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Multi pathways temporal distance unravels the
hidden geometry of network-driven processes
Sebastiano Bontorin 1,2✉ & Manlio De Domenico3,4,5✉

Network-based interactions allow one to model many technological and natural systems,

where understanding information flow between nodes is important to predict their func-

tioning. The complex interplay between network connectivity and dynamics can be captured

by scaling laws overcoming the paradigm of information spread being solely dependent on

network structure. Here, we capitalize on this paradigm to identify the relevant paths for

perturbation propagation. We introduce a multi-pathways temporal distance between nodes

that overcomes the limitation of focussing only on the shortest path. This metric predicts the

latent geometry induced by the dynamics in which the signal propagation resembles the

traveling wave solution of reaction-diffusion systems. We validate the framework on a set of

synthetic dynamical models, showing that it outperforms existing approaches in predicting

arrival times. On a set of empirical contact-based social systems, we show that it can be

reliably used also for models of infectious diseases spread - such as the Susceptible-Infected-

Susceptible - with remarkable accuracy in predicting the observed timing of infections. Our

framework naturally encodes the concerted behavior of the ensemble of paths connecting

two nodes in conveying perturbations, with applications ranging from regulatory dynamics

within cells to epidemic spreading in social networks.
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Dynamical processes on top of a network are often adopted
to model the behavior of complex interdependent
systems1. Advances in the study of spreading and reaction

processes2, synchronization phenomena3,4 and diffusion
dynamics5 have started to uncover and to emphasize how the
coupling of the system dynamics to its connectivity properties
determines emergent behaviors, such as synchronizability being
dependent on both the Laplacian spectrum and the oscillators
dynamics equations. In these networked systems links can encode
a pairwise, possibly nonlinear, interaction: from mass action
kinetics6 to switch-like processes7, the specific set of functions
adopted to mimic the real empirical mechanics give rise to pro-
foundly different, and apparently random, nodes’ responses and
patterns on top of the same network structure8. As a con-
sequence, a complete understanding of these systems and the
functional role played by each node can not be satisfied by
the sole knowledge of the topology of connections. Inter alia, the
challenge of predicting the arrival time of a signal9–12 is funda-
mental to expose temporal dependencies between system units,
how the interplay between topology and dynamics affects the
transient temporal response of the system, and ultimately to
reveal and exploit the hidden geometries induced by the
dynamics2,13,14.

Recent works have shed light over this interplay8,15, where
perturbations from an equilibrium basin are used to understand
how correlations between units of a complex networked dyna-
mical systems emerge via information propagation16.

Analytical treatment under linear response approximation
uncovers the scaling laws that govern the system response to per-
turbations, effectively decoupling the role of the network topology
(a node’s degree k17) from the dynamics (the universal exponents8

obtained from the model’s ODEs) and synthesizes the complex
interplay that determines the stability18 and dynamical properties.
This paradigm of scaling laws helps identifying different models
into universality classes of dynamical regimes19 in which units
respond to and propagate information in a similar manner. These
metrics can in turn be used to quantify how strongly a node can
impact on the local topology8 or the efficiency of a node as a

pipeline in information flow F ðkÞ � kω20. Ultimately, they esti-
mate a node’s characteristic time response from a perturbation in a
neighboring node τi � kθi

9, condensing in a universal scaling law
the information of the temporal behavior of nodes in a networked
system near steady state.

One of the remarkable applications of these scaling laws, is the
definition of predictive observables. For instance, knowledge of τi
allows the introduction of a temporal distance9 between two
nodes Lðj ! iÞ, which reflects the effective arrival time of a signal
by selecting the shortest path with the minimum cumulative lag
time as candidate temporal distance.

This metric was proposed under the rationale that a single,
fastest, path can be considered the main artery for information
flow/response8,9. It represents a dramatic improvement over the
standard topological distance: in fact, it also embeds information
of the non-linear interactions between nodes, accounting for
processes in which hubs can act as fast responders (θ < 0) or
bottlenecks (θ > 0), and explain why in certain processes the
shortest-path paradigm results inadequate. Even so, it is limited
by not considering the possible contribution of other relevant
paths in conveying the perturbation, a key ingredient which was
also recently introduced in the definition of an effective distance
for diffusive dynamics on networks14. An advance is therefore
necessary to take into account these contributions and entirely
predict propagation times for systems where interactions are
modeled via non-linear dynamics.

In this article we further expand this theoretical framework and
develop a simple perspective of the multiple-paths nature of
spatiotemporal propagation. We first analyze paths’ contribution
in spreading a perturbation between two nodes, taking advantage
of the exponential decay of correlations with a path’s topological
length. We then define a temporal distance which synthesizes the
paths’ concerted behavior in dispersing the perturbation and
completely predicts the propagation time required for a pertur-
bation generated in a source node to affect another. Embedding
targets nodes in the vector space induced by this metric reveals
the intuitive, hidden geometry of perturbation propagation (see
Fig. 1)2. Finally, we apply this metric on an empirical network of
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Fig. 1 Revealing the hidden geometry. a The interplay between structure and non-linear interactions results in an emergent, complex propagation pattern.
We combine analytical knowledge of scaling laws9 and correlation matrices8 with a network’s paths decomposition of propagation, to predict a temporal
multi-pathways distance and unravel the signal propagation. b Dynamical models' ordinary differential equations (ODE) employed representing three
widely adopted and diverse processes. R Regulatory dynamics via Michaelis–Menten model7, Susceptible-Infected-Susceptible compartmental model26 E
as a case of Epidemic dynamics, and finally P Population processes via birth-death dynamics. The specific choice of exponents (a,h) is necessary in order
to reproduce the three classes of time response regimes encoded in the exponent θ of the scaling law τ iðkÞ � kθi

9.
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social interactions, modeling an epidemic dynamics. We show in
this last section how the predictive nature near the steady state
can be employed to better understand the infection times which
occur far from the linear regime.

Results
Dynamical processes on top of networks. We now introduce the
analytical framework for a dynamical model on top of a
network8,15, under which these measures have been proposed. For
consistency and continuity, we employ the same notation and rely
on the same dynamical processes as testing ground. In this fra-
mework each node is characterized by a time-dependent variable
xi(t), i= 1, . . . ,N, which can represent expression of genes in a
regulatory network7, the fraction of infected individuals in an air-
port network2, or any other scalar value of interest. In this general
framework the system dynamics is described by a set of non-linear
functions M= {M0(x),M1(x),M2(x)}, and the time evolution of
xi(t) is driven by a non-linear dynamical equation:

_xiðtÞ ¼ M0 xiðtÞ
� �þ ∑

N

j¼1
AijM1 xiðtÞ

� �
M2ðxjðtÞÞ: ð1Þ

Here Aij represents the adjacency matrix element, M0 accounts
for element i’s self dynamics, while the second term in the r.h.s.
describes the factorized interaction between i and its direct
neighbors j; e.g.: for SIS compartmental model (M0=− βx,M1=
1− x,M2= αx)9. Expansions ofM functions as power series of the
degrees define the set of aforementioned scaling laws and universal
exponents8, which are necessary to construct the following analyses.
The set of steady-state dynamics that can be casted in this
framework are shown to be a reasonable approximation to
reproduce the behavior for many biological, social and technolo-
gical systems. The models and framework we work with are
presented in Fig. 1. Small constant perturbations in the system’s
equilibrium state (xi→ xi+ dxi) are used as an analytical probe to
understand the relation between the connectivity structure and
dynamics in signal propagation. As a permanent perturbation
brings the system to a new steady state, the notion of a network
Global Correlation Function G has been introduced to encode the
full system response to a perturbation from node j15:

Gij ¼
dxi=xi
dxj=xj

�����

�����
: ð2Þ

Refer to Supplementary Notes 1 and 2 for more details on this
framework.

Path-driven analysis of perturbation propagation. In order to
provide new insight on paths’ contribution in signal propagation,
we now propose a path-driven alternative description of Gij ele-
ments, recasting them as a sum over the ensemble of paths that
connect nodes i and j. Furthermore, this formulation will pave the
way to the definition of a multi-pathways temporal distance. We
introduce P(j→ i) as the set of all paths Π connecting source
node j to ending node i (in the definition, we include paths that
traverse vertices multiple times, also defined as walks in21) and we
define the amount of correlation carried along each path GΠ as

the product of local correlation elements Rij ¼ ∂xi=xi
∂xj=xj

���
���8 associated

to each edge in the path. Rij quantifies the dependence of node i’s
state on small changes in its neighbor j’s state, via partial deri-
vative in the steady state of Eq. (1).

In this notation a path Π of length L defines a set of L nodes,
sorted by visiting order: Π(1→ L)= {n1,…, nL}. Hence the path’s

correlation is defined as GΠ(L)= RL,L−1 ×… × R2,1:

GΠðLÞ ¼
YL�1

i¼1

∂xiþ1=xiþ1

∂xi=xi

����

���� ¼
YL�1

i¼1

Riþ1;i ð3Þ

Therefore Gij can be rewritten as an ensemble sum of
contributions GΠ of all the possible unique paths that connect j to i:

Gij ¼ ∑
Π2Pðj!iÞ

GΠ ð4Þ

In Fig. 2, we make use of this formulation to reconstruct Gij

with a limited subset of paths, under the rationale that most
paths’ contributions will be negligible. This assumption is driven
by the known result that the average individual node’s correlation
at distance l is governed by an exponential decay
G(l) ≈ exp(− l/λ)8. In this particular case, we are interested in
the exponential decay of single path’s correlation GΠ. In similar
fashion to G(l), we derive an equation for for GΠ(l) that confirms
the exponential decay also for unique paths: GΠðlÞ � Cl

M � e�αβl�
e�αl . Where the known universal exponent β8 defines whether a
dynamic process is conservative (β= 0) or dissipative (β > 0), i.e.,
characterized by fast decay of correlations. The derivation of this
result is discussed in Supplementary Note 3. Consequently, if
Lij= L is the topological distance between nodes i and j, due to
the exponential decay of GΠ(l), it can be expected that only paths
of order (length) L in P(j→ i) add relevant contributions to Gij.

As the ensemble P(j→ i) can be decomposed as a collection of
subsets of paths having the same topological distance l:
Pðj ! iÞ ¼ S1

l¼1 Plðj ! iÞ, we therefore seek to reconstruct the
propagation from j to i by using possibly only paths in PL(j→ i).
Formally, this translates to limiting the sum (4) only to the subset of
shortest paths of degenerate lengths Lij, simplifying the equation:

Gij � �Gij ¼ ∑
Π2PLðj!iÞ

GΠ ð5Þ

We aim to verify numerically this assumption, comparing directly
exact values for Gij against approximate values �Gij. �Gij are
compared with numerical Gij by estimating the absolute relative
errors δG ¼ jGij � �Gijj=Gij. We evaluate the reconstruction of Gij

by first only using single terms GΠ� associated to the shortest path
carrying the maximum correlation (Π� ¼ maxΠðGΠÞ), then
considering also all shortest paths in the subset PL(j→ i) and
finally by integrating paths of successive orders Lij+N.

Analytical predictions of Eq. (5) are tested against simulations in
Fig. 2, highlighting how the introduction of successive orders
reduces the error δG and improves the estimation of Gij. These
results support the idea that when analyzing perturbation
propagation between two nodes, focusing only on the set of
shortest paths (and eventually extending to a successive order
L+ 1) is enough to understand which pathways retain the relevant
information in the spatiotemporal propagation of perturbations.

Multi pathways temporal distance. The previous section has
shed light on multiple paths contributions to perturbation
transmission, which will prove to be foundational in introducing
a new candidate metric. A node i will respond from a constant
perturbation starting at node j by shifting its steady state activity
to a new steady state xnewi ðt ! 1Þ ¼ xi þ Δxiðt ! 1Þ. The
operative definition of temporal distance proposed in ref. 9

defines T(j→ i) as the time in which node i reaches a fraction η of
its final response: Δxi(t= T(j→ i))= ηΔxi(t→∞). As the final
response encoded in Gij is the result of the concerted behavior of
the ensemble of paths, if the shortest path17 is degenerate and
more paths introduce a contribution GΠ which is comparable in
magnitude, then it is necessary to introduce their time delay in
transferring the perturbation. We propose here a more precise
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version of temporal distance: this new metric LMPðj ! iÞ takes
into account the fact that information follows multiple paths
(MP), not just shortest paths.

The simplest ansatz to account for the different path times
τΠ ¼ ∑p2Π;p≠jτp, is to perform a linear combination. We weight a
path’s relaxation time τΠ by the fraction of perturbation it
conveys GΠ/Gij, which effectively acts as a weight as ∑ΠGΠ/
Gij= 1. Therefore we define a new temporal distance LMPðj ! iÞ
as a weighted sum of the accumulated lag time along each path:

LMPðj ! iÞ ¼ ∑
Π2Pðj!iÞ

τΠ �WΠ ð6Þ

where:

WΠ ¼ GΠ

Gij
: ð7Þ

We provide a more extensive understanding of this metric in
Supplementary Note 4. This measure integrates effectively the
two relevant descriptors of signal propagation: local perturbations
Rij (which enter in the definition of GΠ) and relaxation times τi.
As a blueprint for propagation patterns, these measures can be
analytically derived and do not require numerical simulations of
perturbation propagation in order to predict T(j→ i). In our
calculations Rij values have been obtained exactly from analytical
derivation: by isolating the steady state condition from
_xi ¼ f ðx1:::xNÞ ¼ 0, and taking its derivative ∂xi/∂xj at steady
state. Steady state activities can be either obtained numerically or
approximated analytically, avoiding simulations, using a known
scaling law: xi(k) ~ R−1(1/ki)8,19.

Numerical validation on synthetic models. In this section we
evaluate LMPðj ! iÞ predictions against previous temporal metric
Lðj ! iÞ and traditional shortest path length Lij17. As testing

ground, we opt for a structure with heterogeneous connectivity by
generating a Scale Free network Aij via B-A preferential attachment
model22; we then obtain numerically the steady state activity xi of
nodes for Epidemic, Regulatory and Population dynamics (see
Fig. 1). Afterwards, we introduce a small constant perturbation
from a source node and solve numerically the set of coupled
equations. As a result, other network units’ states will be eventually
shifted and their response times T(j→ i) are obtained numerically
following the operative definition9. This set of empirical pertur-
bation times T(j→ i) is used to test the goodness of candidate
metrics. We measure the accuracy in predicting observed times
using Spearman’s correlation coefficient ρs. Results for average ρs
are in Table 1. Empirical times versus predictions are presented in
Fig. 3, we can appreciate how LMP improves over the existing
metric in predicting the arrival time for farther nodes, where
multiple paths propagation is dominant. Moreover, in Supple-
mentary Note 5 we validate the metric against network’s sparseness
and the degeneracy of shortest paths. In the limit of large and

Exponential Decay of Path Correlations Error in reconstructing  with a subset of pathsGijER 100

Numerical
Scaling law

Path Length l

b

a c

GΠ*( j → i )

j

Shortest path L L L + 1 L + 2 L + 3

i  j

Ḡij = ∑
Π∈PL( j→i)

GΠ

Epidemics

Fig. 2 Path driven analysis of Gij. a Exponential decay of GΠ(l): Log-Linear plot of numerical results versus predictions, tested on an Erdős-Rényi (ER)27

synthetic network (N = 100, ρ= 0.15) for each model. The exponential decay predicted fits the average path correlation at a given length. b Ensemble of
paths connecting two nodes i and j. Regrouping the paths via local correlation matrix elements allows for a path decomposition of Gij as in Eq. (4).
c Average absolute relative errors 〈δG〉 are plotted with their standard deviation as a function of the number of path orders included in Eq. (4). Relying
on one shortest path on average justifies only 50% of final correlation. Using the entire set PL(j→ i) of degenerate shortest paths increases this to above
~90% for processes with fast decay of correlations (β > 0), effectively retaining all necessary information to understand the amount of perturbation
exchanged. Extending the sum to other orders further improves the accuracy in reproduction of Gij. Inset: Exact values for each matrix element Gij against
approximate values �Gij for Epidemic E dynamics on top of the ER network, considering only the subset PL.

Table 1 Accuracy of temporal metrics.

E R P
Lij 0.83 ± 0.01 0.88 ± 0.01 0.40 ± 0.02
L 0.56 ± 0.01 0.88 ± 0.01 0.85 ± 0.01
LMP 0.99 ± 4e−4 0.99 ± 2e−5 0.99 ± 4e−4

To estimate the goodness of these measures in reproducing arrival times we average the
Spearman’s ρs over an ensemble of several perturbation realizations for E Epidemic, R
Regulatory and P Population dynamics. 10 synthetic networks of N = 300 nodes are generated
via B-A algorithm22. For each network, we select randomly 10 nodes as sources of a
perturbation, which is obtained numerically. ρs is then computed for the set of predictions versus
empirical arrival times T(s→ i) for each source. Average ρs and 95% C.I. for each dynamics is
presented in this table. We find that, despite the approximation introduced by scaling laws in
estimating τ i � kθi time responses, ρs for our proposed metric is close to 1, meaning that the
multi-pathways (MP) metric LMP fully predicts temporal distances.
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Fig. 3 Metrics predictions vs Empirical T(j→ i). Comparison for a single propagation instance (with associated Spearman’s scores) for Population P,
Epidemics E and Regulatory R models on a scale free network (N = 500, γ= 3). Topological shortest path length Lij, single path Lðj ! iÞ and multi paths
(MP) LMPðj ! iÞ distances are compared against empirical times T(j→ i): integrating multiple paths in LMP results in an exact linear relationship with T,
empirical and predicted values have been rescaled for a better representation. Note that Lðj ! iÞ’s lower Spearman’s score with respect to Lij in the
Epidemics case is due to the single-path distance being affected by the broad distribution of degrees of the Scale Free model, where accounting for multiple
paths becomes fundamental. We discuss this point in detail in Supplementary Note 5. Wavefronts: the geometry predicted by LMP allows to transform the
complex propagation in a concentric pattern9 where the propagation of the perturbation resembles the traveling wave solution of reaction–diffusion
systems2,23. Interestingly, different perturbations patterns arise from the same topology Aij. Node size is proportional to its degree and nodes are located
with radial distance from source r / LMP. Edges are drawn following the path Π* with highest correlation GΠ� . We can appreciate qualitatively the Fisher-
like23 wavefront expansion.
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sparse networks, single paths prevail, and one could expect single
and multi-paths metrics to converge. Nevertheless, we highlight the
importance of accounting for the existence of multiple paths even
in this regime, especially for scale free topologies (see Fig. 4 for a
detailed view of propagation on multiple paths on a simple model).

Testing different processes shows the adaptive nature of the
new metric: starting from the same underlying network Aij, a
scale-free (B-A22) synthetic graph of N= 500 nodes, LMPðj ! iÞ
uncovers the hidden geometry induced by the set of interactions
M. For instance, in the case of Population dynamics P hubs are
slow responders and placed far from the source, whereas for
Regulatory R the degree-independence of τ(k) results in a
discretized propagation pattern driven by the topological distance
Lij9. In Supplementary Note 6 we provide a complete comparison
of networks’ embeddings using the different metrics. Embedding
nodes in this new effective distance2,9 with a radius from source
r / LMPðj ! iÞ, the complex propagation of the perturbation
front resembles the traveling wave solution for a reaction-
diffusion system modeled by a Fisher-like equation23.

Predicting an infection outbreak on real social networks. The
framework discussed is employed to predict arrival times of an
epidemic outbreak on two real social network of contacts. To
account for the social ties that drive the infection, networks
reconstructed from real datasets of social contact patterns and
population structure offer valuable information and provide the
ideal environment to perform epidemiological simulations and
analyses. The BBC Four Pandemic24 dataset was built with the
aim of simulating an infectious disease outbreak on a real net-
work of human interactions and was obtained by tracking 469
individuals in Haslemere, London. Additionally, we also make use
of the network of contacts25 of 327 students of a high school in
Marseille, France. To test our metric, we adopt an SIS (Suscep-
tible-Infectious-Susceptible) epidemic model: _xi ¼ �μxiþ
β∑jAijð1� xiÞxj, with parameters β= 0.015 and μ= 0.01, yield-
ing a reproduction ratio R0= β/μ= 1.5, and we select the node
with maximum degree as source of the infection outbreak. Albeit
simple, this compartmental model can be employed to model
infectious processes in which recovering from an infection does
not yield a long-lasting immunity, such as influenza. The

measures described so far have been devised to estimate the
temporal propagation of a signal in the proximity of a steady
state, exploiting the linearity conditions; the purpose of this
section is to test this measure in a non-linearity regime. In
Supplementary Note 7 we also discuss an application of LMP on
diffusion dynamics. We first validate the distance LMP by com-
paring it with perturbation propagation times T(j→ i), panels A
and B in Fig. 5. We then simulate an infection outbreak from the

Fig. 4 Detailed view of spatiotemporal perturbation propagation. a Descriptive network Aij, in which correlations Rij and time delays τi (numerically
estimated, see Supplementary Note 4) can be explicitly shown for an E Epidemic process. Perturbation from source node 1 impacts target node 4 via the
ensemble of paths P(1→ 4). b Selected nodes’ normalized responses to the perturbation in 1. c We highlight with different colors the 3 principal paths that
connect the two nodes: it is interesting to notice the strong heterogeneity found in pair-wise Ri+1,i factors that constitute each path GΠ. Path correlations GΠ

and path’s lag times τΠ are the building blocks of time distances. d Lð1 ! 4Þ selects τΠ2

9 being the smallest term, however, since Π1 is the main actor in
determining the linear response of 4 (GΠ1

) its delay time has to be considered.

Fig. 5 Epidemic spreading. We model a Susceptible-Infected-Susceptible
dynamics on real networks of contacts, and predict the arrival times of a
perturbation in the epidemic state. The BBC Four Pandemic24 dataset (a)
and the High school25 network of contacts between students (b) are paired
with the latent geometry of the spreading phenomenon with susceptible
nodes at a radial distance r / LMP from the source. In c, d, the infection
times Tinfection(s→ i) are compared with the temporal multi-pathways
(MP) distance LMP.
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source node s, with the initial condition for the network state:
xi= 0, ∀ i, i ≠ s, and source node state xs(t= 0)= 1.0. We then
solve the set of coupled equations up to the steady state, and
calculate the empirical time required for a target node i to get
infected Tinfection(s→ i) as the time in which its probability
overcomes a 0.5 threshold: xi(Tinfection)= 0.5. Results of infection
times versus LMP are presented for the two empirical networks in
panels C and D of Fig. 5. We find that, despite losing its accuracy
found in the linearity regime, the measure improves over Lij
shortest path distance and allows for a better understanding of
infection times even in absence of more detailed contact infor-
mation (possibly encoded in edges weights).

Discussion
The task of predicting the temporal interval for a perturbation ori-
ginating from a node to reach all nodes in the network is of para-
mount importance in understanding spreading behaviors and
predicting signaling and response properties in the context of net-
work control9–11. We address this challenge working in a theoretical
framework that allows simple and intuitive understanding of per-
turbation patterns, building on a recent advances in this
direction2,5,13,14,19. In this article we have performed a path-driven
analysis of perturbation propagation in complex networks, moving
beyond the traditional ansatz that perturbations spread mostly along
shortest paths among network units. Our findings highlight that
multiple paths contribute to propagate perturbations and, under the
rationale of the exponential decay of correlations, we redefine Gij

matrix elements by exploiting the vast ensemble of pathways that
connect any pair of nodes. We have introduced a new metric,
LMPðj ! iÞ, which accurately predicts the arrival times of a per-
turbation for any dynamical process that can be described by a set of
non-linear functions, combining universal properties predicted by
scaling laws that can be estimated analytically without relying on
simulations. We have validated numerically these predictions using
models for Epidemic spreading, Regulatory interactions and Popu-
lation dynamics, finding that despite the necessary approximations
introduced by scaling laws predictions, the concerted behavior of
different paths in transmitting the signal is well captured by the new
metric. Finally, we exploit the prediction of the latent geometry of
these processes to embed the network in a space in which the
spreading of a perturbation resembles the traveling wavefront of a
reaction–diffusion-like process, further developing the bridge
between network-driven processes and the geometry they induce13.

Data availability
The data used in this work are publicly available from the original references.

Code availability
The code to perform the analysis will be available upon request.
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