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Topological invariance in whiteness optimisation
Johannes S. Haataja 1,2, Gianni Jacucci1,3, Thomas G. Parton1, Lukas Schertel 1,4 & Silvia Vignolini 1✉

Maximizing the scattering of visible light within disordered nano-structured materials is

essential for commercial applications such as brighteners, while also testing our fundamental

understanding of light-matter interactions. The progress in the research field has been hin-

dered by the lack of understanding how different structural features contribute to the scat-

tering properties. Here we undertake a systematic investigation of light scattering in

correlated disordered structures. We demonstrate that the scattering efficiency of disordered

systems is mainly determined by topologically invariant features, such as the filling fraction

and correlation length, and residual variations are largely accounted by the surface-averaged

mean curvature of the systems. Optimal scattering efficiency can thus be obtained from a

broad range of disordered structures, especially when structural anisotropy is included as a

parameter. These results suggest that any disordered system can be optimised for whiteness

and give comparable performance, which has far-reaching consequences for the industrial

use of low-index materials for optical scattering.
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Controlling the transmission of light in optically dense
disordered structures is an outstanding scientific
challenge1,2 with relevance to photovoltaic devices, med-

ical imaging3,4, and random lasing5,6. For practical applications
such as white pigments and coatings, a common goal is to
maximise the reflection of visible light for a given formulation
and coating thickness, which is often achieved by creating two-
phase disordered structures with large refractive index contrast
(n2≫ n1). In commercial white paints, the high-index component
is typically made from inorganic materials such as titanium
dioxide (TiO2, n= 2.6)7, but it is becoming increasingly clear that
metal oxide pigments are accompanied by serious concerns for
the environment and for human health8–10. Although scattering
agents made from sustainable and biocompatible sources such as
cellulose have emerged as a promising alternative in recent
years11,12, these organic materials are limited to lower refractive
index values (n⪅ 1.6). Optimising low-index disordered struc-
tures to maximise their scattering efficiency is therefore of
growing importance to realise the potential of naturally-sourced
white materials.

Scattering optimisation in several species of scarab beetles has
resulted in disordered structures with exceptionally bright
whiteness, despite the limitation of low refractive index contrast
(n2/n1 ≈ 1.5)13,14. The high scattering efficiency of these natural
photonic materials has been attributed to their anisotropic
random network structure15–17 and has stimulated research
into synthetic analogues, with numerous studies reporting
comparable optical performance18–22. The near-optimal scat-
tering efficiency of these artificial random network structures is
notable because their disordered textures are clearly distinct,
suggesting that achieving bright whiteness does not require
precise mimicry of natural structures. Progress in identifying
the universal morphological features that contribute to high
scattering efficiency has been hindered by both 1) the obser-
vation that theoretical models of light propagation in disordered
media are notoriously difficult to solve, arising from the fact
that fluctuations of the electric field and permittivity are not
statistically-independent, and approximate solutions23,24 typi-
cally assume weak refractive index difference ((n2− n1)/
n1≪ 1), and only consider structural correlations up to second-
order25, and 2) by an absence of systematic numerical investi-
gation of disorder structures, with previous studies typically
focused on individual models such as random sphere packing26

or spinodal decomposition21. Furthermore, comparison
between different types of random structure requires robust
methods to quantify and classify disordered morphologies,
which have previously been lacking.

In this work, we use in silico synthesis to generate a compre-
hensive range of two-phase nanostructures with correlated dis-
order and simulate their optical response across the visible range
as illustrated by the workflow in Fig. 1. We find that the scattering
efficiency is largely determined by the first- and second-order
statistical properties of the system, captured by the filling fraction
and two-point correlation function, respectively, even for struc-
tures with large refractive index contrast where higher-order
effects are expected to be significant, and that the optimal value
for the filling fraction is determined by the refractive index
contrast regardless of the disorder morphology. Our morpholo-
gical analysis using Minkowski functionals reveals that the resi-
dual variation in scattering efficiency between different structural
classes can be attributed to specific topological properties of the
structure, such as integral mean curvature and surface area. We
then show that the scattering efficiency of all structural classes can
be further enhanced by introducing structural anisotropy as an
additional tuning parameter. These results indicate that near-
optimal scattering efficiency can readily be achieved with any

kind of disordered structure by tuning a handful of morpholo-
gical parameters.

Results and discussion
Structure generation and morphological analysis. The salient
morphological features of disordered two-phase structures,
IðxÞ : R3 ! f0; 1g, are often captured by a few low-order
ensemble properties. A common approach to describing ensem-
ble structural properties is to use n-point correlation functions
Sn= 〈I(x1)I(x2)…I(xn)〉, where angular brackets denote ensemble
averaging. The 1-point correlation S1= 〈I(x)〉 is equal to the
filling fraction of the high-index phase (ϕ= V0/V∈ [0, 1] where V
is the total volume of the two phases). The 2-point correlation, as
a function of the distance r= ∣r∣, is given by

S2ðrÞ ¼ hIðxÞIðx þ rÞi ð1Þ
and decays from a maximum value of S2(0)= ϕ at r= 0 to
S2→ ϕ2 as r→∞27. Between these limits, the variation of S2(r)
for correlated disordered structures is typically sinc-like, but in
some cases decays monotonically without oscillation. To
accommodate characteristic length scale in both cases, we
approximate the non-oscillating decay in S2(r) using Corson’s
formula28 and define the correlation length lc as a fixed intensity
cut-off (see Eqs. (19) and (20) in the Methods -section, and
Supplementary Note 1 in Electronic Supporting information
(ESI)). Previous studies on natural and synthetic white materials
have established that near-optimal scattering efficiency is
achieved by specific random structures with correlated disorder
on a length-scale comparable to the wavelength of visible light, so
we focused on structures with correlated disorder in the range
lc∈ [100, 900]nm for optimisation investigation16,18,21,22.

To understand the role of fine structural features in the
scattering efficiency, we set out to produce the widest possible
range of two-phasic correlated disordered structures, I(x),
obtained from simulated scalar fields f ðxÞ : R3 ! R using a
threshold scheme (see Methods, Eq. (10)), that shared lower-
order statistical features, i.e. filling fraction ϕ and correlation
length lc, going beyond previous studies on multiple scattering in
specific types of structures such as randomly packed spheres or
bicontinuous structures20–22.

We first generated two structural classes using Gaussian
random fields, also known as Gaussian processes (GPs), which
are uniquely determined by their first and second order
statistics29–31. Structures generated by GPs provide an essential
comparison with other classes of disordered structures, as the
latter allow us to isolate the role of finer morphological features
on the optical response. We generated scalar fields f(x)=
GP(m(x), K(r)) using GPs with zero mean m(x)= 〈f(x)〉= 0,
and covariance (kernel) functions K(r)= 〈f(x)f(x+ r)〉 (c.f. Eq.
(11)). The two classes of GP structures were generated with sinc-
like or squared-exponential kernel functions:

GP1: KðrÞ / sinðl1rÞ
l1r

;

GP2: KðrÞ / exp �r2

2l22

� � ð2Þ

where l1, l2 are scaling parameters. Note that the S2(r) is
analogous, but not equal to K(r) due to the thresholding scheme
used to create the binary field I(x)32,33.

Previous experimental studies have often generated two-phase
disordered structures by spinodal decomposition (SD)21, the
spontaneous demixing of mobile phases in the absence of a
thermodynamic barrier. We therefore generated three structural
classes using SD as a comparison with the GP structural classes.
The evolution of a two-phase system undergoing spinodal
decomposition is well-described by the Cahn–Hilliard (CH)
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phase-field model, which provides a dynamic equation for the
evolution of a scalar field f(x) due to free energy minimisation34.
We generated three structures by simulating the evolution of a
scalar field obeying the CH Eq. (12), initialised using 50%, (SD1),
30%, (SD2), and 70%, (SD3) filling fractions. Note that the scalar
fields used to generate SD2 and SD3 were complementary
(fSD2(x)=− fSD3(x)), but the resulting structures have identical
filling fractions due to different choices for the threshold value ρ0.

Although the conventional CHmodel has been successfully used
to simulate disordered structures in several fields, it does not
provide access to the full gamut of correlated disordered structures.
Specifically, the CH equation results in bi-continuous networks or
isolated droplet-like structures, but cannot generate other mor-
phological motifs, such as tubular segments or cell-like structures,
which are commonly observed in experimental systems. To access a
broader range of disordered morphologies, we generated structures
using the Functionalized Cahn–Hilliard (FCH) model (Supple-
mentary Eqs. (S6) and (S7)). The FCH model extends the
conventional CH model by including free energy terms to account
for the effects of mixing entropy and hydrophobic interactions,
which determine the curvature of the interfaces between the two
phases35–37. We generated five further types of correlated
disordered structures by adopting a previously reported protocol
using the FCH model with 20 % initial filling fraction35.

As intended, the simulated structures capture numerous
morphological motifs observed in physical disordered structures,
including isolated “colloidal” structures (e.g. FC1), branched
networks (e.g. GP1, SD1), tubular inclusions (FC2-FC3) and
cellular structures (e.g. FC5).

Although structures in Fig. 2a are easily distinguishable by
visual inspection, they are almost indistinguishable in terms of
2-point correlation function, as shown in Fig. 2b, for fixed filling
fraction (ϕ=V0/V= S2(0)= 30%) and correlation length (lc=

300 nm). This similarity in lower-order statistics was achieved by
iterative refinement of the in silico synthesis conditions to
converge on the desired properties. These ϕ and lc values were
chosen as typical near-optimal values, comparable to those
observed in natural systems with similar refractive index
contrast38.

The fine morphological features that distinguish the structures
are encoded in higher-order n-point correlation functions (Sn for
n > 2), but unlike the intuitive properties that arise from the
lower-order correlations (i.e. ϕ and lc), these higher-order
correlations are more difficult to interpret in terms of salient
morphological features. Moreover, the higher-order correlations
are more computationally intensive to calculate and visualise, as
the output of each Sn is a function on a multidimensional space
R3ðn�1Þ. As an alternative to n-point correlation functions, we
used scalar Minkowski functionals Vj to quantitatively discrimi-
nate between disordered structures. These translation and
rotation invariant functionals are obtained by surface or volume
integrals over the 3D structure, and are given by

V0ðIÞ ¼
Z

I
dV ; ð3Þ

V1ðIÞ ¼
1
3

Z
∂I
ds ð4Þ

V2ðIÞ ¼
1
6

Z
∂I

1
2

1
r1ðsÞ

þ 1
r2ðsÞ

� �
ds; ð5Þ

V3ðIÞ ¼
1
3

Z
∂I

1
r1ðsÞr2ðsÞ

ds ð6Þ

The functionals correspond to the volume of the high-index
phase V0, total surface area V1, integral mean curvature V2 and

Fig. 1 Workflow of structure generation, optical simulations and morphological analysis. a In silico synthesis results in an inhomogeneous disordered
structure described by scalar field f(x), which is then thresholded to produce a two-phase structure. b Illustration of finite-difference time-domain (FDTD)
optical simulations performed with broadband plane-wave illumination along the z axis to obtain total reflectance spectra R(λ). c The 2-point correlation
function S2(r), with the filling fraction ϕ= V0/V and correlation length lc indicated. d Illustration of the piece-wise contributions to the scalar Minkowski
functionals: volume V0, V1 (∝surface area), integral mean curvature V2 and integral Gaussian curvature V3.
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integral Gaussian curvature V3 respectively, as illustrated in
Fig. 1d.

Plotting the structures in the V1−V2 parameter space (Fig. 2c),
we can readily distinguish between different structural classes by
their total surface area and mean curvature. For instance, we
observe that the ‘cellular’ structure FC5 has the largest surface
area (V1) and negative mean curvature (V2 < 0) while V2 > 0 all
other structures. The information encoded in the scalar
Minkowski functionals also manifests in the 2-point correlation
function. For instance, in the limit of small correlation distance r
it can be shown that

S2ðrÞ �
V0

V
� 3

4
V1

V
r þOðr3Þ; ð7Þ

with higher-order terms related to the mean principal
curvatures39,40. Comparing the V1 values in Fig. 2c with 2b, we
see that the gradient of the initial decay of 2-point correlation
function with r is proportional to the surface area (most
prominently for high-V1 classes such as FC5 and GP2), consistent
with Eq. (7). The scalar Minkowski functionals thus provide a
computationally inexpensive method to extract useful morpho-
logical features with intuitive geometric interpretations.

Insensitivity of the reflectance to higher-order morphological
features. Surprisingly, the simulated reflectance spectra for the

ten structural classes are highly similar (Fig. 2d), despite their
clear morphological differences. All structural classes showed
slightly higher reflectance at the blue end of the spectrum, in
agreement with previous reports18,21. In terms of the spectrally-
averaged mean reflectance, we found <10% variation between the
highest and lowest values (corresponding to the ‘spherical’
structure FC1 and ‘cellular’ structure FC5 respectively). This
insensitivity of the reflectance spectrum to fine morphological
features suggests that the statistical properties up to second order
(ϕ= 30%, lc= 300 nm) account for most of the scattering effi-
ciency of these isotropic correlated disordered structures.

To understand whether this invariance in scattering efficiency
was a universal feature of correlated disordered structures, we
systematically explored the ϕ− lc parameter space with additional
FDTD simulations. For each structural class, we performed line
sweeps by keeping lc fixed and varying ϕ (or vice versa), and
calculated the mean reflectance for each structure, as summarised
in Fig. 3a–c. Calculations were performed in the range
ϕ(%)∈ [10, 60] and lc (nm)∈ [100, 900] to encompass the
optimal parameter range.

For relatively low correlation lengths (e.g. lc= 300 nm), the
total reflectance is highly similar between all structural classes,
with the notable exception of the ‘cellular’ FC5 class at low filling
fraction (Fig. 3a). Apart from FC5, all structural classes showed
unimodal variation in Rtot versus filling fraction, with a broad

Fig. 2 Different morphologies, their quantitative descriptors and optical invariance. a Examples of each class of two-phase disordered structure
produced by in silico synthesis for ϕ= 30%, lc= 300 nm: structures generated by Gaussian Processes (GP*), spinodal decomposition (SD*) using the
simple Cahn–Hilliard model, and Functionalized Cahn–Hilliard models (FC*). b Two-point correlation function S2(r) for the different structures are nearly
identical, whereas c using V1 (∝surface area), and integral mean curvature V2 the structures are distinguishable. d Reflectance spectra of the structures in
a, showing near-identical scattering across the visible range.
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optimal range around ϕ ≈ 35%, in agreement with previous
studies20,21,41. At larger correlation lengths, greater variability in
reflectance values between structural classes was observed, as
exemplified in Fig. 3b for lc= 600 nm, with the optimal filling
fractions again located around 35%. The best-performing
structural classes were those with more ‘colloidal’-type morpho-
logical motifs (FC1, SD2), while the worst-performing were more
‘cellular’ (SD3, FC5), with performance loosely correlated with
mean curvature (cf. Fig. 2).

These trends become more apparent when comparing reflec-
tance values at ϕ= 30% for a range of correlation lengths, as shown
in Fig. 3c. At very low correlation lengths (lc < 300 nm), the
reflectance for all structural classes is much lower and decreases
sharply with increasing wavelength. This behaviour is expected as
the correlation length approaches the sub-wavelength regime (cf.
Supplementary Fig. S5). The variation in reflectance between
structural classes increases with correlation length, though
remaining < 20% even for the largest lc values. There is no clear
optimal correlation length, as the total reflectance is more or less
constant across the 300 nm to 600 nm range, and the correlation
length at maximum reflectance varies considerably between
structural classes. Across all correlation lengths, the structural
classes generated by Gaussian processes (GP1-2) (that lack higher-
order morphological features) always have intermediate reflectance
values, while the ‘colloidal’ structural classes out-perform the
others, and the ‘cellular’ structural classes perform especially poorly.

We interpolated the line scans to produce a 3D plot of the total
reflectance in the ϕ− lc parameter space, as shown in Fig. 3d for
the best-performing FC1 structural class. The broad plateau of
optimal reflectance originates from the spectral averaging of Rtot
across the visible range (see Methods), which smooths out peaks
and shoulders originating from Mie resonances42.

The similarity between the reflectance spectra in Fig. 3a–c
indicates that second-order statistical properties of two-phase

disordered structures are sufficient to explain the most of the
scattering response, and near-optimal broadband reflectance can
be achieved robustly from a fairly wide range of ϕ and lc values.
This conclusion is notable, as it has previously been suggested
that structures with near-identical reflectance spectra possess
unique morphological similarities21. Our results suggest that, on
the contrary, the reflectance spectrum is mainly predicted by the
filling fraction and correlation length, and a broad variety of
structures map onto near-identical optical responses.

We considered these results in the context of multiple
scattering theory for optically dense random structures (see
Supplementary Note 2). In this formalism, the scattering from an
inhomogeneous structure is expressed as an perturbative expan-
sion, with the relative contribution of higher-order terms
dependent on the magnitude of the refractive index contrast25.
In the limit of weak contrast ((n2− n1)/n1≪ 1), the total
scattering response can be accurately approximated by truncating
the expansion at second order. This approximation leads to
expressions for the scattering and transport mean free paths that
depend only on the 2-point correlation function. This second-
order description (also known as the bilocal approximation) is
also frequently applied beyond the low-contrast limit as the
higher-order statistical properties of experimental disordered
structures are difficult to determine with sufficient accuracy25. In
our case, where the refractive index contrast is moderate (n2/
n1= 1.5), the second-order statistical description appears to
account for the optical response.

To investigate the role of refractive index contrast, we repeated
the ϕ= 10 % to 60 % line scans in Fig. 3a for lc= 300 nm and
n1= 1, while varying n2= {1.1, 1.5, 2.6}. In the low-contrast case
(n2/n1= 1.1, Supplementary Fig. S2a, the reflectance curves for all
structural classes are similar, and exhibit an optimal value near
50% filling fraction. With increasing contrast, the optimal filling
fraction decreases substantially, and is accompanied by a

Fig. 3 Line searches along different filling fractions ϕ and correlation lengths lc for different structural classes. a, b Varying filling fraction with fixed
lc= 300 nm and lc= 600 nm. c Varying correlation length with fixed ϕ= 30%. Cubical volume snapshots at the bottom in a–c illustrate the effect of
changing the filling fraction an the correlation length respectively. d Extrapolated surface for the structural class with highest average reflectance (FC1).
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significant increase in the magnitude of total reflectance (cf.
Supplementary Fig. S2a–c). These findings are consistent with
previous studies of random assemblies of spheres26 and can be
interpreted as a greater effective filling fraction of the high-index
phase due to near-field coupling43,44.

For each given value of n2/n1, there is relatively little variation
in the optimal filling fraction and maximum reflectance between
different structural classes, indicating that these values are
primarily constrained by n2/n1. By considering the optical
response in both the independent scattering and bilocal
approximation, the optimal filling fraction can be estimated
using Supplementary Eq. (S6) and Supplementary Fig. S4,
respectively, see ESI. In both cases the optimal filling fraction is
found to decrease with n2/n1 in good agreement with the
simulation results. These results confirm that for low-contrast
random media, a higher loading of scattering elements is required
to achieve optimal reflectance.

The role of interfacial curvature. Having established that all
structural classes give comparable, but not identical, reflectance
values for fixed ϕ and lc, we then considered which specific
morphological features account for the residual differences in
optical response (see Supplementary Note 3). Surveying the
results of the line scans in Fig. 3a–c, we observed that FC1, SD2
and GP2 are frequently the best-performing structural classes for
a range of ϕ and lc values, while the worst-performing were fre-
quently FC5, FC4 or SD3. We therefore examined the Minkowski
functionals for structures from each class at ϕ= 30%, as illu-
strated in Fig. 4a–c (for lc= 600 nm (see Supplementary Fig. S7
for data for all lc values). The curvature of the interface between
the two phases clearly plays an important role: the reflectance is
strongly positively correlated with integral mean curvature V2

(Fig. 4b), and is also weakly correlated with the integral Gaussian
curvature V3 (Fig. 4c). Interestingly, the reflectance is tightly
correlated with surface area V1 for many structural classes, but
high-V1 outliers such as FC5 and GP2 have widely varying values
(Fig. 4a). We note that substantially different trends are observed
for low lc (Supplementary Fig. S7), but the reflectance spectra in
this regime are strongly influenced by Mie resonances at short
wavelengths (cf. Supplementary Fig. S5), which complicates
interpretation of the data.

To better understand the role of curvature, we introduced
random assemblies of monodisperse spheres (SPH) and tetra-
hedra (THD) as two supplementary structural classes, with
structures generated by molecular dynamics simulations of hard
particle interactions (see Supplementary Note 4 and Supplemen-
tary Fig. S8). These additional structural classes allow us to tune
the morphology of the scattering agents more directly. As shown

in Figs. 4 and Supplementary Fig. S8, the reflectance from SPH
structures was consistently among the highest of all structural
classes and close to values from the morphologically similar FC1
‘colloidal’ structures. However, the THD structures, which had
much greater V1 values but only slightly higher V2 values than the
SPH structures, exhibited good but unexceptional scattering
performance. These results indicate that optimal performance
arises from a balance between increasing the integral mean
curvature without incurring the penalty of excessive surface area.

Based on the behaviour of the 12 structural classes, we
concluded that the residual variation in reflectance was largely
explained by the value of the ratio V2/V1, which we describe as
the ‘surface-averaged mean curvature’ (i.e. the integrated mean
curvature value averaged over the interface area between the two
phases). The surface-averaged mean curvature is strongly
correlated with the reflectance for a broad range of correlation
lengths lc ≥ 400 nm (Fig. 4d, Supplementary Fig. S4) and therefore
provides a universal morphological parameter to explain the
differences in performance between structural classes.

The ‘colloidal’ structural classes, such as SPH and FC1, have
the highest V2/V1 values. The drawback is that this type of
structure, with isolated spheroidal domains of the high-index
phase surrounded by a low-index matrix, is difficult to produce in
physical disordered systems. In particular, producing ‘colloidal’
domains in a low-index matrix is not practical in biological
disordered structures, where the low-index phase is required to be
air (n1= 1) to maximise refractive index contrast. As a
consequence, the highly scattering random networks observed
in Cyphochilus spp. and L. stigma have the additional constraint
of forming continuous freestanding structures.

Structural anisotropy as an additional optimisation parameter.
Despite being limited by the requirement that the high-index
phase is a connected continuous network, beetle scales are able to
out-perform the ‘network’ type structural classes described above
using anisotropic disordered structures17. Structural anisotropy
has previously been shown to enhance the scattering efficiency of
correlated disordered media relative to isotropic structures of the
same filling fraction and therefore provides an additional para-
meter for whiteness optimisation41.

To understand the influence of anisotropy on scattering
efficiency, robust and universal measures of structural anisotropy
are required. A popular way to quantify structural anisotropy is to
determine the 2D correlation lengths along each sample axis (e.g.
lc ¼ ½lc;x; lc;y; lc;z�) and consider their ratios (e.g. lc,x/lc,z)15,21,45–48.
Anisotropy can also be determined from the scattering response
in terms of the ratios of the transport mean free paths along

Fig. 4 Scattering dependence on Minkowski functions. Total reflectance, Rtot, vs. aV1, bV2, cV3 and d the ratio V2/V1 for ϕ= 30% and lc= 600 nm. As
shown in d the differences in Rtot between different structures are well correlated with the surface-averaged mean curvature value V2/V1. (c.f.
Supplementary Fig. S7 to see plots for full range of correlation lengths). For New labels SPH and THD denote random assemblies of spheres and tetrahedra
respectively.
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different axes17. However, the proper use and interpretation of
these values remains an open question. Here we quantify
structural anisotropy using the so-called Minkowski tensors
(tensorial Minkowski functionals), which have previously been
applied to other anisotropic systems49,50. For an anisotropic two-
phase medium described by the indicator field I(x), the rank-2
Minkowski tensor W0;2

1 is particularly relevant, as it describes the
angular distribution of surface normals. This tensor is defined as

W0;2
1 ðIðxÞÞ :¼ 1

3

Z
S2
ρðnÞn� n dΩ ð8Þ

where S2 is the unit sphere and ρ(n) is the angular distribution of
surface normals n(θ, ϕ) across all solid angles Ω49,51. We can then
define an anisotropy parameter α in terms of the maximum and
minimum eigenvalues of W0;2

1 as follows:

α :¼ jμmaxj � jμminj
jμmaxj

¼ 1� jμminj
jμmaxj

2 ½0; 1�: ð9Þ

For instance, an isotropic structure has a spherically symmetric
surface normal distribution (ρ= 1/4π) so μmin ¼ μmax and α= 0
as expected. The parameter α thus provides a simple measure of
structural anisotropy that can be directly connected to the
morphological properties of the two-phase medium.

To compare this parameter to previous measures of structural
anisotropy, we calculated α for beetles scales using publicly
available X-ray tomography datasets38. We find that α= 0.4 and
α= 0.3 for beetle scales from Cyphochilus spp. and L. stigma
respectively. The substantial anisotropy in the latter case is
especially noteworthy, as it has been suggested that the L. stigma
structure is in fact isotropic, based on 2D correlation length
analysis along different axes21. Our finding is consistent with the
original claims of anisotropy in this structure16,17, and demon-
strates that α captures latent anisotropy not evident from other
metrics.

To explore the role of anisotropy as an additional optimisation
parameter, we expanded our investigation to include anisotropic
variants of the ten structural classes introduced above (see
Supplementary Note 5). We generated structures with uniaxial
anisotropy parallel to the light propagation direction by several
methods. For the GP structural classes, anisotropy was achieved
by scaling the kernel function, while for the the SD and FC
structural classes, anisotropy was introduced into the free energy
of the scalar field f(x) (see methods and Eq. (17) for further
details).

We simulated the total reflectance for each structural class
across a range of α values while keeping the filling fraction and
correlation length constant (ϕ= 30%, lc= 300 nm), as shown in
Fig. 5. In the limit of low anisotropy, the reflectances tend to the
values found previously for isotropic structures (i.e. the ϕ=30 %
data points in Fig. 3a). The maximum reflectance (Rtot ≈ 0.6)
typically occurred within the range α∈ [0.4, 0.6], but the
optimum anisotropy value varied considerably between structural
classes. The observation that optimal performance occurs at
intermediate anisotropy values is consistent with a previous study
on anisotropic 2D systems41. Almost all structural classes
exhibited a sharp decrease in reflectance in the limit of high
anisotropy (α ≈ 1), where the structures become quasi-1D multi-
layer systems and can therefore exhibit intense but narrow
reflectance peaks due to localised modes52. The exception was the
‘cellular’ FC5 structural class, whose structures showed increased
reflectance at high anisotropy (Fig. 5). Surprisingly, FC5 structures
achieved the highest overall reflectance of any structural class at
30 % filling fraction (Rtot ≈ 0.63) for lc= 200 nm, α ≈ 0.85, as
shown in figure S9. These results show that further optimisation
of scattering efficiency is possible when anisotropy is included as

a parameter, and even relatively poor reflectance can be greatly
optimised using structural anisotropy.

To further understand the influence of anisotropy on the
scattering efficiency and compare our results with previous
studies, we applied the diffusion approximation to estimate the
anisotropic scattering and transport mean free paths for the
anisotropic disordered structures used in Fig. 5. Although the
total reflectance Rtot shown in Fig. 5 and previous figures is a
useful measure of the overall efficacy of scattering materials for
practical applications, it depends on the thickness of the structure
(5 μm in this case), making it difficult to make comparisons
between studies. In contrast, the scattering and transport mean
free paths (ls and lt respectively) are intrinsic measures of the
scattering efficiency.

In general the diffusion approximation is valid53,54 for isotropic
structures with optical thickness L/lt≥8. As Lee and coworkers
note45 the validity also depends on the nature of the scattering55–57

and the thickness limit is lowered as the index contrast
decreases58,59. Therefore we estimated the zz-components of the
mean anisotropic mean freepath tensors, ls,zz and lt,zz, based on the
anisotropic diffusion theory45,60,61 (see Supplementary Eq. (S19)
and (S20)), by measuring the simulated ballistic and total
transmittance while varying the sample thickness (see Supplemen-
tary Note 6), and the validity of the diffusion approximation was
confirmed with an additional simulation (cf. Supplementary
Fig. S12). The anisotropic transport mean free path is found to
increase sharply at high α for all structural classes, with the
exception of FC5 (Supplementary Fig. S13) while the scattering
mean free path remains more constant (Supplementary Fig. S14).
The divergence between ls,zz and lt,zz can be attributed to a growing
anisotropy factor in the scattering angle, with forward scattering
more strongly favoured at high α. For most structural classes, the
minima in lt,zz at intermediate α values (indicating optimal
scattering efficiency) are accompanied by a convergence in lt,zz
values across the visible wavelength range, indicating a more
uniformly white transmission spectrum. Structural anisotropy
therefore has the additional benefit of improving the whiteness of
disordered materials, as previously noted41.

Conclusions
In this work, we aimed to elucidate the connection between
morphology and scattering efficiency in two-phase disordered
structures. We developed a novel in silico workflow to generate
and characterise random structures of a desired type and texture.
This workflow can readily be adapted to generate disordered

Fig. 5 Effect of anisotropy. The average reflectance vs. structural
anisotropy value α for each structural class with ϕ= 30% and lc= 300 nm.
Interpolations of the simulated data are shown for clarity (see
Supplementary Fig. S10 for data points). The inset figures show examples of
FC1 structures with increasing anisotropy.
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structures for diverse applications in computational materials
science62. In our case, we produced a comprehensive range of
disordered morphologies for FDTD simulations to investigate
how light scattering is influenced by several fundamental mor-
phological parameters.

First, we demonstrated that the optimal filling fraction ϕ lay
around 35% for all structural classes (with that value primarily
dependent on the refractive index contrast n2/n1= 1.5), and the
optimal correlation length lay in the visible range (lc ≈ 500 nm).
Our findings justify why previous studies give similar trends
when seeking to optimise the scattering efficiency26,41. We then
demonstrated that if ϕ and lc are fixed, the remaining variation
between isotropic structural classes is mostly explained by the
surface-averaged mean curvature V2/V1. Finally, we explored the
influence of structural anisotropy, and found that it allowed
further enhancement of the scattering efficiency, with optimal
anisotropy typically occurring in the α= 0.4–0.6 range.

Our results suggest that the type of disordered morphology (i.e.
colloidal, network, cellular) chosen to create a white material is
ultimately irrelevant, as any structural class can give comparable
scattering efficiency after optimisation. From an industrial per-
spective this conclusion is fortuitous, as optimal whiteness can be
achieved without closely imitating a particular type of disordered
structure. The universality of optimal whiteness also explains why
there are many different disordered structures in biological
systems14,63–71, as there is not a strong evolutionary pressure to
converge on a single structural class. However, we expect mor-
phology to play a greater role in structures with higher refractive
index contrast, where higher order interactions from multiple
scattering events are more significant. We hope that our obser-
vations provide significant insights for deriving analytical
expression for light propagation in disordered systems with
correlation length lc and λ on the visible range, which have been
so far difficult to obtain25.

In summary, there is no unique route to brilliant whiteness in
two-phase disordered structures.

Methods
All the in silico syntheses were carried out in a N ×N ×N cubic grid with periodic
boundary conditions, and set to correspond to a L3= 5 μm× 5 μm× 5 μm box. A
value of N= 100 was used for all structures with lc ≥ 200 nm, and N= 200
otherwise.

Conversion to binary fields. The stochastic fields f ðxÞ : R3 ! R synthesised
with the different methods were converted to the two phase disordered structures
IðxÞ : R3 ! f0; 1g using a simple thresholding scheme

IðxÞ ¼ 0; if f ðxÞ<ρ0
1; else

�
ð10Þ

where I(x) is an indicator function, and 0 and 1 represent the empty and the solid
phase, respectively, and p0 is the threshold value. Thus the final filling fraction
ϕ= V0/V= 〈I(x)〉 of structures is determined by the choice of ρ0. While such
systems might be physically difficult to realise, we are primarily interested in
understanding the optical properties of disorder systems, and question about
chemical synthesis of potential structures are beyond the scope of this paper.

For the FDTD simulation, the structures f(x) were imported to USCF chimera72

using Imagic, MRC, DM and STAR file i/o -tool73 and converted to Wavefront OBJ
files using a similar threshold scheme.

Gaussian processes. The GP1-2 models where synthesised spectrally using fast
Fourier transform (FFT) techniques74–77

f ðxÞ ¼ S � N ¼ FFT�1 FFTðSÞ � FFTðNÞ½ � ð11Þ
where S= [S1,…, SN], N= [N1,…,NN] are (N ×N ×N) arrays and

Sk ¼

s11k s12k ¼ s1Nk
s21k s22k ¼ s2Nk

..

. ..
. . .

. ..
.

sN1k sN2k ¼ sNNk

2
66664

3
77775;Nk ¼

n11k n12k ¼ n1Nk
n21k n22k ¼ n2Nk

..

. ..
. . .

. ..
.

nN1k nN2k ¼ nNNk

2
66664

3
77775;

, sijk= K(rijk), r2 ¼ ðN2 � iÞ2 þ ðN2 � jÞ2 þ ðN2 � kÞ2, and nijk � N ð0; 1Þ are identi-
cally and independently sampled from normal distribution.

Phase-field simulations. The Cahn–Hilliard model used for generating the spi-
nodal decomposition structures SD1-3 is given by

∂f
∂t

¼ ∇2M
∂Wðf Þ
∂f

� 1
2
ϵð∇f Þ2

� �
ð12Þ

Wðf Þ ¼ Af 2ð1� f Þ2 ð13Þ
where M and ϵ are the mobility and the diffusion constants, and W(f) is the mixing
energy between the two equilibrium phases, and was numerically solved using
semi-explicit spectral method78,79

F½nþ1� ¼ F½n� � Δtk2MW 0ðF½n�Þ
1þ Δtk4Mϵ

ð14Þ

where F[i]= FFT(f[i]), with time step Δt= 1 × 10−3, A= 1, M= 1, and the coeffi-
cient ϵ was chosen from [0.04,1.00] to reach the desired length scale.

The FC1-5 models were created with Functionalized Cahn–Hilliard model35,36

∂f
∂t

¼ Δ Eb ϵ2Δ�W 00
b ðf Þ

	 

ϵΔf �W0

bðf Þ
	 
þ ηhϵ

2Δf � ηmW
0
sðf Þ

� � ð15Þ

Wsðf Þ ¼ Wbðf Þ ¼
1
2

f þ 1
	 
2 1

2
ðf � 1Þ2 þ τ

3
ðf � 2Þ

� �
: ð16Þ

using the CUDA code of Jones37 with ηh= 5 and ηm= [− 7.25,− 0.5, 3, 6, 10] for
FC1-5 respectively.

Synthesis of anisotropic structures. Anisotropic structures where synthesis using
a the method of Essery80 where the mobility coefficient ϵ in Eqs. (12), and (15) was
replaced by tensor

ϵ ¼
ϵx 0 0

0 ϵy 0

0 0 ϵz

2
64

3
75 ð17Þ

and a similar method for the GP models by anisotropic scaling r2 ¼ ϵ2xðN2 � iÞ2 þ
ϵ2yðN2 � jÞ2 þ ϵ2z ðN2 � kÞ2 in Eq. (11).

Anisotropy values were calculated using the Karambola software package50,51,81

from the STL converted files. Anisotropy values for beetle scales were calculated
from the files CY_cube.npy and LS_cube.npy of Burg and coworkers’
dataset38.

Calculation of two-point correlation functions. To determine the characteristic
length scale of the simulated structures I(x), we used radially averaged 2-point
correlation function calculated using a FFT method82

S2ðrÞ ¼
∑l;m;n2ΩFFT

�1 jFFTðIðxÞÞj2	 

ω

ð18Þ

where Ω ¼ ðl;m; nÞ j l2 þm2 þ n2 ¼ r2; r ≤N=2
 �

and ω is the number of ele-
ments in Ω. In the anisotropy investigations S2(r) was calculated along axis parallel
to the incoming wave≔ 〈I(x)I(x+ l)〉, l= r.

The correlation length, lc, was defined to be the width of the slope of the 2-point
correlation function, which in the case oscillating S2(r) coincides with first minima
argminr S2ðrÞ, and was determined by fitting Corson’s formula28,83 (see
Supplementary Fig. S1)

C2ðrÞ ¼ ϕ2 þ ϕð1� ϕÞe�crn

¼ ϕ2 þ aðϕ� ϕ2Þ ð19Þ

to S2(r), and then setting

lc :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
logðaÞ
�c

n

r �����
a¼0:007

ð20Þ

i.e. the distance where the drop, a ¼ e�crn , in value of C2(r) was 0.007.
Correlation strength was defined as the relative depth of the minima of S2(r)

fmin ¼ min
S2ðrÞ � ϕ2

ϕ� ϕ2

� �
ð21Þ

Calculation of Minkowski measures. The scalar Minkowski functionals, Eqs.
(3)–(6), and tensor Eq. (8) were calculated with Karambola50,51,81 from the OBJ
converted files.

FDTD simulations. FDTD simulations were performed using Lumerical 2020a-r5
(Ansys Canada Ltd.). In each simulation, a cubic structure was illuminated at
normal incidence with a linear polarised plane wave across a broad spectral range
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(λ= 300–800 nm), with periodic boundary conditions in the perpendicular
directions. The two-phase structures were assigned refractive indices n1= 1,
n2= 1.5 unless otherwise stated. The numerical stability and convergence was
ensured with the adequate boundary condition, and the simulations were carried
out until all incoming light had either reflected or transmitted. For reflectance
measurements, the back-scattered light was collected by a reflectance monitor
above the source and summed over the monitor area to obtain the total reflectance
spectra R(λ) (Fig. 1b). The simulated spectra are therefore comparable to experi-
mental reflectance spectra obtained using an integrating sphere. The mean inte-
grated reflectance 〈R〉 was then obtained by spectral averaging of R(λ) over the
λ= [300, 800] nm range. For the mean free path calculations, the ballistic trans-
mission was recorded using additional TM and TE monitors.

Data availability
Raw spectra and additional data related to this publication is available at the University
of Cambridge data repository84.

Code availability
Code for generating the GP1-2 and SD1-3 structures, S2(r) and Minkowski function
calculations are available at the University of Cambridge data repository84.
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