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Accelerated quantum Monte Carlo with
probabilistic computers

Shuvro Chowdhury® '™, Kerem Y. Camsari' & Supriyo Datta?

Quantum Monte Carlo (QMC) techniques are widely used in a variety of scientific problems
and much work has been dedicated to developing optimized algorithms that can accelerate
QMC on standard processors (CPU). With the advent of various special purpose devices and
domain specific hardware, it has become increasingly important to establish clear bench-
marks of what improvements these technologies offer compared to existing technologies. In
this paper, we demonstrate 2 to 3 orders of magnitude acceleration of a standard QMC
algorithm using a specially designed digital processor, and a further 2 to 3 orders of mag-
nitude by mapping it to a clockless analog processor. Our demonstration provides a roadmap
for 5 to 6 orders of magnitude acceleration for a transverse field Ising model (TFIM) and
could possibly be extended to other QMC models as well. The clockless analog hardware can
be viewed as the classical counterpart of the quantum annealer and provides performance
within a factor of <10 of the latter. The convergence time for the clockless analog hardware
scales with the number of qubits as ~ N, improving the ~ N? scaling for CPU implementa-
tions, but appears worse than that reported for quantum annealers by D-Wave.
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and others, quantum computing has been perceived by

many as the natural simulator of quantum mechanical
processes that govern natural phenomena. It became more pop-
ular with the discovery of powerful algorithms like Shor’s integer
factorization* and Grover’s search® offering significant theoretical
speedup over their classical counterpart. A different flavor of
quantum computing was also theorized in Refs. ©= which makes
use of the adiabatic theorem!V. It was later shown that these two
flavors of quantum computing are equivalent!!. The technologi-
cal difficulties of realizing noiseless qubits with coherent inter-
actions among the qubits have focused recent efforts on the Noisy
Intermediate Scale Quantum (NISQ) regime!? and serious pro-
gress has been made in recent years!3-1°.

In the absence of general-purpose quantum computers,
quantum Monte Carlo (QMC) still remains the standard tool to
understand quantum many-body systems and to investigate a
wide range of quantum phenomena—including magnetic phase
transitions, molecular dynamics, and astrophysics?-23. Much
effort has been made to develop efficient QMC algorithms of
various sorts??~31 which can be suitably implemented on stan-
dard general-purpose classical processors (CPU). Interestingly for
many important quantum problems, the efficiency of QMC is
significantly affected by the notorious sign problem32. The sign
problem manifests itself as an exponential increase in the number
of Monte Carlo (MC) sweeps required to reach convergence®3.
The origin of the problem is that qubit wavefunctions can
destructively interfere in the Hilbert space. Quantum problems
that do not pose a sign problem are given a special name sto-
quastic and it is believed non-stoquasticity is an essential ingre-
dient for adiabatic quantum computing (AQC) to be universal!!
and to provide significant speedup over classical computers343>.
Recently in ref. 3¢, King et al. demonstrated that with a physical
quantum annealing (QA) processor, it is possible to achieve 3
million times speed up with scaling advantage over an optimized
cluster-based continuous time (CT) path integral Monte Carlo
(PIMC) code simulated on CPU. In a surprising
demonstration37-38, King et al. applied the Transverse Field Ising
(TFI) Hamiltonian on a geometrically frustrated lattice initialized
with a topologically obstructed state. Note that this is a different
type of obstruction than the one commonly discussed in the
related literature (see ref. 3 for example). This obstruction makes
it difficult for an algorithm based on local update schemes to
escape the obstruction, whereas a quantum annealer might help
escape the obstruction faster. This is interesting because until this
result, results on TFI, a well-known stoquastic Hamiltonian, have
been routinely benchmarked with quantum Monte Carlo
algorithms#? with no clear scaling differences for practical
problems*!. In the theoretical computer science community, the
possibility of obtaining a scaling advantage for AQC with sign-
problem-free Hamiltonians (such as TFI) is still being actively
discussed*>43.

PIMGC, one of many variations of QMC, is the state-of-the-art
tool for simulating and estimating the equilibrium properties of
these quantum problems. Powerful and efficient cluster-based
algorithms exist for ferromagnetic spin lattices*4. However, it is
known that the efficiency of the cluster algorithms drops when
frustrations are introduced in the lattice although alternative
approaches that compromise between local and global updates
were explored®” in the context of the classical Ising model.

In recent years, a lot of new devices and domain-specific
hardware have emerged to augment the performance of classical
computing/simulations in stark contrast with building quantum
computers: which is a complete paradigm shift. In this paper, we
explore the possibility of hardware accelerating QMC with one
such technology that exploits classical and probabilistic resources,

Envisioned by Feynman! and later formalized by Deutsch?

namely, a processor based on probabilistic bits (p-bits) which can
be viewed as a classical counterpart of the QA processor®. A
p-bit is a robust, classical, and room-temperature entity that
continuously fluctuates between two logic states and the rate of
this fluctuation can be controlled via an input signal applied to a
third terminal®’. p-bits can also be made very compact and can
provide true randomness (important for the problem we address
in this paper, see Supplementary Note 5) instead of pseudo-
random generators, commonly used in software-based solutions.
First appeared as a hardware realization of a binary stochastic
neuron in ref. 47, later a proof-of-concept p-computer was first
demonstrated in ref. 48, p-bit-based hardware solutions have been
proposed to improve performance for optimization problems®’,
classical and quantum Monte Carlo®?, Bayesian inference®! and
machine learning>2.

In this study, we demonstrate hardware acceleration using
p-bits by an optimized probabilistic computer. This system
employs the discrete-time (DT) Path Integral Monte Carlo
(PIMC) approach, using the Suzuki-Trotter approximation, and
features a sufficient number of replicas to ensure satisfactory
accuracy. This design uses massive parallelism and suitable
synapses to maximize the number of sweeps collected per clock
cycle, resulting in a three-order-of-magnitude improvement in
convergence time on a moderately sized programmable gate array
(FPGA) compared to a CPU. This design strategy also enables the
easy translation of the digital circuit into a clockless mixed-signal
design featuring fast resistive synapses and low barrier magnet
(LBM) based compact p-bits. Using SPICE (simulation program
with integrated circuit emphasis) simulations grounded in
experimentally benchmarked models, we anticipate an additional
two to three orders of magnitude speedup. Figure 1 summarizes
our approach, illustrating the four different hardware types and
their expected relative performances. Overall, our demonstration
offers a roadmap for achieving five to six orders of magnitude
acceleration for a transverse field Ising model (TFIM) and has the
potential to extend to other QMC models as well. The clockless
analog hardware can be considered the classical counterpart of
the quantum annealer, delivering performance within a factor of
less than 10 of the latter. The convergence time for the clockless
analog hardware scales with the number of qubits as approxi-
mately N, which is superior to the ~ N? scaling for CPU imple-
mentations but appears worse than that reported for quantum
annealers.

Results and discussion
We emulate a quantum problem from a recent work3® where a
Transverse Field Ising Hamiltonian (which is stoquastic)
Hoy=— <<le§]ijofaf + inlaj.‘) 0]
is applied over a two-dimensional square-octagonal qubit lattice
as shown in Fig. 2a. The exotic physics offered by this qubit lattice
is of practical interest and has been described in ref. 3623, The
square-octagonal lattice can be viewed as a (2L — 6) x L anti-
ferromagnetically (AFM) coupled triangular lattice with a four
ferromagnetically (FM) coupled spin basis, giving rise to a total of
4L(2L — 6) qubits in the lattice. The resulting lattice consists of
square and octagonal plaquettes which are periodically connected
along one direction and it has open boundaries in the other
direction. In the bulk of the lattice, each qubit is connected to
three other neighbors whereas, at the open boundary, some qubits
are connected to just one neighbor, and others are connected to
two neighbors. To increase the degeneracy of the classical ground

state, the AFM couplings at the open boundary are also reduced
to half of that in the bulk.
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Fig. 1 Performance of specially designed p-computers, digital and clockless, relative to a CPU and a quantum annealer. a \We use an example problem
consisting of a lattice of qubits described by a transverse field Ising model. We simulate it classically using the Suzuki-Trotter transformation and calculate
a pre-defined order parameter using three different types of hardware whose relative convergence times are sketched in b. The variations in performances
due to variations in implementation technologies are indicated with thick lines. The four types of hardware are also shown schematically—c a von
Neumann machine (CPU)—which simulates the problem by breaking down the problem into a series of instructions and executing them sequentially one
after another, d a physical quantum annealing processor (QA) that maps the problem onto an interconnected network of rf-SQUIDs (radio-frequency-
superconducting quantum interference devices) emulating qubits and rf-couplers coupling those qubits e a digital p-computer built using field
programmable gate array (FPGA) to lay out a spatial network of interconnected probabilistic p-bits and f a clockless p-computer constructed by
interconnecting a network of p-bits through resistors. The quantum annealing processor image has been taken from Harris et al. Phase transitions in a
programmable quantum spin glass simulator. Science 361, 162-165 (2018). Reprinted with permission from AAAS.

Each square or octagonal plaquette in this lattice is composed
of qubits from three different sublattices and has three (an odd
number) AFM bonds (for both octagonal and square plaquettes).
This leads to a frustrated lattice since it is impossible to satisfy all
the bonds simultaneously. Three different qubit sublattices within
the lattice are indicated by the red, green, and blue colors in
Fig. 2a.

In this benchmark study, we observe the average equilibration
speed of the average order parameter when initialized with a
particular classical state (in this study we will be referring to two
particular initial states: counterclockwise (CCW) and ordered, see
Supplementary Note 1 for more details) in probabilistic computer
which is based on discrete-time path integral Monte Carlo (DT-
PIMC) with many interconnected replicas of the original qubit
lattice but the qubits are replaced by p-bits (see Methods section).
We will compare this result against the general-purpose processor
(CPU) and with the quantum annealing processor from3°. The
procedure to obtain the average order parameter was defined in
ref. 3¢ and has been outlined in the Methods section.

Design considerations for the probabilistic emulator. We start
the process of designing our p-computer with the trotterization of
the qubit lattice using 10 replicas and involving 40L(2L — 6) p-
bits, ranging up to 14,400 p-bits for L =15. Traditional Gibbs
sampling or single-flip Monte Carlo sampling takes too long to
converge for such a large network and we need a scheme that
allows us to simultaneously update many p-bits. But it is also

well-known that updating two p-bits simultaneously which are
connected to each other leads to erroneous output. We realized
that the limited connections among the p-bits in the replicated
network could be utilized to achieve massive parallelism where
many p-bits can be updated in parallel and therefore can be used
to speedup the convergence. To obtain such massive parallelism,
we next applied graph coloring on the replicated p-bit network, as
recently explored in ref. 4° for general and irregular lattices.
Graph coloring assigns different colors to p-bits that are
connected to each other and ensures that no two p-bits that are
connected to each other have the same color thus enabling us to
update all p-bits in the same color group simultaneously.
Although not immediately obvious to many, it can be easily
checked that the qubits of the square-octagonal lattice under
consideration can be colored using just two colors (i.e., the lattice
is bipartite). If we always choose an even number of replicas
(which is what we do in this work), then we found that the
translated p-network can also be colored using just two colors
(i.e., the p-bit network also remains bipartite), as shown in
Fig. 2b. Hence with just two colors, half of the p-bit network can
be updated in one clock cycle and the other half of the network in
another, producing one sweep in every two clock cycles. In
general, compared to a single flip Monte Carlo implementation
which updates one spin in one clock cycle, this graph-colored
approach can reduce the number of clock periods required to
converge by a factor of ~ nr/C (nr is the number of p-bits and Cis
the number of colors) assuming same clock period for both cases.
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Fig. 2 Example problem addressed in this paper following King et al.35.
a quantum problem solved on quantum annealing processor involves a two-
dimensional square octagonal lattice of qubits having 2L qubits in one
direction and 2(2L — 6) qubits in the other direction (illustration shows
L=6). The blue bond between two qubits denotes ferromagnetic (FM)
coupling (Ugpm = — 1.8) and yellow bond indicates antiferromagnetic (AFM)
coupling (Japm = 1.0). The AFM couplings at the open boundary have
Jagm = 0.5, b Trotterized mapping solved on classical computers, ¢ Trotter
error with 10 replicas: (Upper panel) Equilibrium values predicted from 10
replica probabilistic computer emulation and four qubit continuous time
path integral Monte Carlo (4q CT-PIMC) algorithm developed in ref. 36
(red hollow circles: p-computer data, blue hollow squares: 4q CT-PIMC
data). (Lower panel) Absolute (blue hollow circles) and relative errors (red
hollow squares) in predicting equilibrium values between the two methods
are shown.

This leads us to argue that a p-computer should exhibit weaker
dependence with the increasing size of the network compared to
the CPU because even though the number of p-bit increases in
the network, one can also proportionally increase the number of
p-bits (we estimate that up to one million of p-bits can be

integrated on a chip with a reasonable power budget®*) to be
updated in a given clock, yielding a factor of n (= number of
p-bits in the network) improvement in scaling over CPU. This
demonstrates the power of a properly architected p-computer
over a CPU where the scope of such parallelization is very limited.

Results from digital p-computer emulation on FPGA. To
demonstrate the utility of such massively parallel architecture, we
next emulate this graph-colored p-bit network by implementing it
on FPGA using Amazon Web Services F1 instance (more details
of the FPGA implementation can be found in Supplementary
Note 2). Various implementations of p-bits including digital and
analog have been discussed in refs. >»*>. The digital imple-
mentations of p-bits are costly in terms of resources and require
thousands of transistors per p-bit and so we have only been able
to fit the smallest lattice size (L = 6) with the resources provided
therein. But we expect that when replaced with nanomagnet-
based stochastic MTTs, the situation would improve drastically. It
is also equally important to carefully design the synapse that can
provide updated information to p-bits by quickly responding to
any changes in the state of neighboring p-bits. In the spirit of
ref. %, we carefully choose our synapse to update nrf/C p-bits
per second providing f/C sweeps per second. The clock period 1/f
needs to be minimized carefully so that the synapse can correctly
calculate the response while providing maximum throughput.
This choice of FPGA implementation also provides a unique way
that permits a clear pathway to a mixed signal circuit. The FPGA
is less than an ASIC (application-specific integrated circuit), but
the mixed signal especially with MT]Js would be much more than
an ASIC.

In our FPGA demonstration, we have been able to run the
smallest lattice with an 8 ns clock period (16 ns per sweep since
we have two colors) and we believe that given enough resources
we should also be able to run the bigger lattices at the same clock
frequency. We project convergence times for other lattice sizes
based on CPU simulations. These ‘projections’ are based on
actual implementation with real devices and should be reliable,
given our digital architecture and the fact that we did not use the
largest FPGA available today.

For the other lattice sizes, we obtain the average order
parameter versus the number of sweeps plots via running
MATLAB on CPU (a verification of FPGA output matching
MATLAB output is also provided in Supplementary Note 2) and
then multiply the x axis of that plot by 16 ns per sweep. These
lead to the curves in Fig. 3a, where we report the average order
parameter, (m(f)) versus time curves obtained from p-computer
emulation for the same four lattice sizes of square-octagonal
lattice and with the same parameters as in ref. 3 but only with
counterclockwise (CCW) wound initial condition. The curves
with clockwise wound (CW) initial condition are similar to these
CCW curves (slightly faster than CCW) whereas curves for
ordered initial condition (not shown) show much faster
convergence.

In Fig. 2¢, we report the error in predicting the saturation value
from using finite replica in our p-computer emulations. We
compare our results against the 4q CT-PIMC algorithm
developed in ref. 36. To ensure fidelity, we use the same C++
codes provided therein. With 10 replicas, we reproduce the CT-
PIMC results with an absolute difference of 0.01-0.03 from the
smallest to the largest lattice sizes (see Supplementary Note 4 for
CT-PIMC results). As reported in ref. 3%, we do not observe
systematic changes in Trotter errors with lattice sizes.

Clockless autonomous operation. In the last subsection, we have
presented a digital implementation of a p-computer based on the
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Fig. 3 Extracting convergence times from simulation results following the
protocol described in ref. 36, a Average order parameter (m) as defined in
Eq. (2) (Eq. (2) in ref. 3) are obtained for four different lattice sizes (blue:
6 x 6, red: 12 x9, yellow: 18 x 12, purple: 24 x15) using the mapped p-bit
network. We have used I'=0.736, and f=1/0.244 for which the scaling
difference was reported to be maximum. We show results only for the
counterclockwise wound initial condition as explained in the Supplementary
Note 1. Only the curve labeled as 6 x 6 is obtained through actual field
programmable gate array emulation and the others are projected based on
CPU simulation. All data points are averaged over 1000 different runs and
the errorbars correspond to 95% confidence interval around the mean.
Filled circles represent data points while the solid lines represent
aexp(—bx) + cexp(—dx) + g type fit. b Mean squared error (MSE) plot for
each lattice size (blue: 6 x 6, red: 12 x 9, yellow: 18 x 12, purple: 24 x 15;
hollow circles: data, dashed lines: fit) calculated from their corresponding
*g' values in a. The scaling is more clearly visible in this plot. Also shown is
the 0.0025 threshold in dashed green which is used to define convergence.

graph-colored architecture. Even though it is not immediately
obvious to many, in that architecture, we managed to use just two
colors which happen to be the minimum number of colors pos-
sible and thus maximizes the number of p-bits that can be
updated simultaneously. This allowed us to greatly reduce the
convergence time compared to single-flip Monte Carlo which
updates just one p-bit at a given clock period and thus converges
very slowly. However, there are two problems associated with this
graph-colored digital implementation: first, a fully digital imple-
mentation of a p-bit requires thousands of transistors which
increases the hardware footprint per p-bit quite significantly. This
can be mitigated somewhat through the use of nano-magnet-
based compact p-bits which uses just three transistors and an

MT]J. However, this also requires the use of digital to analog
converters for each p-bit since the input to such compact p-bits is
analog. The second issue with the digital implementation is that
to perform a colored update, all p-bits need to be synchronized
through a global clock, the distribution of such clock throughout
the chip becomes complicated with the increasing number of
p-bits and also slows down the frequency with which the system
can be operated.

To circumvent the above issues, we next visit a fully analog
implementation of a p-computer with a clockless autonomous
architecture. The clockless architecture is inspired by nature:
natural processes do not use clocks. In clockless autonomous
architecture, we do not put any restrictions on the updating of
p-bits. Each p-bit can attempt to update at any point in time
without ever requiring a clock to guide them. Of course, errors
will be incurred if two connected p-bits update themselves
simultaneously, and therefore with this scheme, it is essential to
minimize the probability of happening that. If there are d
neighbors to each p-bit then the probability that two connected
p-bit will update simultaneously is roughly d x s where s = /1y,
1/7y is the frequency with which a p-bit attempt to update itself
and 7; is the time required to propagate the information of a p-bit
update to its neighbors. To make this clockless autonomous
operation work it is essential to have s <1 (usually s = 0.1 works
well). This interesting possibility of clockless autonomous
operation was introduced in ref. 5% where a digital demonstration
was made using FPGA. However, in this work, we use a simple
resistive synapse-based architecture. Since resistors can instanta-
neously respond to the change in applied voltage, this type of
synapse should be very fast compared to the average fluctuation
time of s-MTJ-based p-bits (~100ps). We demonstrate the
validity of this scheme by showing a SPICE simulation of a 6 x 6
triangular AFM lattice with classical spins as shown in Fig. 4a. As
mentioned earlier, the triangular lattice is the base lattice of the
square-octagonal lattice we have used so far. A partial view of
the analog circuit simulated in SPICE which corresponds to the
lattice above is also shown in Fig. 4d. We only show the resistive
analog synapse providing the input for a single p-bit as marked.
We use similar parameter values and the same boundary
conditions as we have used for the square-octagonal lattice (the
same AFM coupling strength (|J4rp| = 1) inside the lattice and
[Jarm| = 0.5 at the open boundaries). We also use the same
definition for the order parameter. To keep it similar to what we
have done in the previous section, we also use CCW initial
condition in this example. Doing these help us to solve the
problem in SPICE within a reasonable amount of time.

Figure 4b shows the relaxation of the order parameter with
time for the example described in Fig. 4a. We use the same SPICE
p-bit model used in ref. °7. We also show the relaxation curve
obtained via a 3-graph-colored architecture (the triangular lattice
in this example is 3-colorable). The graph-colored system as
shown in Fig. 4c converges (based on the criterion we have used
so far) around 72 sweeps. In 125 MHz FPGA that we have used
earlier, this would take around 72 x 3 x 8 ns =1.73 ps, whereas
the corresponding analog circuit implementation converges in
around 5 ns, converging around 400 times faster than similar
digital implementation used earlier. Although the circuit used
here is not programmable, it nicely illustrates the principle that
around two orders of additional speed-up can be obtained with
the use of a properly designed fully analog and clockless
p-computer.

Convergence time scaling results. Finally, we show the time
scaling for four different hardware in Fig. 5. We directly adopt the
optimized 4q CT-PIMC (in CPU) and QA processor data from

COMMUNICATIONS PHYSICS| (2023)6:85 | https://doi.org/10.1038/s42005-023-01202-3 | www.nature.com/commsphys 5


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01202-3

(a)

Periodic boundary

6x6 classical triangular AFM lattice

~

0.8

Clockless p-computer (SPICE)
3-colored GC
(scaled with 20 ps clock period)

10 Tte__ 20 25 30
Time (ns) el
s e
S = ==
) D3 g
L
0 == B IR ==
Tael e
% . \(?%R 41*:{,

digital p-computer

clockless p-computer

Fig. 4 Comparing digital to clockless p-computer. a A 6 x 6 antiferromagnetically (AFM) coupled triangular lattice with classical spins is shown. b The
convergences of the order parameter for the lattice shown in a are plotted for two different p-computer design approaches (red solid line: graph-colored
based digital design and blue solid line: nanomagnets based analog design) discussed in this work. We have used =2 in this example. For SPICE
simulation, we averaged results over 500 different runs whereas for the graph-colored result, we averaged over 1000 different runs. ¢ The graph-colored
(GC) based digital p-computer design where the convergence is estimated from MATLAB simulations assuming ¢ x f. (¢ = 3 for triangular lattice) sweeps
are collected every per second, f. being the clock frequency. d The clockless p-computer design which is simulated using SPICE simulator.

ref. 3. A simple curve fitting to CPU data reveals a roughly N2Q

scaling where No=4L(2L — 6) is the total number of qubits in
the lattice. On the other hand, the p-computer results show a
prefactor improvement and an improvement in scaling compared
to a CPU. For a more direct comparison, we also show the scaling
of our graph-colored algorithm simulated on CPU which also
shows an ~ N, scaling behavior. We observe an ~ N, scaling for
p-computer and as noted before, the reason for such a scaling
improvement is due to the exploitation of massive parallelism
where the number of p-bits that can be updated also increases
with the lattice size and this is not due to an algorithmic
improvement (the scaling with the number of p-bits is provided
in Supplementary Note 6).

In our perspective, any CPU-based solution is unlikely to
achieve the same level of parallelism as our p-computer, as this
would necessitate the use of “N” processors or threads. While
we acknowledge that specialized CPU implementations employ-
ing multiple threads and/or processors might approximate the
parallelism achieved with our custom hardware, our optimized
implementation suggests that achieving such parallelism (scal-
ing with N-threads) is not trivial. Additionally, beyond digital
implementations, nanodevice-based ASICs could support
millions of p-bits®4, taking N to unprecedented levels. This

6

degree of parallelism may be challenging to replicate in
conventional digital hardware, at least from a practical
standpoint.

We note here that we are investigating a quantum sampling
problem in this work that measures the equilibration time of a
specially prepared lattice. The measured convergence time does
not depend on the number of replicas run in parallel. This is
because the reported time is the ‘average’ obtained from R
identically prepared trials. Whether these trials are taken in
parallel or in series does not affect the convergence time we (or
King et al.) report. Increasing the number of replicas simply
reduces the variance of the random variable we are estimating
and has no effect on the reported wall-clock times or convergence
times in any of the platforms (annealer, CPU, p-computer). For
the same reason, we do not fit as many parallel replicas in our
FPGA as possible to make our measurements, even for smaller
lattice sizes.

On the contrary, in optimization-type problems where the
quantity of interest is “time to solution” (TTS), it makes sense to
utilize a p-bit/qubit system to the fullest by running as many
parallel instances as possible in one run (to reduce TTS linearly
by reducing the number of repetitions necessary). In such cases,
appropriate care must be taken when comparing the performance
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Fig. 5 Convergence time for problems of increasing size using different
hardware implementations. The convergence time is extracted using the
protocol described in Data fitting and convergence criterion subsection of
Method section for the problem defined in Fig. 2. The data for optimized
CPU (yellow cross) (mean of counterclockwise and clockwise wound initial
states) and quantum annealing processor (red triangles) (for counter
clockwise wound initial state only) are extracted from the information
provided in King et al.36 (Fig. 4 and supplementary Fig. 13 therein), while
the results for graph-colored MATLAB (blue circles) (simulated on CPU),
digital (purple star) and clockless p-computers (green squares) are
obtained in this paper as described in the text. This CPU simulation of graph
colored algorithm is performed with a vectorized MATLAB code running on
Intel(R) Core(TM) i7-10750H CPU (2.60 GHz, 16 GB RAM, Windows 11
Home operating system and single thread simulation are used). As
mentioned in the caption of Fig. 3, only the leftmost data point on the
p-computer (FPGA: field programmable gate array) curve is obtained from
actual FPGA emulation. The rest of the points on the curve are projections
based on the simulations on the CPU. The slope of the p-computer curve is
clearly different (and smaller) from the graph-colored MATLAB (CPU) and
optimized four qubit continuous time path integral Monte Carlo algorithm
(simulated on CPU) curves (the exact slopes found using curve fitting are
listed in Supplementary Note 7).

of specialized hardware with CPU performance which is usually
utilized fully (see ref. 58 for example).

Our results for the digital implementation of p-computer
emulated on 125 MHz FPGA show that for the largest lattice size
(L=15) that has been emulated in ref. 3% we should get
a~ 1000 x improvement over a single thread implementation on
CPU. But as it stands, the current FPGA emulations of our
p-computer are ~ 3 orders of magnitude worse than the physical
quantum annealing processor. We expect another one order of
magnitude improvement might be possible with this approach by
using a customized mixed-signal ASIC design with stochastic
magnetic tunnel junction (sMTJ)-based p-bits. However, based
on the example of clockless operation shown in Results and
discussion, we project another two orders of magnitude
improvement in convergence time. This brings the gap with the
quantum annealing processor down to one order or less. The
operation of the quantum annealing processor might be governed
by non-local quantum processes leading to the \/N_Q scaling
predicted in ref. >°, though there are not enough data points to be
certain.

Although we did not do a direct GPU (graphics processing
unit) implementation of the problem under consideration, we
looked for the GPU emulations of bipartite (2-colorable) graphs
(like the one being simulated in this work) in the literature. In a
typical GPU one gets around 10-30 flips/ns (the key metric used
to compare the performance and the higher flips/ns gives better
performance)®0-93 for such graphs whereas our designs get 90
flips/ns (1440/2 = 720 p-bits being flipped at every 8 ns) from the

actual FPGA design for the smallest lattice size and will increase
as we enable ourselves to integrate more and more p-bits.

Conclusion

In this work, we have presented a roadmap for hardware accel-
eration of QMC which is ubiquitously used in the scientific
community to study the properties of many-body quantum sys-
tems. We have mapped a recently studied quantum problem into
a carefully designed autonomous probabilistic computer and
projected 5-6 orders of magnitude improvement in convergence
time which is within a factor of 10 of what has been obtained
from a physical quantum annealer. The massively parallel
operation of a probabilistic computer together with the clockless
asynchronous dynamics provides a significant scaling advantage
compared to a CPU implementation. Robustness, room-
temperature operation, low power consumption, and ultra-fast
sampling—these features make it interesting to investigate the
applicability of probabilistic computers to other quantum pro-
blems beyond the TFI Hamiltonian studied in this work.

Methods

Procedure to calculate average order parameter. For the sake of completeness,
we provide the details of the calculation of average order parameter in the
following:

1. Average of four FM-coupled qubits is computed for each basis in the lattice.
Depending on the sublattice the basis belongs to, these averages are denoted
aS May,red> Mavgreen OF Mavblue (€€ Fig. 2). As mentioned earlier, averaging
over basis turns the lattice into an AFM-coupled triangular lattice.

2. For each triangular plaquette in the transformed triangular lattice (including
those formed from the periodic boundary), compute the complex-valued
quantity known as pseudospin which is defined as follows:

(pl:\/ig(

3. Average over all triangular plaquettes, i.e.,

2mi/3 Ami/3
May.red te / Myy green t+e / mav‘blue)‘ (2)

1
(conf = Nipl;(pl,ﬁ (3)

where Ny is the number of plaquettes (including periodic boundaries in the
quantum lattice).

4. Obtain the average order parameter by taking the average of absolute values
for different configurations of the lattice, i.e.,

(m) = zk:pk‘(conf.k B 4)

where py is the probability of occurrence for configuration k.

Discrete-time path integral Monte Carlo. Our p-computer is a discrete-time path
integral Monte Carlo (DT-PIMC) emulator based on the Suzuki-Trotter
approximation®®. The idea of such a hardware emulator for QMC was first pro-
posed in ref. 46, In this scheme, one tries to approximate the partition function of
the quantum Hamiltonian, Zg:

Zq= tr[exp(—ﬁHQ)} (5)

with a classical Hamiltonian, Hcy such that the partition function corresponding to
Hg, is equal to Zqg. For the quantum Hamiltonian in Eq. (1), one finds that the
following classical Hamiltonian, Hqy:

r

Hg=-— kzz:l %]H,ljmi,kmj-,k + %:]Lmi,kmi.kﬂ ©

with
Ty =Tylm @
1 = ~(0.5/f)1n[tanh (Br/7)] ®

and m;; € { — 1, + 1} yields the same Zg, in the limit r — oo. The error goes down as
O(1/r%) and in practice, one can find a reasonably good approximation with a
finite number of replicas in many cases.

Data fitting and convergence criterion. Each curve in Fig. 3(a) is then fitted
with ae~0% 4 ce=4 ¢ type fitting model (a justification for using this fitting
model is provided in the Supplementary Note 3) where g represents the prediction
for equilibrium value of average order parameter from p-computer emulation.
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Figure 3b shows the decay in mean squared error (MSE) as time increases. It also
clearly shows that the time required to reach a fixed MSE level increases as the size
of the lattice increases. We define convergence time as the time required to reach
an MSE level of 0.0025, which is equivalent to finding the time required to reach
g — 0.05 in Fig. 3a and was used to define convergence in ref. 3°.

Averaging over sweeps from parallel runs to avoid autocorrelation. We note
that to get the true average convergence time of the p-bit network, we run each
lattice emulation many times each time with different seed in random number
generator and compute the average order parameter at each time point by taking
an average of the absolute value of the order parameter calculated at the same time
point from all the runs only. This allows us to eliminate the correlation between
sweeps taken from the same run which yields longer convergence times and does
not represent the actual convergence time of the network.

More about the implementation of the clockless p-computer circuit. To
simulate the analog circuit in Fig. 4d, we have used a simple voltage divider based
synapse with Ry = 15MQ, R, = Ry/10, R, = Ry/4 (for bias inputs) and R; = Ry/3.5
(for the AFM weight of magnitude 1). For p-bits on the border along horizontal
direction (open boundary condition), we have used R| = R,/2 (to represent the
AFM weight of magnitude 1) and R = R, (to represent the AFM weight of
magnitude 0.5).

Data availability
The data used for generating the figures are available upon request to the author (email:
datta@purdue.edu, schowdhury.eee@gmail.com).

Code availability
The codes used for generating the figures are available upon request to the author (email:
datta@purdue.edu, schowdhury.eee@gmail.com).
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