quarter-
wave plates (QWPs) in front of the HWPs. This helps in per-
forming the QST at two such projective measurement setups and
finally also the protocol measurements along rotated (optimized)
projection bases. Furthermore, it may be efficient to mount the
waveplates involved in QST on motorized rotation stages. In our
QST measurement, we perform 36 coincidence detections of the
entangled photons transmitted to Alice and Bob detection mod-
ules, from an over-complete tomography measurement set.
Considering the minimal acquisition time of 1 s for our time-
tagging unit, an upper bound on the overall time estimated by us
to perform a QST and then infer the optimal measurement bases,
loosely amounts to about 12 min. This time window required for
evaluating the optimal measurement bases being solely dependent

on the duration of performing the tomography of the output state
can be significantly shortened with efficient tomography techni-
ques that offer faster convergence rates based on Bayesian
learning40,41, or machine learning-based approaches42–44, as well
as fast polarization controllers like electro-optic modulators.

Conclusions
In summary, we have addressed the practical challenges of long-
distance QKD protocols utilizing the polarization of photons to
encode the quantum state. The polarization state of light is
inevitably affected during long-distance transmission. The con-
ventional active feedback system-based polarization tracking
techniques are resource intensive, resulting in additional main-
tenance costs. We have shown that instead of active polarization
correction, we can construct optimal measurement bases to
achieve low QBER and high key rate irrespective of the polar-
ization fluctuation. As a proof-of-principle demonstration, we
have used the BBM92 protocol using polarization-entangled
photon pairs. We overcome the polarization fluctuations of the
single-photons during transmission through optical fibers by
performing optimal measurements. As our approach is based on
the general principle of state preparation and measurement
duality, the method can easily be extended to other QKD pro-
tocols. To construct the optimal choice of measurements, the
parties perform a quantum state tomography on the received
two-qubit state before each QKD session. Based upon the
tomographically reconstructed density matrix, Bob arrives at his
choice of measurement bases through the techniques introduced
in the subsection “Theory for optimized measurement bases”
under the section “Results”. Our approach overcomes the need
for active feedback-based control systems. Another advantage of
our protocol could be found in scenarios where the entangled
photon source is itself not perfect. In principle, the generated
entangled state could be either partially mixed or non-maximally
entangled. Our technique provides a recipe to construct optimal
measurement bases even in such non-ideal conditions. Our
technique could be particularly advantageous in downlink-based
QKD protocols, e.g., the quantum experiments using the Micius
satellite45 where the photon sources, being in the satellite, are not
readily accessible to the experimentalists. In such cases, altering
the more easily accessible measurement bases of only one party
could overcome the detrimental effects of polarization fluctua-
tion. To implement such large-scale quantum communication
protocols, it is important to conduct follow-up studies, e.g., on
efficient synchronized quantum state tomography between two
distant measurement stations, the role of finite-key effect46, and
the effect of the photon loss due to free-space channel. However,
our proposed method opens a new paradigm for resource-
efficient polarization bases compensation techniques without
active feedback in long-distance quantum communication
including satellite-based approaches. It is important to point out
that a similar approach to choosing a suitable measurement basis
has been reported by Tannous et al.47. The authors consider a
6 state–4 state QKD protocol, i.e., where one party measures in
six measurement bases: rectilinear, diagonal and circular polar-
ization bases; and the other party measures in four measurement
bases: rectilinear and diagonal polarization bases. These 24
measurements ensure the correction of arbitrary relative phase ϕ
in the singlet state 1=

ffiffiffi
2

p ð HVj i þ eiϕ VHj iÞ. However, note that
authors only consider a specific type of polarization fluctuation
constrained by the photons traveling through polarization-
maintaining fibers. In practice, the photons might experience
more general polarization fluctuations resulting in unconstrained
local operations. We propose a method to mitigate the effects of
such general local unitary operation in our work, ensured by

Table 1 Optimized results of the average key rate, QBER,
and asymmetry (i.e., key symmetry).

Fidelity
(%)

Method Key rate
(Kbps)

QBER (%) Asymmetry

91 A 52.70 ± 2.71 8.46 ± 0.51 50.98 ± 0.05
B 55.60 ± 2.32 10.53 ± 0.0 52.19 ± 0.06
C 52.48 ± 2.20 8.52 ± 0.01 52.46 ± 0.06

09 A 50.0 ± 2.31 9.70 ± 0.91 50.99 ± 0.0
B 50.98 ± 2.84 10.53 ± 0.01 52.54 ± 0.12
C 47.82 ± 2.85 8.52 ± 0.01 53.01 ± 0.20

We obtain the results using three different optimization methods: namely, A, B, and C (see the
subsection “Optimization methods” under the section “Methods”), for two representative
fidelities with the ψ

�� �
1
state. Unlike optimization B and C, optimization A ensures a balanced key

symmetry, which has important security implications3. An asymmetry value of “x” implies that
the ratio of “0” bits to “1” bits in the key is x:(100− x). Each data point represents the mean of
ten runs of measurements, and the corresponding uncertainties are the standard deviation of
those measurements.
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single-mode non-polarization-maintaining fibers. To address
such arbitrary polarization fluctuation, we need to perform
additional measurements to tomographically reconstruct the
entangled density matrix. The primary objective of our work is to
obviate the need for maintaining the polarization state of the
photons using resource-intensive control systems. So far, we are
constructing the optimal measurement bases using a tomo-
graphically complete dataset. As a future direction, it would be
interesting to see if such optimization of measurement bases is
possible without performing a full quantum state tomography.

Methods
Notations. We introduce the relevant notations used in this paper. We denote the
Pauli group as {σi∣i∈ {0, 1, 2, 3}} where σ0 ¼ 1 is the identity operation and σ1, σ2
and σ3 are Pauli X, Y and Z respectively. To denote the Bell states, note that all Bell
states are related by local Pauli operations, hence we use an indexed notation of the
Bell states as f ψ

�� �
i
ji 2 f0; 1; 2; 3gg, such that ψ

�� �
i
¼ ð1� σ iÞ ψ

�� �
0
. In this way, our

indexed Bell states are:

ψ
�� �

0
¼ 1ffiffi

2
p ð 00j i þ 11j iÞ; ψ

�� �
1
¼ 1ffiffi

2
p ð 01j i þ 10j iÞ;

ψ
�� �

2
¼ 1ffiffi

2
p ð 01j i � 10j iÞ; ψ

�� �
3
¼ 1ffiffi

2
p ð 00j i � 11j iÞ: ð11Þ

As we use the polarization degree of freedom of the photons to encode the
quantum state—horizontal polarization Hj i ! 0j i, and vertical polarization
Vj i ! 1j i,—we will interchangeably use standard notations for polarization to
denote our quantum states:

Hj i � 0j i; Vj i � 1j i;
Dj i � 1ffiffiffi

2
p ð 0j i þ 1j iÞ; Aj i � 1ffiffiffi

2
p ð 0j i � 1j iÞ;

Rj i � 1ffiffiffi
2

p ð 0j i þ i 1j iÞ; Lj i � 1ffiffiffi
2

p ð 0j i � i 1j iÞ:
ð12Þ

Experimental schematic. Our experimental setup for implementing the BBM92
protocol contains a PEBS, which generates polarization-entangled photons pairs
via spontaneous parametric down-conversion (SPDC) process, from a doubly-
pumped type-II periodically-poled KTP (PPKTP) crystal in a Sagnac configuration
as schematically represented in Fig. 435. More specifically, we use a continuous-
wave pump beam at 405 nm through a type-II PPKTP crystal with 10 μm poling
period as indicated in Fig. 4. Passing the pump beam through the crystal produces
down-converted, degenerate single-photon pairs with a central wavelength of
810 nm. The single photons are then separated from the pump beam via two
dichroic mirrors. In case of the perfect alignment of the setup, a horizontally
polarized ( Hj i) pump beam produces two down-converted single photons of
polarization state HVj i. A vertically polarized ( Vj i) pump beam, on the other
hand, produces single photons with polarization state VHj i. By changing the pump
polarization, we can get a polarization-entangled state
ψ
�� �

ϕ
¼ 1=

ffiffiffi
2

p ð HVj i þ eiϕ VHj iÞ. The relative phase ϕ can be (adjusted) set to zero

by varying the pump polarization using the quater-wave plate (QWP) and half-
wave plate (HWP) placed at the entry of the interferometer, i.e., in principle
oriented at 0° and 22.5°, respectively, in order to produce at singlet state as shown
in Fig. 4.

To characterize our state, we perform a quantum state tomography at the
output of the source. Our source has a 91% purity, 94% fidelity with respect to
ψ
�� �

1
¼ 1=

ffiffiffi
2

p ð HVj i þ VHj iÞ, and a concurrence of 0.92. After developing the
source, we dispatch the photons through two optical fibers to two setups (each ~5
meters apart from the source), referred to as Alice and Bob modules as introduced
in the subsection “Experimental outcome” under the section “Results”. An abridged
schematic of the setup that we used to perform the BBM92 measurements has been
provided in Fig. 5.

During transmission, the polarization of the photons at Alice and Bob modules
is affected. To mitigate this, on one hand in the Alice module, we randomly
measure the stream of incoming source-photons along the rectilinear and diagonal
projection bases (i.e., say, at SPADs-A1 to A4 in Fig. 5). On the other hand, in the
Bob module, we randomly measure the polarization of incoming source-photons
along the “rotated rectilinear” projection bases, f ϕH

�� �
; ϕ?H
�� �g, and “rotated

diagonal” projection bases, f ϕD
�� �

; ϕ?D
�� �g (i.e., say, at SPADs-B1 to B4 in Fig. 5). We

implement the random choice of measurements using 50:50 beam-splitters and
perform the projections with the QWP and HWP combination in front of each
PBS. Each of these basis projections can lead to either of the two outcomes:
detection of the photon along the transmitted arm ( Hj i Hh j at SPAD-A1 or Dj i Dh j
at SPAD-A3, and ϕH

�� �
ϕH
� �� at SPAD-B1 or ϕD

�� �
ϕD
� �� at SPAD-B3), or other along

the reflected arm ( Vj i Vh j at SPAD-A2 or Aj i Ah j at SPAD-A4, and ϕ?H
�� �

ϕ?H
� �� at

SPAD-B2 or ϕ?D
�� �

ϕ?D
� �� at SPAD-B4) of the PBS. More specifically, Alice’s

Hj i Hh j Vj i Vh jð Þ detection is highly correlated to Bob’s ϕH
�� �

ϕH
� �� ϕ?H

�� �
ϕ?H
� ��� 	

detection, and Alice’s Dj i Dh j Aj i Ah jð Þ detection is highly correlated to Bob’s
ϕD
�� �

ϕD
� �� ϕ?D

�� �
ϕ?D
� ��� 	

detection. In this way, we end up performing a total of eight
coincidence detections between Alice’s and Bob’s SPADs. Now considering that in
our approach we produce two photons entangled in the polarization degree of
freedom when SPAD-A1(2, 3, 4) clicks then ideally the other photon from that pair
should go and always produce a click at the SPAD-B1(2, 3, 4). We term these
coincidence detections as signal coincidences since they belong to the desired set.
More specifically, they provide a signature that the photons were indeed entangled
and thus collapsed to the expected polarization state on measurement. However,
due to experimental imperfections and non-orthogonal projections, there is a non-
zero probability that the other photon in that pair can collapse at the undesired
detector. Such detections contribute to erroneous coincidences, and so they are
called the noise coincidences. In a nutshell, four out of the eight coincidence
detections form the desirable set (signal), while the other four form the undesirable
set (noise). A special parameter of interest in such QKD protocol implementations
using entangled photons is the visibility of the coincidences along the rectilinear
and diagonal bases since it acts as a performance indicator for both the PEBS and
the protocol. For our measurement bases optimization approach, these visibilities:
Vis1 along the rectilinear (for Alice) and rotated rectilinear (for Bob) bases, and
Vis2 along the diagonal (for Alice) and rotated diagonal bases can be expressed as:

Vis1 ¼
C HϕHihHϕH

�� ��� 	þ C Vϕ?HihVϕ?H
�� ��� 	� C Hϕ?HihHϕ?H

�� ��� 	� C VϕHihVϕH
�� ��� 	

C HϕHihHϕH
�� ��� 	þ C Vϕ?HihVϕ?H

�� ��� 	þ C Hϕ?HihHϕ?H
�� ��� 	þ C VϕHihVϕH

�� ��� 	 ; and

ð13aÞ

Vis2 ¼
C DϕDihDϕD

�� ��� 	þ C Aϕ?D ihAϕ?D
�� ��� 	� C Dϕ?D ihDϕ?D

�� ��� 	� C AϕDihAϕD
�� ��� 	

C DϕDihDϕD
�� ��� 	þ C Aϕ?D ihAϕ?D

�� ��� 	þ C Dϕ?D ihDϕ?D
�� ��� 	þ C AϕDihAϕD

�� ��� 	 ;

ð13bÞ
respectively, where C x yihx y

�� ��� 	
captures the outcome of a bi-photon coincidence

detection along xihxj j and yihy
�� �� basis within a certain time window.

In the data processing stage, we calculate the number of coincidences in these
sets by analyzing the signal-to-noise ratios (SNRs), through the consideration of
suitably optimized window spans (see the subsection “Optimization methods”
under the section “Methods”. for details) around the peak maxima. Given that, the

Fig. 4 Experimental schematic for the source module. We use a Sagnac
interferometer-based setup to implement a polarization-entangled bi-
photon source. Inside the Sagnac loop, we have a type-II periodically-poled
KTP (PPKTP) crystal, with a 10 μm poling period. The crystal is pumped by
a diagonally polarized 405 nm beam from both directions. At the output of
the Sagnac configuration, we have degenerate 810 nm polarization-
entangled photons pairs produced via the spontaneous parametric down-
conversion (SPDC) process. We use dichroic mirrors to separate the pump
beam and single photons, and then perform a quantum state tomography to
characterize the output quantum state. The resulting polarization-entangled
photon state has 94% fidelity with the singlet state ψ

�� �
1
and a Concurrence

of 0.92. In this figure, QWP, HWP, and PBS represent quarter-wave plate,
half-wave plate, and polarizing beam splitter, respectively.
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three parameters (namely, the raw key rate, the quantum-bit-error-rate (QBER),
and the asymmetry of the raw key string) can be used to assess the performance of
any QKD protocol implementation3, the signal and the noise values thus obtained
within the optimal window regions are then used to compute these figures of merit
for our BBM92 experimentation. More specifically, key rate can be measured as the
average number of bits in the sifted key (including error bits) generated per second.
In BBM92 protocol, sifting includes post-processing of the dataset, where Alice and
Bob both select only those coincidence events which occur within the chosen time
window. In principle, Alice and Bob should have identical key strings after the
protocol’s completion. However, in practice, they are not identical owing to the
presence of noise in the transmission channel, any other experimental
imperfections, and eavesdropping activity. Hence, the number of error bits can be
obtained by comparing each bit value for the same bit position in these two key
strings. The number of error bits divided by the total key length thus provides us
with the QBER. Finally, any mismatch between the number of 0 and 1 bits in the
sifted key of either Alice or Bob is captured by the asymmetry (or key symmetry)
parameter. In context to these definitions, the three figures of merit can then be
analytically expressed as:

key rate ¼ coincidences from all the eight coincidence detections
runtime of the protocol

bps
� 	

;

¼ 1
T

C HϕHihHϕH
�� ��� 	þ C Vϕ?HihVϕ?H

�� ��� 	þ C Hϕ?HihHϕ?H
�� ��� 	þ C VϕHihVϕH

�� ��� 	


þC DϕDihDϕD
�� ��� 	þ C Aϕ?D ihAϕ?D

�� ��� 	þ C Dϕ?D ihDϕ?D
�� ��� 	þ C AϕDihAϕD

�� ��� 	�
bps
� 	

;

ð14aÞ

QBER ¼ coincidences from the four undesired coincidence detections ´ 100
coincidences from all the eight coincidence detections

%ð Þ;

¼ C Hϕ?HihHϕ?H
�� ��� 	þ C VϕHihVϕH

�� ��� 	þ C Dϕ?D ihDϕ?D
�� ��� 	þ C AϕDihAϕD

�� ��� 	
 �
´ 100

T ´ key rate
%ð Þ;

ð14bÞ

key symmetry ¼ coincidences detected along diagonal ðfor AliceÞ and rotated diagonal ðfor BobÞ bases ´ 100
coincidences from all the eight coincidence detections ;

¼ C DϕDihDϕDj jð ÞþC Aϕ?D ihAϕ?Dj jð ÞþC Dϕ?D ihDϕ?Dj jð ÞþC AϕDihAϕDj jð Þ
T ´ key rate ;

ð14cÞ

where only the coincidences lying within the optimized window spans have been
considered and T stands for the protocol runtime.

Optimization methods. In this subsection, we provide a qualitative overview of
three optimization strategies: A, B, and C. We have developed these methods to
obtain optimal values of the quantifiers (i.e., key rate, QBER, and asymmetry) that
collectively assess the performance of entangled photon-based BBM92 protocol
implementation.

From the discussion provided in the previous subsection, we recall that out of
eight coincidence detections—four contribute to signal coincidences, while others
supply noise coincidences. These coincidence detections actually produce either of
the two coincidence distributions (also, denoted by “coincidence curves”), i.e., blue
(signal) or red (noise), as schematically sketched in Fig. 6. More specifically, in all
three optimization methodologies—to generate these curves, at the beginning the
time-stamping data recorded by the two participating SPADs (i.e., one from Alice
and the other from Bob module) are compared and plotted as a function of their
relative time difference. Note that each “coincidence curve set” consists of two
coincidence distributions or peaks: a signal coincidence peak and its corresponding
noise coincidence peak, as represented with blue and red curves, respectively, in
Fig. 6. For instance, if the coincidence curve set involving SPAD-A1 is considered
then its coincidence detections with SPAD-B1 will contribute to the blue signal
peak, while those with SPAD-B2 will form the red noise peak. Thus, corresponding
to four SPADs in the Alice module, in summary, we end up having four such
coincidence curve sets—each containing two peaks.

Commonly, for all three optimization methods, we maximize the key rate (as
computed by Eq. (14a)) while constraining the overall QBER (as given by Eq.

Fig. 5 Experimental schematic for the BBM92 protocol. In this setup, the polarization-entangled photon pairs are transferred to the eight single-photon
avalanche detectors (SPADs) to implement the relevant measurement bases for the protocol. The paired terms (H1, V1) and (V2, H2), indicated in red,
represent the corresponding polarization of the daughter photons emerging, from each pump photon striking the crystal, in two different directions. In this
figure, QWP, HWP, PBS and BS represent quarter-wave plate, half-wave plate, polarizing beam splitter, and beam splitter, respectively.
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(14b)) to <11%, based upon the information-theoretic security threshold36,37. To
achieve this, we optimize the signal-to-noise ratio (SNR) at each step, while
increasing the coincidence window span. From an overall perspective, this general
idea is to consider two window edges (also referred to as panes in Fig. 6): left (l)
and right (r), as indicated with green dotted vertical lines in the figure, at around
the maximal point of the coincidence curve set, i.e., preferably at the top of the blue
(signal) peak. Thereafter, move them outwards with a regular step size to increase
the span.

For explaining the specifics of each method, we can start with the
conventional kind, namely method “B”. It is assumed to be conventional in its
approach, in the sense that it uses optimized identical window spans in each
coincidence curve set. In this methodology, to optimize the SNR on each
coincidence curve set—we shift the two window edges outwards, by the highest
achievable resolution (say, 1 ps), and in turn, maximize the SNR at each step.
This procedure is sequentially reiterated until the individual QBER value, for
that coincidence curve sets, reaches the threshold upper limit of 11%. When the
iteration stops for all the curve sets, the corresponding edge positions report the
optimized SNRs for each of them. It is important to note that the resultant
individual window spans in each curve set can be different at this point. In order
to make them identical, the smaller spans are then matched to the largest one
among them. Finally, all four spans are again iteratively adjusted with equal step
size, until the overall QBER reaches just below the 11% threshold. Within those
final spans, the sifted (or raw) key rate, the overall QBER, and the key symmetry
values for the given dataset are then computed using Eqs. (14a)–(14c),
respectively. In summary, this strategy optimizes the individual SNRs to achieve
a maximal key rate that is information-theoretically secure, without worrying
about the symmetry in key bits and the security aspect of the final individual
QBERs in each coincidence curve set.

In the next method named “C”, we retain the optimization procedure followed
by B, while including an additional constraint that the individual QBERs, for each
coincidence curve set, should also remain below the information-theoretically
secure bound of 11% at the output. In order to ascertain this requirement, while
adjusting all four spans iteratively with equal step size, the iterations are continued
until all four individual QBERs cross below 11% threshold. It is important to
highlight that in this method, if one of the coincidence curve set (or projection
bases) contains a significantly higher noise peak (or erroneous/undesired
coincidences), then the overall QBER as well as the other individual QBERs at the

output can reach values much less than 11%, resulting into a considerably lower
sifted key rate. Therefore, this method can be advantageous over B, in the light that
it prohibits any partial leakage of information to the eavesdropper even from the
analysis of the individual coincidence curve sets.

In order to maintain a balanced symmetry among the “0” and “1” bits in the
generated key string, while ensuring that it remains information-theoretically
secure, we employ a much different optimization strategy as compared to
methods: B and C. We refer to this strategy as method A. In this methodology,
to optimize the overall SNR we shift the two edges outwards, on each
coincidence curve set, by the maximal achievable resolution (say, 1 ps) and then
calculate the SNR at each step. Out of all those eight SNR values (i.e., at the 2
edges for each of the 4 coincidence curve sets), the edge position corresponding
to the maximum SNR is retained, while the others are reverted to their original
position. This procedure is sequentially reiterated until the updated QBER value
reaches the threshold upper limit of 11% and the key symmetry remains within a
desired bound (i.e., around 50:50). When the iteration stops, the corresponding
edge positions report the optimized SNRs for each coincidence curve set. Similar
to methods: B and C, based upon those positions, finally, the sifted (or raw) key
rate, the overall QBER, and the key symmetry values are calculated as per Eqs.
(14a)–(14c), respectively. In summary, this method optimizes the SNRs to
achieve a maximal key length that is information-theoretically secure, while also
ensuring a symmetric distribution of “0” and “1” bits in that key string. In
contrast to the previous optimization methods: B and C, this method (A) of
analyzing the performance of BBM92 implementations are particularly valuable
from the consideration that having a balanced or imbalanced key symmetry can
both lead to important security implications, as explained by Chatterjee et al.3.

These optimization methods can be easily used for analyzing conventional
BBM92 protocol measurements, even with the entangled (source) photon state
having highly imperfect (≪90%) fidelity with ψ

�� �
1
state. However, it is important

to note that for evaluating such datasets measured in the conventional projection
bases, the QBER threshold (and also the key symmetry thresholds—if applicable)
may need to be relaxed by a small step size at each iteration of unsuccessful
optimization, to reach convergence and assess the insecure but optimized key rate.
In that light, these optimization methods can be generalized to any single-photon
(or entangled-photons) based QKD protocol implementation with quick
customization.

Data availability
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