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Thermodynamic and dynamical predictions for
bifurcations and non-equilibrium phase transitions

Han Yan® ', Feng Zhang' & Jin Wang® 2%

“Critical transitions”, in which systems switch abruptly from one state to another are ubi-
quitous in physical and biological systems. Such critical transitions in complex systems are
commonly described as dynamical processes within the framework of nonlinear dynamics
and the bifurcation theory. However, systematic treatment from the global thermodynamic
perspective is still challenging. Furthermore, from the previous established dynamical fra-
mework, a universal early-warning signal for predicting such transitions is still not very clear
and complete. Here we developed a non-equilibrium thermodynamic and dynamical frame-
work for general complex systems. Our approach used the analogy to the conventional
statistical mechanical treatment for the equilibrium phase transitions, while the nature of the
non-equilibrium dynamics is still captured and reflected. Applying this framework to two well-
known non-equilibrium systems, we found warning signals based on thermodynamic quan-
tities and the time-reversal symmetry breaking nature of non-equilibrium systems can be
detected much earlier than those explored in the previous works based on nonlinear
dynamics and the bifurcation theory. Irreversibility of the observed time series strongly
correlates to the behavior of these thermodynamic quantities and provides a practical way for
predicting transitions. Our work provides a general yet practical approach for exploring
collective behaviors in complex systems.
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that comprise many interacting components. In these

complex systems, diverse macroscopic collective behaviors
can emerge. Among them, the phenomenon that complex sys-
tems switch abruptly from one state to another, termed “critical
transition,” are ubiquitous in physical and biological systems
ranging from molecular crystals to neural networks and ecosys-
tems. Anticipating such critical transitions suggests the oppor-
tunity to promote the desired transitions or to reduce the risks of
unwanted transitions. In spite of great achievements in the quest
for understanding and predicting the behaviors of complex sys-
tems and networks!=>, formulating an effective framework to
predict critical transitions remains an open area of research across
disciplines.

Transition phenomena in complex systems are one of the most
fascinating topics in physics, known as phase transitions. The
study of phase transitions was originally limited to equilibrium
systems, and the fundamental regularities and laws for equili-
brium phase transition phenomena have been characterized in
the context of equilibrium thermodynamics and statistical
mechanics! 3. In classical equilibrium phase transition theory,
phase transitions emerge from the competition between the order
induced by interactions and the disorder induced by thermal
motions, which can be quantitatively characterized by the dis-
continuity in the first/second derivative of the free energy. Sub-
sequently, the behaviors of the non-equilibrium systems have
received more and more attention~11. This is because most of the
complex systems in nature, such as biological systems, are out of
equilibrium, in which the detailed balance is broken by the fluxes
of energy or materials across the systems. The fluxes can be
caused by differences in chemical potentials, concentrations,
temperature, etc. The transition phenomena in these non-
equilibrium systems with broken detailed balance are termed
non-equilibrium phase transitions. For instance, a major class of
non-equilibrium transitions is absorbing state transitions, in
which the system cannot return to its original state after the
transition has occurred®. The notion of phase transitions has been
extended even outside the realm of natural sciences to economics
and sociology. However, despite the great efforts for a better
understanding of transition phenomena in non-equilibrium sys-
tems such as the laser and the Belousov-Zhabotinskii
reaction!?13, a complete theory that systematically describes the
“thermodynamic” of non-equilibrium phase transitions is still
challenging (although the thermodynamic quantities of tem-
perature and work cannot be easily defined in the complex sys-
tems such as social networks and financial markets, we can still
construct a metaphorical idea of “thermodynamics” to explore
the corresponding macroscopic properties with the concepts and
methods developed in the classical thermodynamics).

In recent years, nonlinear dynamics and bifurcation theory
have been exploited to describe and predict the critical transitions
in complex systems®~!l. In many models, critical transitions
correspond to bifurcations. Although studies in different scientific
fields suggest that critical transitions in a myriad of systems may
be signaled by the phenomenon of “critical slowing down”1412,
slowing down is still far from being a universal warning signal for
predicting an approaching critical transition!®. For instance, cri-
tical slowing down typically occurs very close to the bifurcation or
phase transition point. When the external condition/control
parameter varies slowly to the underlying tipping point, it is
possible to prepare for the upcoming transitions (preventing the
unwanted transition or promoting the desired transition) through
the warning signals based on the critical slowing down®10,
However, the abrupt shift induced by a sudden significant impact,
which may drive the system across the border between the
attractors of the underlying alternative stable states or may drive

The world around us includes a variety of complex systems

the system across the tipping point directly, cannot easily be
predicted by these warning signals. If we can detect the warning
signals early enough sufficiently far from the bifurcation/tipping
point, e.g., at the location where the critical transitions are less
likely to happen even with a huge external impact, we will still
have the opportunity to prepare in advance. An interesting
question is whether the crucial signals can be detected earlier than
the ones suggested in previous works based on critical slowing
down.

Motivated by the great practical importance of predicting cri-
tical transitions in real systems, we developed a general non-
equilibrium dynamical and thermodynamic framework to extend
the thermodynamic quantities and phase transition theory in
equilibrium systems to general non-equilibrium systems. This is
inspired by the hints that phase transitions in the equilibrium
systems can be clearly characterized by the behaviors of specific
thermodynamic quantities, which are only dependent on the
statistical distributions of the system states rather than the time-
varying dynamics. Therefore, the specific behaviors of thermo-
dynamic quantities in general non-equilibrium complex systems
may be potential warning signals for anticipating critical transi-
tions. Thermodynamic quantities such as non-equilibrium free
energy, entropy, and heat capacity in our framework are defined
in analogy to the ones in equilibrium systems based on the non-
equilibrium steady-state (NESS) probability distributions. The
NESS probability distributions are closely associated with the
non-equilibrium intrinsic potential ¢, under the small noise limit,
which is a Lyapunov function decreasing monotonically with time
along the dynamical trajectories!”>!8, Such an intrinsic potential
function having the property of the Lyapunov function reflects
the dynamical nature of non-equilibrium systems and can be used
to quantify global stability. Moreover, the corresponding gen-
eralized non-equilibrium first and second laws of thermo-
dynamics can be formulated!”-18,

To demonstrate the practicality of our framework in predicting
critical transitions, we explored two popular non-equilibrium
models with fold and Hopf bifurcations, which correspond to
various types of critical transitions®. We found that the dis-
continuity in the non-equilibrium entropy and heat capacity
defined in our framework as the first- and second-order deriva-
tive of the non-equilibrium free energy in the small-noise limit
can characterize the discontinuous and continuous non-
equilibrium thermodynamic phase transitions. In addition, the
entropy production rate, which reflects the degree of the irre-
versibility or detailed balance breaking of a non-equilibrium
system, can also characterize the discontinuous and continuous
non-equilibrium thermodynamic phase transitions. Furthermore,
our results suggest that the specific behaviors of the non-
equilibrium thermodynamic quantities can serve as early-warning
signals for predicting critical transitions which correspond to
different types of bifurcations termed non-equilibrium dynamical
transitions. Moreover, the irreversibility of the observed time
series correlates strongly to the behaviors of the entropy pro-
duction rate of the non-equilibrium systems and thus can provide
a practical way to predict critical transitions in complex systems.

Results

An equilibrium system can always be described by a thermo-
dynamic potential function, e.g., the free energy. Given the
potential function, we know all the static thermodynamic prop-
erties of the system. At the same time, when the system deviates
from the equilibrium state, the Lyapunov property of the
potential function also gives the direction of the dynamic evo-
lution of the system. The equilibrium state that corresponds to
the minimum of the thermodynamic potential function is
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considered a “phase” in physics. As a given control parameter is
changed, the state with the potential minimum can become
unstable and be replaced by a new, qualitatively different type of
state. That is, a phase transition happens. However, to understand
and predict transitions in realistic, complex systems, the tradi-
tional equilibrium phase transition theory often does not apply.
This is because real systems are usually out of equilibrium and
exchange materials, energy, and information with the surround-
ing environments. The dynamics that are not involved in the
equilibrium thermodynamics theory are crucial in such non-
equilibrium systems. Complex dynamics such as limit cycle
oscillations and dissipative chaos can only emerge in systems far
from thermal equilibrium®>12, In addition, classical equilibrium
thermodynamics theory shows that thermodynamic systems
display sharp phase transitions only in the thermodynamic limit
when the number of components becomes very large!=3. Contrary
to the internal fluctuations, which can safely be neglected for
macroscopically large systems, the intensity of the fluctuations
due to environmental randomness, in general, does not scale with
the inverse power of the system size. In some cases, environ-
mental fluctuations play an essential role in the behavior of the
non-equilibrium systems, e.g., noise-induced phase transitions!®.
Due to the difficulty in characterizing non-equilibrium phase
transitions with a potential function, researchers use a different
strategy to explore these transition phenomena in non-
equilibrium complex systems®20, The basic approach involves
the consideration of a fundamental property: stability. A transi-
tion in a complex system occurs if the steady state of the system
changes qualitatively. Therefore, it is natural to explore changes
in the behavior of complex systems in terms of changes in their
stability, which can be described by the corresponding bifurcation
diagram.

Challenges in predicting critical transitions based on critical
slowing down. In dynamical models, sharp transitions from one
state to another are usually associated with bifurcations. In the
vicinity of many types of bifurcation points, there is a general
phenomenon that the recovery rate of a system from small per-
turbations becomes very slow, known as critical slowing
down!41> Such a phenomenon occurs when the basin of
attraction that the system settles shrinks and becomes shallower
and is often accompanied by increased autocorrelation and
increased variance in the corresponding time series. Figure 1
describes a simple example (fold catastrophe) illustrating this.

However, these warning signals in the dynamics usually can
only be significantly detected when the system is very close to a
bifurcation point. This is because only when the dominant
attractor is going to disappear as the corresponding eigenvalue
characterizing the rates of change around the equilibrium
approaches zero can the critical slowing down be observed. At
this point, a sudden change in the control parameter or the state
variables induced by external perturbations may lead to abrupt
unanticipated transitions (Fig. 1). Since stochastic perturbations
which may trigger a transition before a bifurcation point is
reached are ubiquitous in complex systems, the practical
applications of predicting critical transitions require that the
warning signal can be detected sufficiently early. For instance, as
illustrated in Fig. 1a, if a signal can appear around point T, the
unwanted transition around point T} may be avoided even when
a sudden large external impact is presented.

In the previous theoretical framework based on critical slowing
down, it is not easy to provide warning signals sufficiently far
enough from the actual transition point. In facing this challenge,
we pay attention to the possible behaviors of the thermodynamic
quantities during critical transition phenomena. We know that in

equilibrium phase transition theory, different types of phase
transitions can be characterized by the specific behaviors of
thermodynamic quantities, such as entropy and heat capacity,
and these thermodynamic quantities are only dependent on the
steady-state probability distributions of the state variables. The
question is whether we can define the non-equilibrium analogs of
the thermodynamic quantities in equilibrium thermodynamics,
which can provide us with new insights into predicting critical
transitions in non-equilibrium complex systems.

Non-equilibrium thermodynamic framework for dynamical
systems. To answer this question, we extend the well-established
theory of phase transitions in systems at equilibrium to the ones
in non-equilibrium regimes. In equilibrium statistical mechanics,
the Boltzmann-Gibbs distribution, which is determined by cer-
tain a priori known Hamiltonian or an energy function, can
provide all the information. The equilibrium phase transitions
can usually be described in terms of free energy derived from the
given probability distribution. When the free energy of the cur-
rent state ceases to be a global minimum or a minimum at all, a
phase transition emerges. A natural way to try to extend the ideas
explaining the equilibrium phase transitions to non-equilibrium
situations is to investigate whether the macroscopic behavior of a
non-equilibrium complex system can be expressed in terms of a
potential function, which plays the role of the equilibrium free
energy.

For a simple one-dimensional system, we can always construct a
potential function to clearly illustrate the characteristics of
corresponding phase transitions, as shown in Fig. 1b-d. Real
non-equilibrium complex systems are always multidimensional,
and therefore it is not easy to construct such a potential function.
Considering the fact that a transition occurs when the underlying
potential function changes qualitatively and such qualitative
change can be unambiguously reflected in the steady state
probability distributions (Pss), we can introduce a “probabilistic”
potential to estimate how the stability properties of the system
change with varying control parameters. In analogy with the
picture of a particle moving on a landscape (Fig. 1b-d), the maxima
of Pgs correspond to the valleys of the potential. Furthermore, non-
equilibrium thermodynamics can be developed based on the non-
equilibrium steady state (NESS) probability distributions in
analogy to equilibrium thermodynamics!7-18:21-24, However, in
contrast to the equilibrium case, where the system is static, and no
equation of motion has to be solved to uncover its thermodynamic
nature, the dynamics play a central role in non-equilibrium
systems. In addition, the fluctuations cannot be simply neglected.
Although a non-equilibrium system can reach a steady state with
stationary probability distributions, such NESS is, from the
dynamical point of view, an emergent one from the underlying
fluctuating, stochastic process involving the stochastic transitions
among the multiple underlying microscopic stable states. The non-
equilibrium analogs of the Gibbs ensemble can only be obtained as
the stationary probability measure in the long time limit of the
corresponding stochastic dynamics.

Non-equilibrium dynamics determined by landscape and flux. For
a realistic complex system consisting of a large number of
interacting components, it is usually difficult to keep track of all
the microscopic trajectories of every component by solving the
corresponding dynamical equations. Nevertheless, the macro-
scopic emergent behaviors of the system can often be approxi-
mately described by the dynamical evolution of several
macroscopic observables with the deterministic driving forces and
the random forces that represent the effects of the microscopic
degrees of freedom on the macroscopic observables?>. A well-
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Fig. 1 The schematic diagram of a dynamical model with the fold bifurcation and underlying potential landscapes for different conditions. a The phase
diagram. The system can have different dynamical equilibria for different conditions, either stable or unstable, indicated by the solid lines and dashed lines,
respectively. When the system is near the bifurcation point (e.g., point T;), a small change in the condition may lead to a sharp transition from the stable
state on the upper branch to the lower branch. For a given control parameter, the dynamical attractors and the corresponding basins in the state space are
fixed. The perturbations can also drive the system across the boundary (indicated by the dashed line) between the attraction basins. b-d The underlying
potential landscapes are marked with the same colors as the colored bars for different conditions/control parameters in (a). Far from the bifurcation point
T., the attractor that the system settles into is strong, and the rate of recovery from the perturbations is relatively high (b). When the system is closer to
the transition point T; (from the left of T; as shown in (a)), the attractor becomes weakened and shallower while the rate of recovery from small

perturbations is lower (), at this time, either a small perturbation that can drive the system across the boundary between the attraction basins (¢) or a
sudden change in the external conditions that destabilize the current attractor in the underlying potential landscape (d) can induce the critical transitions.

The data in this example are generated with a model describing the dynamics of a harvested population: dX/dt = X(12X/K) — (X2/(X2 +1)), and the

parameter K is set to 10.

known example is the stochastic Langevin particle dynamics. We
consider a system whose dynamics can be described by a set of
the Langevin equations:

dx
5= F(x) + (. )]

x denotes the vector whose components are the variables
representing the state of the system. F(x) is a vector representing
the corresponding driving force. ( is a Gaussian white noise with
zero mean {{) =0 and the autocorrelations <{(x,){(x,t)> =
2DD(x)d(t — t'), where D is a scale factor representing the
magnitude of the fluctuations and D(x) is the diffusion tensor or
matrix. The trajectories x usually follow a nonlinear law and are
also stochastic. They are unpredictable.

The associated Fokker-Planck equation, which provides the
time evolution of the corresponding probability distributions of
the dynamic variables P(x, t)), is given by!7-18:21-24;

aP(x,1)/3t =V - (V - (DD(X)P(x, 1))

— V- (E®)P(x, 1)) @

When a system is at the steady state, the corresponding
steady-state probability distributions can be solved through the

equation:

V- (F(x)P(x)) — V - (DD(x)P(x))) = 0 (€)

Further, we can define the non-equilibrium potential function
U= —InP(x) in analogy to the Boltzmann law in equilibrium
statistical mechanics. The corresponding Fokker-Planck equation
can be written in the form of dP(x,t)/dt=—V -], where the
probability flux is defined as J = (F(x)*P(x, t)) — V - (DDP(x, t)).
The change of the local probability P(x, f) in time is determined
by the net probability flux J in or out of that region. This
guarantees the local conservation of probability. The local
probability remains constant if the net probability flux vanishes.
Notably, the divergence of the flux is zero at long times when a
steady state emerges. However, it is not necessary for the flux
itself to be zero even under this divergence-free condition. A non-
zero flux means that there is a net flux that breaks the detailed
balance. This indicates that the system is no longer in
equilibrium. Moreover, the divergence-free flux implies that
there are no sources and sinks for the probability of going to or
coming from. Therefore, locally the flux must be rotational.
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Furthermore, we can decompose the driving force as:
F:]sx/Pss+DD'V(Psx)/sz+V'DD

4
=J,/P,—DD.VU+V .-DD. “)

In contrast to the dynamics of the equilibrium systems, which
are fully ruled by the gradient of the underlying energy function
(zero net flux), the dynamics of the non-equilibrium systems are
not only determined by the potential gradient but also by the curl
flux. The non-equilibrium potential U can be used to quantify the
global behavior of the non-equilibrium systems. However, it is
not a monotonically decreasing Lyapunov function. Nevertheless,
studies suggested that the non-equilibrium potential U can be
expanded with respect to the scale of the fluctuations D for the
case of the weak fluctuations(D <« 1) as!718:

1 1,
U=p=p5 P ®)

By substituting the expression of P from the small fluctuation
expansions into the steady state Fokker-Planck equation and
comparing the corresponding coefficients with the same powers
of D on both sides of the equation, the equation of the leading
order expansion D™! can be obtained, which gives rise to the
Hamilton-Jacobian (HJ) equation analogous to the classical
mechanics!7>18:

F- Vg, + V¢ D Ve, =0 (©)

At the zero fluctuation limit, the temporal evolution x can be
approximately written as F(x), neglecting the noise term {. Then
one can obtain the time evolution dynamics of ¢,!7-18:

d¢o (X)
dt

Since ¢, monotonically decreases along the deterministic
trajectory, thus it can be defined as a Lyapunov function. The
Lyapunov function ¢, which can be given as the solution of the
complicated HJ equation, is closely associated with the steady-
state probability Py exp(—¢o/D). Therefore, the Lyapunov
function ¢, characterizing the steady state weights globally can
serve as the intrinsic non-equilibrium potential landscape, which
can be used to determine the direction of dynamical evolution
and the global stability of a non-equilibrium system.

=V, F=—V¢, - D-Ve,<0 )

Non-equilibrium thermodynamics. To uncover the effective indi-
cators which can predict the non-equilibrium phase transitions,
we introduce the assumption of a small noise limit(D < 1) rather
than the exact thermodynamic limit. We can then quantify the
steady state probability Pgs(x) as

Pgs(x) = CXP(_%/D)/Zv (8)

where the non-equilibrium partition function can be naturally
defined as:

z= [ expl=4/Dri. ©

The diffusion scale D measures the strength of the fluctuations
and here plays the role of the effective k3T in Boltzmann’s for-
mula. The thermodynamic quantities such as the non-
equilibrium entropy, energy, and free energy can be defined in
analogy to that in the equilibrium system as

S=— / P(x, H)InP(x, t)dx (10)
E= / ¢o(X)P(x, t)dx = —D / In(ZPg(x))P(x, )dx  (11)
]—':S—DS:D(/ Pln(P/PSS)dx—an> (12)

Here, P(x, t) represents the probability function in time. At the
non-equilibrium steady state, g3 = —DInZ. The entropy S of
the non-equilibrium system at steady state equals the derivative of
the free energyF with respect to D (serving as the effective
temperature): S¢g = —dF 55/0D. Furthermore, the heat capacity
can be defined as

C = 9*°F/oD* = —3S/aD (13)

This definition is analogous to the one in equilibrium
thermodynamics.

In addition, a non-equilibrium thermodynamic system in the
stationary state is characterized by a continuous production of
entropy. Although the entropy of a non-equilibrium system at a
steady state is invariant in time, there’s a flow of the entropy to
the outside which is equal to the entropy spontaneously generated
inside the system. To define entropy production, we can focus on
the entropy relating to the time-dependent probability distribu-
tion. Using the Fokker-Planck equation and the definition of
probability flux J(x), the time derivative of the system entropy
dS/dt can be easily written in two terms:

st = / dx(} - (DD)™" - )/P - / dx(J - (DD)" - (F — DYD)).
(14)

Notice that the first term on the right-hand side of the equation
is always larger or equal to zero due to the positive definite
diffusion matrix D. Therefore, it can be identified as the total
entropy production ratel826.27;

EPR =S, = / dx(J - (DD)™' - J)/P. (15)
The second term on the right-hand side of the equation can
then be regarded as the entropy flux from the system to the
environment:
S = [ dx0-(ODY " (- DVD)), (16)
This leads to the total entropy change is equal to the sum of the
entropy change of the system and that of the environment. We
can see the emergence of the generalized non-equilibrium first
law of thermodynamics:

St = EPR =8, +§

sys env

(17)

The entropy change of the non-equilibrium system can either
be increased or decreased due to the entropy flow to the
environments, while EPR, whose physical meaning is the total
entropy change of the system and the environments is always
non-negative. This leads to the generalized non-equilibrium
thermodynamic second law:

St 20.

tot =

(18)

The thermodynamic quantities defined in our non-equilibrium
thermodynamic framework are dependent on the corresponding
dynamical driving force. Both the intrinsic potential function ¢, and
the non-equilibrium steady state probability distribution Py are
determined by the non-conservative driving force of the corre-
sponding non-equilibrium system. Therefore, the thermodynamic
quantities, such as the non-equilibrium entropy and heat capacity in
our framework, intrinsically include non-equilibrium natures, which
are different from the equilibrium analogies. In addition, the
entropy production rate can explicitly reflect the degree of the
irreversibility or detailed balance breaking of a non-equilibrium
system. It is interesting to explore whether early warning signals for
predicting critical transitions (bifurcations) in complex systems can
be detected from the behaviors of the thermodynamic quantities in
our non-equilibrium thermodynamic framework.
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Fig. 2 Critical transitions predicted by the specific behaviors of thermodynamic quantities in the Wilson-Cowan model. a Diagram of the
Wilson-Cowan circuit. Panel b shows the phase diagrams by varying the parameters Iz. Two saddle-node bifurcations can emerge at the parameter
e~ —0.82 and 1.08. Panel ¢ shows the changes in the free energy with the [r=—0.4, —0.8, and —0.82, respectively, indicated by different colored lines.
Here the free energy depends only on the variable xg because the contributions of different values of the variable x, on the summation of the partition
function are integrated first. Top panels d-f show the non-equilibrium quantities, the non-equilibrium entropy, heat capacity, and entropy production rate
derived from the intrinsic potential ¢o versus external input /¢. Bottom panels g-i depict the case when the finite noise is present, and the thermodynamic
quantities are derived directly from the corresponding steady-state probability distributions. The changes in the thermodynamic quantities are smoother in
the case with finite noise (indicated by the red curves) than the ones in the case with the zero-noise limit (indicated by the blue curves). The vertical dot-
dashed lines indicate the set of transition points. The values of other fixed parameters in this model are: wge =16, wir =12, wg;=4, w; =3, 0. = 4, b, =1.3,
0;=3.7,b;=2,r.=1,r;=1, [,=0. The diffusion coefficient D that measures the magnitude of the noise is chosen as D =0.0002 and D = 0.0032 for the

small noise limit and finite-noise situations, respectively.

Early-warning indicators for non-equilibrium phase transi-
tions. In order to verify the ability of our non-equilibrium ther-
modynamic framework to predict critical transitions, we applied
this theory to two typical non-equilibrium systems where dif-
ferent types of bifurcations can emerge.

Wilson-Cowan model for neural network dynamics. We first
consider the well-known Wilson-Cowan model, which is the first
mean-field model to describe the collective behaviors of a cluster
of neurons?8. These behaviors are related to several key brain
functions, such as working memory, decision-making, and the
control of breathing, heartbeat, and circadian rhythms. The
special functions of the brain emerge from the collective network
dynamics of the interacting neurons rather than the isolated
individual neurons. However, the search space for exploring

neural network dynamics is extremely large. One way to over-
come this difficulty is by the use of statistical approaches,
including coarse-graining and mean-field approximations®. The
Wilson-Cowan model, in the mean-field spirit, considers a
localized neural population composed of an excitatory sub-
population and an inhibitory subpopulation (Fig. 2a). The evo-
lution of the average activities can be described by the following
two ordinary differentials equations?830;

dx — +
th =—Xxg+ (ke - rexE)Re(WEExE WX IE)
dx — +

dtI - — X+ (k; — rix)R(wrxp — wypx + 1))

where xg(f) and x,(f) are the average activities of the excitatory
and the inhibitory subpopulations, wgg, Wi, wg, wy are the
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Fig. 3 Non-equilibrium thermodynamic phase transitions and dynamical
bifurcations occur at different locations. In this phase diagram, the red
dashed line indicates the location of the thermodynamic phase transition in
the thermodynamic limit. The black dashed lines indicate the locations of
the dynamical bifurcations. The red solid curve in the middle and two black
solid curves on two sides show the underlying potential landscapes when
the thermodynamic phase transition and critical transitions/bifurcations
happen, respectively.

connectivity weights, r, and r; are the refractory constants, and I
and I; are the external inputs to the excitatory and the inhibitory
subpopulations. The subpopulation response function R(x) is
chosen in the same form as the sigmoid function from the model
of Wilson and Cowan23: R(x)=1/(1 + exp(—b(x — 6))) — 1/
(1 + exp(bf)). Here b and 0 are the parameters, the former
determining the value of the maximum slope through the rela-
tionship: max[R'(x)] = S () = b/4 and the latter giving the
location of the maximum slope28.

The population dynamics described by the above equations can
be analyzed upon the parameter variations (Fig. 2b). In this
bifurcation diagram, the upper and lower branches correspond to
stable states (the activity of population E is high, and the activity
of population I is low, or vice versa). Here these steady states can
be termed “up” states and “down” states for simplicity. We can
see that these steady states not only change quantitatively, as the
model parameter I is varied. Instead, they can change their
stability qualitatively, disappear, or emerge. Two saddle-node/fold
bifurcations related to such qualitative change can emerge,
separating the single fixed-point phase from the phase with bi-
stable fixed points.

To address whether the non-equilibrium thermodynamics
quantities can predict these critical transitions /bifurcations, we
solved the intrinsic potential function ¢, numerically and
calculated the corresponding steady-state probability distribu-
tions, free energy F, entropy S, heat capacity, and the entropy
production rate (EPR) as the parameters Ip is varied. The
corresponding main results are summarized in Fig. 2c—f. Figure 2¢
shows the changes in the free energy when the system goes from
being bistable to monostable as the parameter I is decreased. At
Ir=—0.82, the local minimum F(x;) loses stability, and the
system will spontaneously change from the “up” state to the
“down” state. As shown in Fig. 2d, there is a peak in the entropy S
at the location between the two bifurcation points where Iy = 0. In
fact, it is not difficult to prove that once the zero-noise limit is
introduced, there is a discontinuity in the entropy S at the
location where the two alternative attractors/stable states have the
same weight (the corresponding details and discussions are

shown in the Supplementary Note 1). Moreover, there is also a
discontinuity in the EPR at such a location (the numerical result
is shown in Fig. 2f, and the theoretical proof is shown in
Supplementary Note 1). According to the classification in classical
equilibrium phase transition theory3!, the present phase transi-
tion with a discontinuity in the entropy (first derivative of the free
energy) and therefore involves a latent heat can be considered as
the first order. Our result is also consistent with previous works
showing that the entropy production rate is discontinuous when
the transition is first-order3233,

Notably, when the zero-noise limit is introduced, even though
the underlying Lyapunov function ¢, exhibits multi-minima, only
one of them with the smallest value of the potential function gives
the dominant probability contribution. The significant changes in
the thermodynamic quantities, such as the entropy, emerge at
the location where the minima of the underlying potentials have
the same values. The corresponding transitions are analogous to
the classical equilibrium phase transitions, and therefore they can
be termed “non-equilibrium thermodynamic phase transitions.”
Since the critical transitions that we are concerned with in
complex systems emerge at different locations (where bifurcations
emerge”1034) in contrast to the locations of equilibrium
thermodynamic phase transitions, the specific behaviors of the
thermodynamic quantities defined in our framework provide the
opportunities to predict critical transitions (can be termed as
“non-equilibrium dynamical phase transitions”) in complex
systems. Figure 3 shows the different locations of the thermo-
dynamic phase transitions in the thermodynamic limit and
bifurcations, taking the Wilson-Cowan model as an example (see
more details and discussions in Supplementary Note 1). The
early-warning indicators in our thermodynamic framework are in
contrast to the ones in the previous works on the basis of
nonlinear dynamics and the bifurcation theory. For instance, if
we are concern about the transition from the “up” state to the
“down” state, the specific behaviors of the thermodynamic
quantities defined in our non-equilibrium thermodynamic
framework can be detected much earlier around the location
where the stable “down” state is going to be more preferred
(Ir = 0) than the position where the current “up” state is going to
disappear (Ir~ —0.82) and the “down” state becomes dominant.

Although the specific behaviors of the thermodynamic
quantities here can serve as alternate early-warning signals for
predicting critical transitions, they can only be quantified when
the dynamical driving force that determines the evolution of the
complex system with time is known. Very often in practice, we
can only get the data about the steady-state probability density
distributions of a system or even only limited individual time-
dependent dynamic trajectories. To test if our framework can
contribute to predicting critical transitions for these general
situations, we try to explore the behaviors of the thermodynamic
quantities derived directly from steady-state probability distribu-
tions when the transition occurs. As shown in Fig. 2g—-i, one peak
in the entropy and the EPR and two peaks in the heat capacity
can be observed between two bifurcation points with varied
parameter Ir. We can find that there are no discontinuities in
these thermodynamic quantities due to the effects of noises. but
the corresponding specific behaviors upon varying control
parameters (peaks in entropy, heat capacity, and EPR) can also
serve as early warning signals for transitions.

Furthermore, even if the full information about the system is
not quite available, we can still obtain some hints from our
predictions on the changes in the EPR before and after the critical
transitions. In fact, the EPR reflects the dissipative pattern of a
non-equilibrium system, which is related to the degree of time-
irreversibility or detailed balance breaking, as discussed in the
above section. Inspired by the studies showing that the degree of
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Fig. 4 Early-warning signals in a time series generated by the Wilson-Cowan model is driven slowly across a fold bifurcation. a The state of the system
(indicated by the blue circle) shifts abruptly from the “up” state to the “down"” state as the parameter I¢ is decreased across the bifurcation point. b The
differences in the cross-correlations forward and backward in time (AC) increases gradually at first and then decrease significantly as the control

parameter I is decreased. The gray band indicates the transition phase, where transitions from “up” to “down” may occur due to the finite noise. The
transition can be predicted by the increased trend both in the autocorrelation (¢) and variance (d), suggested as the early warning signals in previous works
based on critical slowing down. The obvious increasing trend in AC before approaching the tipping point can be detected earlier than the ones in both
autocorrelation and variance. There is also an obvious inflection point before the bifurcation point is reached. The dot-dashed lines indicate the positions of

the bifurcation point.

the time irreversibility can be measured by the differences in the
cross-correlations between the forward and the backward
directions in time of the two-state variable time series of a non-
equilibrium system3?, which is termed as AC here for simplicity,
we investigate how the irreversibility quantified by AC changes
when the system approaches a bifurcation (the details about the
cross-correlation function are shown in the “Materials and
methods” section).

The AC is derived from the time series and depends on the
state of the system. As shown in Fig. 4a, the system initiates at the
stable “up” state, and a sharp transition to the “down” state
occurs as the parameter Ir is decreased. Meanwhile, the AC
increases gradually first and then decreases significantly (Fig. 4b).
The changes in AC for varying control parameter I are similar to
the changes in EPR under finite noise, which is consistent with
the theoretical prediction that the degree of the time irreversibility
can be measured by either EPR or AC. To compare the warning
signal in our cross-correlation approach and the ones based on
critical slowing down in previous works, we show how the
autocorrelation and variance of the time series of the
state of population E change with varying control parameter I
(Fig. 4c, d) (The divergence of the recovery time according to
the power law around the transition point is shown in the
Supplementary Note 2). As we have introduced above, both
the autocorrelation and variance increase as the system
approaches the bifurcation point (indicated by the dashed line

8

where Iy~ — 0.82). From the viewpoint of warning signals, the
increasing trend of AC in our cross-correlation approach is
more obvious than the ones of autocorrelation and variance.
More importantly, there is an obvious inflection point before the
bifurcation point is reached. These results suggest that
the warning signals in our cross-correlation approach are better
than previous ones based on critical slowing down. The cross-
correlation approach can provide a more practical early-warning
signal for predicting critical transitions since only the individual
dynamical trajectories rather than the underlying mechanisms
that drive the complex system are required.

A dynamical model for biochemical oscillations. Non-equilibrium
conditions can lead to richer transition behaviors than the equi-
librium ones, such as the transition to sustained periodic behavior
known as the limit cycle. To test our framework in predicting
critical transitions for such transitions, we explore another
paradigmatic non-equilibrium phase transition model for bio-

chemical oscillations derived from glycolysis and the
Brusselator3°:
kl k, k3
A=X, B2Y, 2X+Y33X (19)

-1

X and Y are two intermediate species. In contact with external baths
which contain two chemical species A and B, at fixed concentrations,
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this system can be driven out of the equilibrium due to a difference in
chemical potential: AG = k,TIn %= = kTl % ki k1, ko, ks
are chemical reaction transition rates and 7 /7 _ are the forward-/
backward-reaction flux. The chemical equilibrium (detailed balance)
is broken when the chemical-potential difference AG#0 with a
sustained non-zero net-reaction flux J = J, — J_. The state of
the system is determined by the two variables, the total number of X
molecules ny and the total number of Y molecules 1y, and their
dynamics are described as:

dn,

s =kn, —k_n,+ k3n§ny

‘ (20
o 2

T kyng — ksmin,

This set of ordinary differential equations can be scaled
and non-dimensionalized with u = on,,v =on,,0 = \/k;/k_,,

y’
7 = k_,t, and become

du )

d—:a—u—i—uv

! 1)
ﬂ—b—uzv

dr

where a = (k;/k_))\/ky/k_in,, b = \/k,/k_ ng.

The concentration ratio of molecule B vs. molecule A b/a
acting as a chemical energy pump gives rise to an effective
chemical potential difference for driving the non-equilibrium
dynamics?4. For different b/a, this non-equilibrium system can be
either in a monostable phase or in a stable limit cycle separated by
a Hopf-bifurcation.

Figure 5 depicts the main results for the non-equilibrium phase
transition from the mono-stability phase to the limit-cycle phase
for b= 0.4, along with the decrease of the control parameter a.
Figure 5a shows the phase diagram with the varied parameter a.
As shown in Fig. 5b, only one free energy minimum when
a>0.192 ceases to be the global minimum, and two new minima
on both sides emerge when a <0.192. Such change in the free
energy is similar to the well-known second-order/continuous
phase transitions in the classical equilibrium phase transition
theory. The slope of the curve for the entropy S, which is the first
derivative of the free energy, is smooth when the transition/Hopf
bifurcation occurs(Fig. 5¢). However, the heat capacity, which is
related to the second derivative of the free energy diverges around
the transition point (Fig. 5d). Figure 5e, f shows that the entropy
production rate is continuous, with a jump in its first derivative.
From the point of view of early-warning signals, the behaviours of
the thermodynamic quantities here might not appear to be very
helpful for predicting tipping points since certain discontinuity
can be observed only when the transition occurs.

However, it is notable that the non-equilibrium flux, which also
reflects the degree of time-reversal symmetry breaking, serves as
the main part of the driving force of oscillations. Real systems are
permanently subject to natural perturbations. Subtle changes, e.g.,
smaller transient oscillatory behaviors can occur before the
bifurcation point. This implies an opportunity to predict the
continuous transitions through monitoring the changes in
variance and the differences in the cross-correlations AC as the
system is approaching the bifurcation point. Figure 6 show trends
in AC with varied control parameter a and comparisons with the
trends in warning signals of the autocorrelation and variance. As
shown in Fig. 5, the EPR increases gradually from the mono-
stable phase to the oscillatory phase across the Hopf bifurcation,
which corresponds to the continuous non-equilibrium phase
transition. Therefore, Fig. 6a shows that there is no obvious
inflection point in AC before the bifurcation point is reached

comparing to the case of the dis-continuous non-equilibrium
phase transition. The increasing trend in AC is slightly more
obvious than the one in the autocorrelation. Figure 6b shows that
the obvious increase in AC can be detected earlier than the one in
the variance.

Since slowing down causes the intrinsic rates of change in the
system to decrease, the state of the system at any given moment
becomes more and more like its past state. The resulting
increase in memory of the system can be measured through the
magnitude of the autocorrelation within the fixed delay time,
e.g., the lag-1 autocorrelation, as shown in Fig. 4c of the present
work and previous works’. In fact, the changes in autocorrela-
tion and cross-correlation can also be measured from another
dimension by estimating the regression rates in the amplitudes
of the correlation functions with respect to the delay time.
Therefore, we computed the decay rate in the amplitudes of
both the autocorrelation function and the cross-correlation
difference with respect to the delay time (see details in the
Methods section). The smaller decay factor indicates system
states in time series are more strongly correlated with slower
decay in the amplitudes of the correlation functions. As shown
in Fig. 6¢, both the decay factors derived from the autocorrela-
tion function and the cross-correlation difference decrease
when the system approaches the Hopf bifurcation point.
However, the obvious decrease (steeper slope) in the decay
factor derived from the cross-correlation difference can be
detected earlier (farther from the bifurcation point) than the
one derived from the autocorrelation function. This is because
the decrease in the former one is induced by the increased non-
equilibrium flux (the degree of the time irreversibility) that can
emerge far from the bifurcation point, while the latter one is
induced by the critical slowing down that usually occurs when
the system is getting close to the bifurcation point. Our results
suggest that our cross-correlation approach associated with the
time irreversibility nature of non-equilibrium systems can
provide better warning signals than the ones in previous works
based on the critical slowing down.

Discussion

Critical transitions in complex systems are commonly described
as dynamic phenomena within the framework of nonlinear
dynamics and bifurcation theory due to the lack of a systematic
treatment from the thermodynamic perspective®-!1. A general
phenomenon known as critical slowing down in the vicinity of
many types of tipping points is used to be seen as an indicator
for tipping points. However, critical slowing down is far from
being a universal warning signal for abrupt shifts. The warning
signals based on critical slowing down can only be detected
when the system is very close to an approaching transition/
bifurcation point, A sharp shift in system state resulting from a
sudden big external impact, which may drive the system across
the tipping point, cannot be easily predicted by the critical
slowing down since they are close to the tipping point. Due to
the fact that the conventional equilibrium phase transitions can
be characterized by the specific behaviors of the thermodynamic
quantities, we wonder whether one can define the non-
equilibrium analogs of the thermodynamic quantities in equi-
librium thermodynamics, which may provide us new insights in
predicting critical transitions in non-equilibrium complex sys-
tems. Motivated by this challenge, we developed a non-
equilibrium thermodynamic framework for general complex
systems and suggested that critical transitions can be predicted
through the specific behaviors of the thermodynamic quantities
defined in our non-equilibrium dynamical and thermodynamic
framework.
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versus the control parameter a.

The vertical dot-dashed lines denote the associated transition points. The entropy and the entropy production rate are continuous at the bifurcation point,

while their first derivatives show a discontinuity.

The equilibrium phase transitions are usually explored in the
regime of the thermodynamic limit. Once the thermodynamic
limit is introduced, even though the underlying Lyapunov func-
tion, e.g., equilibrium free energy, may exhibit multi-minima,
only one of them with the smallest value of the free energy gives
the dominant probability contribution. For example, the first-
order equilibrium phase transition in the thermodynamic limit
emerges at the location (specific control parameter) where both
the minima of the underlying potentials have the same values,
and the significant changes in the thermodynamic quantities such
as the entropy also only emerge at this location. Although the
specific behaviors of the thermodynamic quantities can serve as
indicators for thermodynamic phase transitions in equilibrium
systems, they may not be early enough to predict these thermo-
dynamic phase transitions.

In our framework, the thermodynamic quantities for a general
non-equilibrium system are dependent on the corresponding

10

dynamical driving force, which determines the underlying
intrinsic non-equilibrium potential function and the associated
steady-state probability distributions. Applying this framework to
two well-known non-equilibrium systems, we found that there is
a discontinuity in the first/second-order derivative of the non-
equilibrium free energy in the small noise limit. Therefore, these
transitions in the small noise limit characterized by the specific
behaviors of the thermodynamic quantities can be considered as
the first/second-order or discontinuous/continuous non-
equilibrium thermodynamic phase transitions, in analogy to the
equilibrium phase transition theory. However, it is necessary to
clarify that the critical transitions in general non-equilibrium
systems concerned in the present work and previous works®16:34
are distinctly different from the well-known thermodynamic
phase transitions in equilibrium systems. To be brief and to the
point, stochastic dynamics plays a major role in real systems that
are subject to perturbations. The steady-state probability
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Fig. 6 Early-warning signals for the continuous transitions. The transitions from the mono-stable state to oscillation across a Hopf bifurcation are
preceded by an increase in autocorrelation, variance, and the differences in the cross-correlations AC as the system is approaching the bifurcation point
indicated by the dot-dashed line (a, b). a The increasing trend in AC is just slightly more obvious than the one in the autocorrelation. b The obvious
increase in AC can be detected earlier than the one in the variance. When the system is closer to the Hopf bifurcation, perturbations can lead to longer
transient oscillations. This can be reflected through the slower decay rates in the amplitudes of the correlation functions with respect to the delay time,
which is indicated by lower decay rates in (c). ¢ The obvious decrease (steeper slope) in the decay rates derived from the cross-correlation difference can
be detected earlier (farther from the bifurcation point) than the one derived from the autocorrelation function.

distributions in real systems are emergent that can only be
obtained from the corresponding stochastic dynamics3’. Such
emergence arises from an infinitely long time (the steady-state
probability distribution Pgg=P,_...). Since the thermodynamic
quantities defined in our non-equilibrium thermodynamic fra-
mework are dependent on the non-conserved dynamical driving
force, they intrinsically include the non-equilibrium natures,
which are different from the equilibrium analogies. As suggested
in the previous works®16-34, the critical transitions in complex
systems correspond to different classes of bifurcations. Such cri-
tical transitions in non-equilibrium systems can be termed “non-
equilibrium dynamical phase transitions.” Figure 3 shows the
different locations of the first-order thermodynamic phase tran-
sitions in the thermodynamic limit and dynamical phase transi-
tions/ saddle-node bifurcations, taking the Wilson-Cowan model
as an example.

Since the critical transitions or dynamical bifurcations that we
are concerned with in complex systems occur at different loca-
tions (where bifurcations emerge) in contrast with the locations
of equilibrium thermodynamic phase transitions, the specific
behaviors of the thermodynamic quantities defined in our fra-
mework provide the opportunities to predict critical transitions in
complex systems. Despite the fact that noise could potentially
reveal the presence of an impending transition through a sto-
chastic resonance-like effect, the noise, which is almost ubiqui-
tous in real systems, seems to have adverse effects on detecting
the warning signals, such as increased autocorrelation for pre-
dicting the impending transitions based on the critical slowing
down in previous approaches*1¢, Nevertheless, the limited noise
in complex systems can be beneficial to predict critical transitions
in our framework. As suggested in the above section, in the small
noise limit, the significant changes in our thermodynamic
quantities across fold bifurcations can be detected at the location
where an alternative stable state begins to be dominant. This is
much earlier from the occurrence of the possible critical transi-
tions and beyond the location where the current stable state is
going to disappear. If finite noise is presented, there are also
indicators (peaks in the entropy and heat capacity), which can be
observed far from the approach transition point (Fig. 2g-i).

Previous works explored the architectural features that may
create abrupt transitions in complex systems in addition to the
warning signals, which provide alternative angles for diagnosis
and potential action of critical transitions!®. It is worth noting

that sharp transitions in real complex systems such as ecosystems
or societies may often be caused by changes in external condi-
tions. For instance, the models in the present work show the
transitions are the results of the changes in the external input
signals or chemical potential differences. The steady states in such
open systems are maintained through the constant exchange of
entropy or energy with the outside environment. Therefore, the
critical transitions that occur in open systems are usually
accompanied by significant changes in the dissipative patterns,
which can be measured by the entropy production rate
(EPR)3238-40, A5 we stated earlier from our previous findings that
the driving force for the dynamics of a non-equilibrium system is
determined by both the gradient of the landscape and the steady-
state probability flux. While the gradient force tends to attract
and stabilize the system to the point attractor, the flux force being
rotational, tends to destabilize the point attractor and form a
stable limit cycle, oscillatory attractor. Therefore, the increase of
the flux force can destabilize a stable state. This gives the dyna-
mical origin for a bifurcation or non-equilibrium dynamical
phase transition. The non-equilibrium flux, which measures the
degree of irreversibility or detailed balance breaking, provides the
dynamical basis of the thermodynamic costs or dissipations in
terms of the EPR in the open systems. Since the flux or irrever-
sibility requires the thermodynamic cost to sustain, the EPR or
dissipative cost gives the thermodynamic origin of the bifurcation
or non-equilibrium phase transition. In the general case that finite
noise is presented, the specific change in EPR can serve as
warning signals for predicting critical transitions.

Inspired by these facts, we found that the specific behavior in
the differences in the cross-correlations between the forward and
backward directions in time of the two-state variables in the
obtained time series, which is associated with the degree of time-
reversal symmetry breaking of a non-equilibrium system, can
serve as early-warning signals for predicting critical transitions.
Our results suggest that such indicators can be detected earlier
than the ones based on critical slowing down for both the critical
transitions associated with the fold and Hopf bifurcations. In a
more general sense, it is not easy to get all the details of the
underlying mechanisms that drive a complex system. Therefore,
the cross-correlation approach can provide a more practical early-
warning signal for predicting critical transitions since only the
time series of the state variables are required. Moreover, mon-
itoring the behavior of the non-equilibrium flux and then steering
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the system through manipulating the specific control parameters
(external conditions), which can induce efficient changes in the
flux and further the EPR, may suggest an alternative way to
prepare for anticipated change.

The directed percolation process, along with the related
absorbing phase transitions, is a very important class of non-
equilibrium phase transition®. These types of transitions are
characterized by the presence of the absorbing state that can be
reached by the system but from which the system cannot escape.
It appears that there are no divergent-free non-equilibrium fluxes
in the steady state after the system falls into a so-called absorbing
state. This is different from the general cases that the non-
equilibrium steady states always carry certain flux. So, the per-
colation is often characterized by the non-equilibrium in time
rather than the non-equilibrium at steady state. For such cases, it
may be challenging to detect early-warning signals with our
cross-correlation approach. This is because the increased differ-
ences in the cross-correlation before an approaching critical
transition/bifurcation can be detected from the time series of the
system state variables often in steady states, while similar infor-
mation cannot be obtained from the steady state of the system
with the absorbing phase transitions. It will be very interesting to
uncover practical early-warning signals for predicting such non-
equilibrium phase transitions in future work.

For the directed percolation process, we can simulate this
process using a computer since we know the short-ranged
dynamical rules that dominate the evolution of the system. We
can define an explicit order parameter and then use concepts and
methods which were developed for equilibrium critical phe-
nomena to explore such transitions. However, for many complex
dynamical systems, ranging from ecosystems to the human brain,
financial markets, and the climate, we may have a relatively poor
understanding of the mechanisms that drive the dynamics. We
cannot directly write down the corresponding master equations,
Langevin equations, or Fokker-Plank equations. We may not
even get enough information about the probability distributions
involving sufficient transitions between alternative stable states.
What we can obtain may only be the time series of the state
variables. Then how can we predict the possible critical transi-
tions in such systems? Here, we tried to provide a general yet
practical approach for predicting critical transitions in such
complex systems. The core idea of our approach is that the
changes in the non-equilibrium flux, which plays an essential role
in non-equilibrium phase transition, can be obtained from the
detectable time series. This approach can provide a more practical
early-warning signal for predicting critical transitions even if we
do not understand all the details of the underlying mechanisms
that drive the complex system, which is the significance of the
current work.

In summary, motivated by the challenges of predicting the
ubiquitous critical transitions in complex systems, our approach
used the analogy to the well-established concepts and conven-
tional statistical treatment for equilibrium phase transitions, while
the natures of the non-equilibrium dynamics are considered and
reflected in the thermodynamic quantities. In our framework,
warning signals based on the thermodynamic quantities can be
detected much earlier than the ones explored in the previous
works on the basis of nonlinear dynamics and the bifurcation
theory”. Notably, our cross-correlation approach can provide a
more practical early-warning signal for predicting the critical
transitions since only the observed time series of the state vari-
ables are required. Such warning signals reflect the time-
irreversibility or the degree of the detailed balance breaking in
the non-equilibrium complex systems. They can only be detected
in non-equilibrium phase transitions rather than equilibrium
phase transitions. The general approach exemplified by the

models with fold/Hopf bifurcations in the present work is
applicable to complex systems where critical transitions such as
asthma attacks, epileptic seizures, abrupt shifts in ecosystems, and
financial market crashes can occur’*-48, Our approach can
provide warning signals for approaching critical transitions in
such complex systems. Since the behaviors of the entropy pro-
duction rate have been suggested in previous works across various
complex systems**>2, our work provides a general and unified
approach for exploring the collective behaviors in non-
equilibrium systems such as bifurcations and phase transitions.

Methods

To test the ability of our non-equilibrium thermodynamic framework to char-
acterize and predict critical transitions in general non-equilibrium systems, we
explored two typical non-equilibrium systems where different types of bifurcations
can emerge. The details of these two models have been shown in the Results
section. In order to obtain the non-equilibrium quantities such as the non-
equilibrium free energy, entropy, and heat capacity that are defined on the basis of
the NESS probability distributions derived from the intrinsic potential function ¢,.
We need to solve the corresponding Hamilton-Jacobi equation(Eq. (3)). The
Hamilton-Jacobi equation is difficult to solve exactly with an analytic solution. To
get the numerical solution of the Hamilton-Jacobi equation, a numerical method:
the level set method, was devised and developed. In the present work, we use the
Mitchells level-set toolbox>3 to solve the Hamilton-Jacobi equation for intrinsic
potential ¢y.

However, the corresponding complex Hamilton-Jacobian (H]J) equations are
difficult to be solved for some systems, e.g., the biochemical reactions where the
diffusion coefficients are dependent on the state variables. For such cases as the
biochemical oscillations model explored in the present work, we can calculate the
NESS probability directly from the associated Fokker—Planck equation. Once the
fluctuations are introduced, the corresponding driving forces should be written as:

d
—u=a7u+uzvf(l/V)*((l/erZ*u*vfu2/2))
dr
y @2)
v
d—=b—u2v+(1/V)>k(2*u*v—u2/2)
T
Here V is the volume of the biochemical system. The diffusion matrix is:
1fatu+u>v —uly
DD = — 23
Vv —utv b+ uPv @3)

Here the & = D measures the magnitude of the fluctuations. In the present work,
we choose V'=10,000. We found significant changes in the thermodynamic
quantities based on the NESS probability distributions, which are calculated
directly from the associated Fokker-Planck equation in the vicinity of the transi-
tion points.

Most of the complex systems in nature, such as biological systems, are coupled to
an environment far from thermodynamic equilibrium. In these non-equilibrium
systems, the non-zero non-equilibrium flux induces the time-reversal symmetry
breaking. Recent studies show that the degree of time-irreversibility or detailed
balance breaking is measured by the cross-correlation difference between the
forward and backward directions in time®. In contrast to an equilibrium system
where the time-forward cross-correlation function between two signals equals the
time-backward one, a non-equilibrium system shows asymmetry in the cross-
correlation between the forward and the backward directions in time. As discussed
in the main text, the flux part of the driving force in a non-equilibrium system is
rotational and tends to destabilize the current fixed point/attractor state against the
gradient part of the driving force. Therefore, the destabilization of the current state
approaching a bifurcation or transition point may be reflected through the changes
in the non-equilibrium flux and, further, more practically, the cross-correlation
between the forward and the backward directions in time.

Here we first calculated the dynamical trajectories for the two-state variables of a
non-equilibrium system by firstly solving the corresponding Langevin equations,
e.g., the activities in the excitatory and the inhibitory subpopulations xg(t) and x;(¢)
in the Wilson-Cowan model. Then we can obtain the cross-correlation difference
between the forward and the backward directions in time (AC(7) = (x(0)
x1(1)) — (x/(0)xg(7))) according to the time series. After that, we calculated the
average AC = j[; C(7)dr, which is no longer a function of the time delay 7. Here ¢ is
the length of the dynamical trajectory in time. For the case with the fold bifur-
cation, we calculated the cross-correlation difference at lag-1 (t is each time interval
between the neighboring points in the time series). For the case where oscillations
happen, the cross-correlation difference is calculated through the integral of the
time series, including several periods of the corresponding oscillations. Due to the
stochastic nature of the system, we may get different AC for different trajectories.
Therefore, we repeated this process 10,000 times to obtain the final AC by aver-
aging these results.

The AC is derived from the time series and depends on the state of the system.
To test whether the changes in AC can serve as an early-warning signal for pre-
dicting critical transitions, the time series describing the destabilization of the
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current state approaching a bifurcation or transition point is required. For instance,
if we are concerned about the transition from the “up” state to the “down” state in
the Wilson-Cowan model, we need to collect the time series of xg() and x(#) that
fluctuate around the “up” state due to the noises as the control parameter I is
decreased. For different specific values of the control parameter I, we can calculate
the corresponding AC. Then the trends of the AC as the system approaches a
transition point can be obtained. Our results suggest that the cross-correlation
difference between the forward and the backward directions in time is closely
related to the non-equilibrium flux and further the entropy production rate. The
cross-correlation approach can serve as a more practical early-warning signal for
predicting critical transitions, which can be detected much earlier before the actual
corresponding transition point.

In addition to the magnitude of the autocorrelation within the fixed delay time,
e.g., the lag-1 autocorrelation, the changes in the autocorrelation and cross-
correlation can also be measured from another dimension by estimating the decay
rates in the amplitudes of the correlation functions with respect to the delay time.
For the case with the Hopf bifurcation, we computed the decay rate in the
amplitudes of both the autocorrelation function and the cross-correlation differ-
ence with respect to the delay time. The decay in the amplitudes of the oscillatory
cross-correlation difference with respect to the time delay 7 is approximately
exponential in a limited length of the time delay. The decay rate, therefore, can be
calculated by fitting the exponential curves on the data about the amplitudes of the
oscillatory cross-correlation difference with respect to the delay time. The decay
rates are calculated using the MATLAB toolbox Curve Fitting. The lower decay rate
indicates system states in time series are more strongly correlated with slower decay
in the amplitudes of the correlation functions.

Data availability
Raw numerical data for the plots and all analytic derivations based on the Matlab
software are available from the corresponding authors upon request.

Code availability

All numerical codes are generated based on the commercial software Matlab and
COMSOL and are only available from the corresponding authors upon reasonable
request.

Received: 9 November 2022; Accepted: 14 April 2023;
Published online: 22 May 2023

References

1. Glansdorff, P. & Prigogine, I. Thermodynamic Theory Of Structure, Stability
and Fluctuations. (J. Willey & Sons, 1971).

2. Landau, L. D. & Lifshitz, E. M. Statistical Physics: Volume 5. (Elsevier, 2013).

3. Stanley, H. E. Phase Transitions and Critical Phenomena. Vol. 7 (Clarendon
Press, Oxford, 1971).

4. Nicolis, G. & Prigogine, L. Self-Organization in Nonequilibrium Systems: From
Dissipative Structures to Order Through Fluctuations. (Wiley, 1977).

5. Haken, H. Synergetics. An Introduction: Non-equilibrium Phase Transitions
and Self-organization in Physics, Chemistry and Biology. (Springer, 1977).

6. Henkel, M., Hinrichsen, H. & Lbeck, S. Non-Equilibrium Phase Transitions:
Volume I: Absorbing Phase Transitions. (Springer, 2008).

7. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry. (Elsevier
Science, 2011).

8. Scheffer, M. Critical Transitions in Nature and Society. (Princeton Univ. Press,
2009).

9.  Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461,
53-59 (2009).

10. Leung, H. K. Bifurcation of synchronization as a nonequilibrium phase
transition. Physica A 281, 311C317 (2000).

11. Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. Comput. Phys. 8, 532 (2015).

12. Haken, H. Cooperative phenomena in systems far from thermal equilibrium
and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975).

13. Walgraef, D., Dewel, G. & Borckmans, P. Nonequilibrium Phase Transitions
and Chemical Instabilities. (J. Willey & Sons, 1982).

14. Wissel, C. A universal law of the characteristic return time near thresholds.
Oecologia 65, 101-107 (1984).

15. van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic
indicator of a nearby catastrophic shift. Am. Nat. 169, 738-747 (2007).

16. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344-348
(2012).

17. Yan, H. et al. Nonequilibrium landscape theory of neural networks. Proc. Natl
Acad. Sci. USA 110, E4185-E4194 (2013).

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Wang, J. Landscape and flux theory of non-equilibrium dynamical systems
with application to biology. Adv. Phys. 64, 1-137 (2015).

Horsthemke, W. & Lefever, R. Noise-Induced Transitions: Theory and
Applications in Physics, Chemistry, and Biology (Springer, 1984).

Sol, R. Phase Transitions. (Princeton University Press, 2011).

Yan, H,, Li, B. & Wang, J. Non-equilibrium landscape and flux reveal how the
central amygdala circuit gates passive and active defensive responses. J. R. Soc.
Interface 16, 20180756 (2019).

Wang, J., Xu, L. & Wang, E. K. Potential landscape and flux framework of
nonequilibrium networks: Robustness, dissipation, and coherence of
biochemical oscillations. Proc. Natl Acad. Sci. USA 105, 12271 (2008).
Zhang, F., Xu, L., Zhang, K., Wang, E. K. & Wang, J. The potential and flux
landscape theory of evolution. J. Chem. Phys. 137, 065102 (2012).

Xu, L., Shi, H., Feng, H. & Wang, J. The energy pump and the origin of the
non-equilibrium flux of the dynamical systems and the networks. J. Chem.
Phys. 136, 165102 (2012).

Hu, G. Stochastic Force and Nonlinear Systems, Shanghai Science Education
(Shanghai, 1995).

Tom, T. & de Oliveira, M. J. Entropy production in irreversible systems
described by a Fokker-Planck equation. Phys. Rev. E 82, 21120 (2010).
Tom, T. & de Oliveira, M. J. Entropy production in nonequilibrium systems at
stationary states. Phys. Rev. Lett. 108, 20601 (2012).

Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys. J. 12, 1-24 (1972).

Amit, D. J. Modeling Brain Function: the World of Attractor Neural Networks.
(Cambridge University Press, 1992).

Borisyuk, R. M. & Kirillov, A. B. Bifurcation analysis of a neural network
model. Biol. Cybern. 66, 319-325 (1992).

Jaeger, G. The Ehrenfest classification of phase transitions: introduction and
evolution. Arch. Hist. Exact. Sci. 53, 51-81 (1998).

Zhang, Y. & Barato, A. C. Critical behavior of entropy production and
learning rate: ising model with an oscillating field. . Stat. Mech. Theory E. 11,
113207 (2016).

Ge, H. & Qian, H. Thermodynamic limit of a nonequilibrium steady state:
maxwell-type construction for a bistable biochemical system. Phys. Rev. Lett.
103, 148103 (2009).

Bury, T. M. et al. Deep learning for early warning signals of tipping points.
Proc. Natl Acad. Sci. USA 39, €2106140118 (2021).

Qian, H. & Elson, E. L. Fluorescence correlation spectroscopy with high-order
and dual-color correlation to probe nonequilibrium steady states. Proc. Natl
Acad. Sci. USA 101, 2828 (2004).

Qian, H., Saffarian, S. & Elson, E. L. Concentration fluctuations in a
mesoscopic oscillating chemical reaction system. Proc. Natl Acad. Sci. USA 99,
10376-10381 (2002).

Qian, H.,, Ao, P., Tu, Y. & Wang, J. A framework towards understanding
mesoscopic phenomena: emergent unpredictability, symmetry breaking and
dynamics across scales. Chem. Phys. Lett. 665, 153-161 (2016).

Andrae, B., Cremer, J., Reichenbach, T. & Frey, E. Entropy production of
cyclic population dynamics. Phys. Rev. Lett. 104, 218102 (2010).

Tim, H., Juzar, T. & Massimiliano, E. Collective power: minimal model for
thermodynamics of nonequilibrium phase transitions. Phys. Rev. X 8, 031056
(2018).

Noa, C. E. F,, Harunari, P. E., de Oliveira, M. J. & Fiore, C. E. Entropy
production as a tool for characterizing nonequilibrium phase transitions. Phys.
Rev. E 100, 012104 (2019).

Venegas, J. G. et al. Self-organized patchiness in asthma as a prelude to
catastrophic shifts. Nature 434, 777-782 (2005).

McSharry, P. E,, Smith, L. A. & Tarassenko, L. Prediction of epileptic seizures:
are nonlinear methods relevant? Nat. Med. 9, 241-242 (2003).

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic
shifts in ecosystems. Nature 413, 591-596 (2001).

Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl
Acad. Sci. USA 105, 1786-1793 (2008).

May, R. M., Levin, S. A. & Sugihara, G. Ecology for bankers. Nature 451,
893C894 (2008).

Touboul, J. D., Staver, A. C. & Levin, S. A. On the complex dynamics of
savanna landscapes. Proc. Natl Acad. Sci. USA 115, E1336-E1345 (2018).
Xu, L., Patterson, D., Staver, A. C., Levin, S. A. & Wang, J. Unifying
deterministic and stochastic ecological dynamics via a landscape-flux
approach. Proc. Natl Acad. Sci. USA 118, 2103779118 (2021).

Xu, L., Patterson, D., Levin, S. A. & Wang, ]. Non-equilibrium early-warning
signals for critical transitions in ecological systems. Proc. Natl Acad. Sci. USA
120, 2218663120 (2023).

Xu, L., Zhang, K. & Wang, J. Exploring the mechanisms of differentiation,
dedifferentiation, reprogramming and transdifferentiation. Plos ONE 9,
105216 (2014).

Yan, H. & Wang, J. Quantification of motor network dynamics in Parkinsons
disease by means of landscape and flux theory. Plos ONE 12, e0174364 (2017).

COMMUNICATIONS PHYSICS| (2023)6:110 | https://doi.org/10.1038/s42005-023-01210-3 | www.nature.com/commsphys 13


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01210-3

51. Zhang, K. & Wang, J. Landscape and flux theory of non-equilibrium open
economy. Physica A 482, 189-208 (2017).

52. Li, W., Zhao, L. & Wang, J. Searching for the mechanisms of mammalian
cellular aging through underlying gene regulatory networks. Front. Genet. 11,
593 (2017).

53. Mitchell, I. M. The flexible, extensible and efficient toolbox of level set
methods. J. Sci. Comput. 35, 300-329 (2008).

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China
(Grant nos. 12205306 and 21721003). The work is also sponsored by Young Talent
Support Project supported by Jilin Association for Science and Technology (Grant no.
QT202012).

Author contributions

H.Y. and J.W. designed research; H.Y. and J.W. performed research; H.Y. and F.Z.
contributed new reagents/analytic tools; H.Y. and J.W. analyzed data; and H.Y. and J.W.
wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01210-3.

Correspondence and requests for materials should be addressed to Jin Wang.

Peer review information Communications Physics thanks Bing Miao and the other
anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

14 COMMUNICATIONS PHYSICS| (2023)6:110 | https://doi.org/10.1038/s42005-023-01210-3 | www.nature.com/commsphys


https://doi.org/10.1038/s42005-023-01210-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Thermodynamic and dynamical predictions for bifurcations and non-equilibrium phase transitions
	Results
	Challenges in predicting critical transitions based on critical slowing down
	Non-equilibrium thermodynamic framework for dynamical systems
	Non-equilibrium dynamics determined by landscape and flux
	Non-equilibrium thermodynamics
	Early-warning indicators for non-equilibrium phase transitions
	Wilson–Cowan model for neural network dynamics
	A dynamical model for biochemical oscillations

	Discussion
	Methods
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




