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Dominant andreev reflection through nonlinear
radio-frequency transport
Tingyu Zhang 1, Hiroyuki Tajima 1✉, Yuta Sekino 2,3, Shun Uchino4 & Haozhao Liang 1,3

It is found that Andreev reflection provides a deterministic teleportation process at an ideal

normal-superconductor interface, making it behave like an information mirror. However, it is

challenging to control the Andreev reflection in a spatially-separated junction due to the

mode mixing at the interface. We theoretically propose the laser-induced Andreev reflection

between two-component Fermi superfluid and normal states without mode mixing via

spatially-uniform Rabi couplings. By analyzing the tunneling current up to the fourth order, we

find that the Andreev current exhibits unconventional non-Ohmic transport at zero tem-

perature. The Andreev current gives the only contribution in the synthetic junction system at

zero detunings regardless of the ratio of the chemical potential bias to the superfluid gap,

which is in sharp contrast to that in conventional junctions. Our result may give a potential

impact on theoretical and experimental study of quantum many-body phenomena, and also

pave a way for understanding the black hole information paradox through the Andreev

reflection as a quantum-information mirror.
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The study of transport phenomena in ultracold atomic systems
can greatly improve our understanding of quantum many-
body problems owing to controllability of microscopic para-

meters. By using Feshbach resonances1, one can tune the inter-
particle scattering length, allowing to scan quantum many-body
systems from the weakly-interacting to strongly-correlated regimes.
This technique has successfully been applied to study ultracold Fermi
gases in terms of crossover between the Bardeen–Cooper–Schrieffer
(BCS) and Bose-Einstein Condensation (BEC) regimes2–4. More
recently, a variety of experiments with such Fermi gases have been
done to observe various quantum transport phenomena including
the direct current transport of bulk and mesoscopic systems5,6.

One of these topics of current interest is the Andreev reflection7,
originally introduced by Andreev to explain the anomalous resis-
tance of heat flow through a normal state-superconducting (N–S)
interface. The Andreev process involves a conversion between a
particle and a hole-like mode as well as creation or annihilation of a
condensed pair in the BCS ground state, and exhibits unique
characteristics different from conventional tunnelings8,9. In elec-
tron systems, the Andreev reflection has also attracted attention in
terms of quantum tunneling phenomena such as the proximity
effect10,11 and the Josephson effect9. In addition, the presence of the
Andreev reflection has been reported in charge neutral systems
such as liquid Helium12 and ultracold Fermi gas13.

Recently, it was pointed out that the Andreev reflection can be
regarded as an analogue of Hawking radiation at a black hole event
horizon14–16. By assuming a momentum-conserved tunneling, the
Andreev reflection can provide an information-mirroring process
which is similar to the black hole evaporation as Hayden and
Preskill’s proposal17,18. In spite of the interesting connection, in
reality it is challenging to control the Andreev reflection in the
spatially-separated junction in which mode mixing at the interface
occurs. Therefore, a specific system to experimentally simulate the
information-mirror process is still lacking.

In this work, we propose a system provoking the momentum-
conserved Andreev reflection without the modemixing by applying
multiple radio-frequency (rf) laser fields (see Fig. 1a). While the rf
spectroscopy in ultracold atomic gases19 has been harnessed to
extract the quasiparticle excitation, we consider double rf laser
fields which transfer two hyperfine states j "i and j #i in the BCS
superfluid phase to the third hyperfine state j3i in the normal
phase, to realize an effective N-S interface on the internal
space20,21. To illustrate this synthetic interface, beyond real
dimensions we propose an extra synthetic dimension, where each
site denotes an internal state of atoms (Fig. 1b). The synthetic
interface separates the normal state j3i from the superfluid state
j "i and j #i, and the analogy between real spaces and internal
spaces is valid regardless of nonlinear transport processes22,23.

Following the idea above and using the Schwinger-Keldysh
formalism, we study the laser-induced tunneling current between the
superfluid- and normal-state reservoirs driven by the Rabi couplings
Ω↑,3 andΩ↓,3. By analyzing the current up to the fourth order inΩ↑,3

and Ω↓,3, we find that the Andreev reflection appearing at the
nonlinear response regime is the only transport process in the
junction system at zero detunings. Contrary to the conventional
wisdom in the N-S systems24–27, the Andreev current is not sup-
pressed in the supergap regime, where the chemical potential bias
between the normal and superfluid reservoirs is greater than the
superfluid gap. Moreover, the momentum-conserved Andreev cur-
rent exhibits a non-Ohmic transport at zero temperature. Below, we
take kB= ℏ= 1 and the system volume is taken to be unity.

Results
Model. The Hamiltonian of the normal-state reservoir j3i with
the energy level ω3 is given by H3 ¼ ∑pðεp þ ω3Þcyp;3cp;3 with

εp= p2/(2m), and cyp;3 (cp,3) creates (annihilates) a fermion in
state j3i with momentum p. The Hamiltonian of the superfluid-
state reservoir is taken as

HSF ¼∑
k;σ
ðεk þ ωσÞdyk;σdk;σ

� g ∑
k;k0;P

dy
kþP

2;"
dy�kþP

2;#
d�k0þP

2;#dk0þP
2;";

ð1Þ

where dyk;σ and dk,σ are respectively the creation and annihilation
operators for fermions in states jσ ¼";#i with momentum k and
energy level ωσ. Here, g is the strength of attractive interaction in
the superfluid reservoir28. We then introduce Rabi couplings to
induce a particle transfer between the reservoirs29–32. Typically, the
wavelengths of rf fields are large compared to the size of the atomic
gas and the spatial dependence of Rabi couplings are ignorable.
Thus, the corresponding Rabi coupling term can be expressed as

Ht ¼ ∑
k;σ

e�iωL;σ tΩσ;3d
y
k;σck;3 þ H.c.

� �
; ð2Þ

where ωL,σ is the laser frequency. We note that Ht retains the
momentum conservation. The total Hamiltonian of the system is
thus H=H3+HSF+Ht. The particle current operator between
two reservoirs is defined as

Î ¼ � _N3 ¼ i N3;Ht

� �
¼ �i∑

k;σ
e�iωL;σ tΩσ;3d

y
k;σck;3 þ H.c. ;

ð3Þ

where N3 ¼ ∑pc
y
p;3cp;3 is the particle number operator of

the normal-state reservoir. Notice that the current expression above
corresponds to the tunneling current expression between
the spatially-separated reservoirs26 except for the presence or
absence of the momentum conservation. In what follows, we

Fig. 1 Schematic of Andreev reflection through an synthetic N-S
interface. a An incident particle (hole) is retroreflected as a hole (particle)
into the same normal-state reservoir. The state j3i in the normal side
interacts with states j "i and j #i in the superfluid side via the Rabi coupling
Ω↑,3 and Ω↓,3, respectively. The N and SF represents the normal and
superfluid phase. The energy level diagram for the laser-induced state
transition is shown in the inset. b The synthetic interface at an extra
synthetic dimension.
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consider the zero detunings as ω3−ω↑−ωL,↑= ω3− ω↓− ωL,↓=
0, where the usual quasiparticle current is suppressed33.

Laser-induced tunneling current. To study the tunneling current
between the reservoirs, Schwinger-Keldysh Green’s function
formalism34,35 is applied with the operators evolving with
Hamiltonian H0=H3+HSF. After performing the perturbative
expansion of the tunneling current with respect to Ht, we evaluate
the correlation functions in each reservoir with thermal equili-
brium under the grand-canonical Hamiltonian K0=H0−
μ3N3− μSNS. Here μ3 and μS are the chemical potentials of par-
ticles in normal state j3i and superfluid states, respectively, and
NS=N↑+N↓ is the particle number operator of the superfluid
reservoir (Nσ is the spin-resolved one). In the following, aðH0ÞðtÞ
and aðK0ÞðtÞ denote operator a in the Heisenberg pictures of H0

and K0, respectively. Using the relations dyðH0Þ
k;σ ðtÞ ¼ eiμStdyðK0Þ

k;σ ðtÞ
and cyðH0Þ

k;3 ðtÞ ¼ eiμ3tcyðK0Þ
k;3 ðtÞ, we obtain the expectation value of the

current I � ĥIðt; tÞi, where

ĥIðt; t0Þi ¼ � i∑
k;σ

∑
1

n¼0

ð�iÞn
n!

Z
C
dt1 � � �

Z
C
dtn

Ωσ;3 TCe
�iðμ3t0�μStÞdyðK0Þ

k;σ ðtÞcðK0Þ
k;3 ðt0Þ

D

Htðt1Þ � � �HtðtnÞ
�þ H.c.

ð4Þ

Here, we introduced

HtðtÞ ¼ e�iΔμt ∑
k;σ

Ωσ;3d
yðK0Þ
k;σ ðtÞcðK0Þ

k;3 ðtÞ þ H.c. ; ð5Þ

and Δμ= μ3− μS denotes the chemical potential bias between
two reservoirs. The integral in Eq. (4) is taken along the Keldysh
contour C and TC is the contour ordering product operator. By
using the Langreth rules36, we can change the contour of integral
into the real time axis, from t=−∞ to t=+∞, and write each
perturbation in terms of Green’s functions. In addition, we
introduce the 2 × 2 Nambu representation in which Green’s
functions adopt the form

iĜdðcÞðk; t � t0Þ ¼ hTCAdðcÞðtÞAy
dðcÞðt0Þi; ð6Þ

with vectors AdðtÞ ¼ ðdk;"ðtÞ; dy�k;#ðtÞÞ
T

and AcðtÞ ¼
ðck;3ðtÞ; cy�k;3ðtÞÞ

T
. We note that Ĝcðk; t � t0Þ has no off-diagonal

elements, while in the superfluid states the anomalous Green’s
functions Gd,12 and Gd,21 are generated due to the nonzero value
of gap parameter37. After these manipulations, the leading-order
contribution (n= 1) in frequency representation is obtained as

Ið1Þ ¼ � 2∑
k;σ

Z
dω
2π

Ω2
σ;3Re Gret:�

d;11 ðk;ωÞG<
c;11ðk;ω� ΔμÞ

h

þG<
d;11ðk;ωÞGret:

c;11ðk;ω� ΔμÞ
i
;

ð7Þ

with the lesser Green’s functions G< and retarded Green’s func-
tions Gret.. By using the relation G< ¼ �2iIm ½Gret:� f ðωÞ, where
f(ω)= 1/(eω/T+ 1) is the Fermi distribution function, one can
rewrite Eq. (7) as

Ið1Þ ¼ 4∑
k

Z
dω
2π

ðΩ2
";3 þ Ω2

#;3ÞImGd;11ðk;ωÞ

ImGc;11ðk;ω� ΔμÞ f ðω� ΔμÞ � f ðωÞ� �
;

ð8Þ

where, for brevity, we hereafter omit the superscript for all
retarded Green’s functions. Such a current corresponds to the
lowest-order single-particle tunneling between the reservoirs as
shown in Fig. 2a. We note that the above lowest-order analysis
corresponds to the linear response theory conventionally adopted

in rf spectroscopy30,31,33. As we illustrate below, however, the
lowest-order analysis is insufficient to discuss the nonzero current
between two reservoirs.

Andreev reflection in nonlinear rf current. We are now in a
position to evaluate the particle current up to the next-to-leading
order (n= 3). The two coupling constants Ω↑,3 and Ω↓,3 give rise
to the contractions like hdy�k;#d

y
k;"i and 〈dk,↑dk,↓〉, which do not

vanish in the presence of the superfluid. As a result, such con-
tractions cause tunnelings with pair degrees of freedom including
the Andreev reflection. The total current up to this order is
obtained as I ¼ Ið1Þ þ Ið3Þ1 þ Ið3Þ2 þ IA, where

Ið3Þ1 ¼ 4 ∑
k;σ;σ 0

Ω2
σ;3Ω

2
σ 03

Z
dω
2π

ImGd;11ðk;ωÞ
h i2

ImGc;11ðk;ω� ΔμÞ
h i2

f ðω� ΔμÞ � f ðωÞ� �
;

ð9Þ

Ið3Þ2 ¼ 16Ω2
";3Ω

2
#;3 ∑

k

Z
dω
2π

½ImGd;12ðk;ωÞ�2

ImGc;11ðk;ω� ΔμÞImGc;22

ðk;ωþ ΔμÞ f ðωÞ � f ðω� ΔμÞ� �
;

ð10Þ

IA ¼ 8Ω2
";3Ω

2
#;3 ∑

k

Z
dω
2π

jGd;12ðk;ωÞj2ImGc;11

ðk;ω� ΔμÞImGc;22ðk;ωþ ΔμÞ f ðω� ΔμÞ � f ðωþ ΔμÞ� �
:

ð11Þ
Here Ið3Þ1 is the current corresponding to the nonlinear quasi-
particle tunneling between the reservoirs shown in Fig. 2b. On the
other hand, Ið3Þ2 and IA originate from the processes represented by
Fig. 2c, while the former corresponds to a transfer of a single
particle (hole) in normal side with creation or annihilation of pairs
in superfluid side as an intermediate state and the latter arises
from the Andreev reflection. To see the detailed properties of each
contribution, we take the standard forms of Green’s functions in
the normal-state reservoir, in which case the imaginary parts are
given by ImGc;11ðk;ωÞ ¼ ImGc;22 ðk;�ωÞ ¼ �πδðω� ξk;3Þ. For
the superfluid reservoir, we take the mean-field form of Green’s
functions, where the gap parameter ΔS ¼ g∑k0 hd�k0;#dk0;"i
arises and the imaginary parts read ImGd;11ðk;ωÞ ¼
�π½u2kδðω� EkÞ þ v2kδðωþ EkÞ�, and ImGd;12ðk;ωÞ ¼ ImGd;21

ðk;ωÞ ¼ �ukvkπ½δðωþ EkÞ � δðω� EkÞ�. Note that chemical
potentials μ3 and μS are included in ξk,3/S= εk− μ3/S,

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k;S þ Δ2

S

q
, and uk; vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 ± ξk;S=EkÞ=2

q
. Inserting these

expressions into Eqs. (8)–(11), we find that I(1) and Ið3Þ1 vanish,

Fig. 2 Diagrammatic representation of tunneling processes between two
reservoirs. The blue (red) lines and the circles represent Greenʼs functions
in the normal (superfluid) side and the Rabi couplings Ωσ,3. a Lowest-order
diagram, representing the normal single-particle tunneling. b Next-to-
leading-order diagram, involving the nonlinear quasiparticle tunneling
process. c Next-to-leading-order diagram, involving the Andreev reflection.
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since there is no overlap between ImGc;11ðk;ω� ΔμÞ and
ImGd;11ðk;ωÞ as long as ΔS ≠ 0. Similarly, Eq. (10) is also shown
to vanish. After inserting ReGd;12ðk;ωÞ ¼ �ukvk½ðω� EkÞ�1 �
ðωþ EkÞ�1� into Eq. (11) and performing the momentum inte-
gration, we obtain the Andreev current IA as

IA ¼ ΘðμSÞΩ2
";3Ω

2
#;3

m
ffiffiffiffiffiffiffiffiffiffiffi
2mμS

p
πΔ2

S

eΔμ=T � 1

eΔμ=T þ 1
: ð12Þ

The step function Θ(μS) in Eq. (12) indicates that such tunneling
occurs only when the chemical potential of superfluid states is
positive. Notice that all the quantities in Eq. (12) can be deter-
mined in experiments and hence the result can be directly com-
pared with the experimental result of the nonlinear rf current.
This result is valid at weak tunneling coupling where tunneling
term is taken as a perturbation, and thus will not be changed
qualitatively by higher order corrections when Ωσ,3 is small.

If we take Δμ→ 0 with finite temperature T > 0, IA will reduce
to a linear form, IA= κ0(T)Δμ, with the conductance
κ0ðTÞ ¼ ΘðμSÞΩ2

";3Ω
2
#;3m

ffiffiffiffiffiffiffiffiffiffiffi
2mμS

p
=ð2πΔ2

STÞ. Another interesting
fact is that, at zero temperature with finite chemical potential bias,
IA / sgnðΔμÞ does not depend on the magnitude of Δμ. Such a
non-Ohmic transport characteristic is nontrivial, since in the
conventional N-S interfaces the Andreev currents at a low bias
basically obey the Ohm’s law even at zero temperature24–27.
Moreover, IA is not suppressed in the supergap regime (Δμ > ΔS)
in contrast to the conventional N-S case.

The tunneling current IA and the conductance κ= IA/Δμ
between the reservoirs are shown in Fig. 3 as functions of Δμ.
Here IA is normalized by a constant χ ¼ Ω2

";3Ω
2
#;3mkF=πE

2
F,

where EF ¼ ð3π2NSÞ2=3=ð2mÞ and kF ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
are respectively

the Fermi energy and Fermi momentum for the superfluid, while
κ is normalized by κ0, the conductance at Δμ= 0. In this figure,
we take the values of μS and ΔS as typical experimental values in
the unitary limit, μS/EF= 0.38 and ΔS/EF= 0.4738–41, and the
temperature is set as T/TF= 0.06, where TF is the Fermi
temperature. We note that the Andreev current in this figure
exists not only in subgap, but also in supergap regions.

Moreover, in Fig. 4, we show the tunneling current at zero
temperature as a function of dimensionless interaction strength 1/
(akF), by using the result of μS and ΔS obtained with the
diagrammatic approach39,42, where the scattering length a in the

superfluid reservoir is defined by m
4πa ¼ 1

g þ mΛ
2π2 with the

momentum cutoff Λ4. We can see that the current decreases
monotonically from the BCS limit to the BEC limit as the
attraction increases, and becomes zero at around 1/(akF)= 0.5
where μS= 0. This indicates that the Andreev reflection is
abundant in the BCS regime, while disappear in the BEC system,
even in the momentum-conserved tunneling processes. This
behavior is consistent with that in the previous theoretical work
on the spatial N-S junctions without the momentum
conservation43. Beyond our results that are accurate up to fourth
order in Ωσ,3, the bosonic Andreev process44,45, in which a pair of
incident bosonic particles (holes) is transferred to a pair of
bosonic holes (particles), may arise in the BEC limit. However,
the leading order contribution of the bosonic Andreev process is
proportional to Ω8

σ;3
46, and thus, one can neglect it as far as the

analysis up to Ω4
σ;3 is concerned.

Notice that in our calculation, we have assumed stable
quasiparticles without broadening of the spectral functions,
which is valid far away from the critical temperature. However,
such a broadening can be significant at finite temperature (in
particular, near the critical temperature) and induce the nonzero
contributions of Eqs. (8)-(10) even around the zero detuning. To
demonstrate broadening effects, we calculate the quasiparticle
current with the phenomenological self-energy. For the lowest-
order quasiparitcle current I(1), its dependence on the broadening
effect is shown in Fig. 5, where the imaginary part of self-energy is
introduced into Green’s functions as Σ11=−Σ22=−iΓ. We find
that for positive Δμ, I(1) is suppressed in subgap region and shows
a nearly Ohmic transport in supergap region. However, since
the overlap between two spectra becomes small and no Fermi
surface exists in the normal phase for large negative Δμ, the
quasiparticle current is suppressed for negative Δμ even in
supergap region. In BCS region with small ΔS, the spectral
broadening smears out the excitation gap around the zero
detuning, leaving a strong spectra of quasiparticle tunneling21.
Nevertheless, by considering the crossover regime with moderate
gap sizes47 at T/TF≪ 1, we can sufficiently suppress these
quasiparticle tunneling processes and distinguish the signal of IA
at zero detuning.

If we consider nonzero detunings, namely, out of rf resonances,
a shift will be added on the chemical potential bias Δμ33. As a
result, the Green’s functions in Eqs. (8)–(11) which include Δμ
will also undergo shifts on the energy dependence. We find that
with a shift on Δμ, the quasiparticle tunneling I(1) and Ið3Þ1 , and
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Fig. 3 Tunneling current and conductance. The solid and dashed lines
respectively depict the tunneling current and conductance between two
reservoirs as a function of chemical potential bias Δμ. Here χ ¼
Ω2

";3Ω
2
#;3mkF=πE

2
F is the normalizing constant for the current, κ0 is the

constant taken at Δμ= 0. Values of the chemical potential μS and gap
energy ΔS for the superfluid phase are set to be the experimental values in
the unitary limit, μS/EF= 0.38 and ΔS/EF= 0.47, while T is set as
T/TF= 0.0638,39 (EF and TF are the Fermi energy and Fermi temperature of
the superfluid reservoir, respectively).

-1 -0.5 0 0.5 1
1/(akF)

-20

0

20

40

60

80

100

120

I A
/

 BCS  BEC 

T=0

Fig. 4 Andreev current. The solid line shows the Andreev current as a
function of dimensionless coupling 1/(akF), where kF is the Fermi
momentum and a is the scattering length. We take the limit that Δμ/T→∞

for simplicity and Δμ is positive so that the current is on the normal side.
Still, χ is the normalizing constant.
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pair tunneling processes Ið3Þ2 will occur due to the overlap between
spectral functions (Dirac functions) even at zero temperature. On
the other hand, the nonzero detuning will only give a shift on Δμ
in the formula of Andreev current IA Eq. (12): IA(μS, Δμ)→
IA(μS, Δμ+ δ) with δ denoting the detuning. In this regard, the
Andreev current, quasiparticle current, and pair tunneling
current can coexist out of rf reonances. One way to distinguish
the Andreev current is to tune the temperature above the
superfluid critical temperature Tc, where all components are in
normal phase and the Andreev current disappears. By comparing
the signal below Tc and the one above Tc, the Andreev current
can be extracted from the total signal. To do this, the broadened
spectral functions at finite temperature should be taken into
account accurately, which is left for future work.

Since two reservoirs are spatially overlapped in our synthetic N-S
junction, there exist residual interactions between normal and
superfluid components, apart from the strong interaction within
the superfluid. This will cause self-energy shifts in each reservoir. A
well-known correction in the weakly interacting limit is the Hartree
shift48, given by Σσ ¼ 4πaσ3

m N3 and Σ3 ¼ ∑σ
4πaσ3
m Nσ , where aσ3 is

the scattering length between components jσi and j3i. These give
an effective shift of the chemical potentials as μeff3 ¼ μ3 � Σ3 and
μeffσ ¼ μσ � Σσ . Consequently, the chemical potential bias will be

modified as Δμeff ¼ μeff3 � μeffS ¼ Δμ� Σ3 þ
Σ"þΣ#

2 , where μeffS ¼
ðμeff" þ μeff# Þ=2 is the averaged effective chemical potential in the
superfluid. Therefore, by replacing Δμ with Δμeff in Eq. (12), the
result is adapted to the case with weak residual interactions
between reservoirs. On the other hand, an effective magnetic field
heff= (Σ↑− Σ↓)/2 arises in the superfluid due to the unbalanced
residual interactions, even in the balanced mixture μ↑= μ↓.
However, it can be negligible if heff is sufficiently small compared
to ΔS.

In the case of the 6Li three-component mixture, it is known
that the strong three-body loss shortens the system’s lifetime49,50.
The timescale of tunneling processes can be estimated by the
uncertainty principle: Ωτ ≥ 1

2π (where we take Ω3,↑=Ω3,↓≡Ω for
simplicity). Taking the typical magnitude of Fermi energy in 6Li
Fermi gases as 103 Hz and Ω/EF ~ 0.1 to justify the perturbative
treatment, we have τ ~ 10−3s, which is smaller than the timescale
of atom losses. More precisely, the particle transport timescale
can be estimated by using τ0 ¼ βκ�151, where β ¼ ∂N

∂μ jT is the

compressibility of the reservoirs and κ is the conductance of the
particle current. The dimension of β is given by β � mkF

2π2 . Then
according to the expression of the conductance κ0 of the Andreev
current, we have τ0 � Δ2

ST=ðπΩ4Þ. In this sense, by adjusting the
value of Rabi frequencies Ω, one can tune the transport timescale
to be smaller than the timescale of atom losses. In either way, this
indicates that one can measure the Andreev current before
encountering the significant particle-number losses.

A promising way to detect the Andreev current with avoiding
the three-body loss would be the preparation of the solely
superfluid state with two-component fermions before applying
the Rabi coupling. In this case, the normal component is dilute
and therefore largely negative μ3 (i.e., largely negative Δμ) would
be realized. As we showed in Fig. 3, still one may find the nonzero
Andreev current in such a supergap regime. Moreover, in order to
avoid the the overlap of Feshbach resonances leading to the
strong three-body losses, it is possible to use higher hyperfine
states as the normal component52.

Summary. In this work, we investigate the particle tunneling
through an effective N-S interface designed by two rf laser fields that
hold the momentum conservation. By addressing the nonlinear
response regime in terms of the Schwinger-Keldysh formalism, we
find that the Andreev reflection is the only process passing through
the synthetic interface up to the fourth-order perturbation in Ht. We
succeed in obtaining the analytical solution of the current and show
the dependence of Andreev current and conductance on the che-
mical bias between two reservoirs. We also demonstrate how the
Andreev current at zero temperature varies with the interaction
strength, from the BCS to BEC regime. Another interesting outcome
is that, different from conventional cases, the present tunneling
current totally violates Ohm’s law at zero temperature.

Discussion
Our proposed system inducing the momentum-conserved tun-
neling may also be promising for understanding the black hole
information paradox. Some similarities can be found between the
momentum-conserved Andreev reflection and Hayden-Preskill
model17,18, where certain final states in black hole allow the tel-
eportation of information contained in matter falling into the
black hole to the Hawking radiation going outwards53,54. In our
case, the BCS superfluid can be regarded as the black hole final
states, which permit transferring of the quantum information
encoded in an incident particle (hole) from the normal side to an
outgoing hole (particle). Since the tunneling process is momen-
tum-conserved, the hole is reflected with exactly the opposite
momentum to the incident particle (hole), which ensures that the
same information is teleported to the reflected one.

To further study this topic, we may prepare two hyperfine
states in the normal side, for example, j3i and j4i with two Rabi
couplings: Ω↑,3 and Ω↓,4. In this case, we can consider an incident
particle at a superposition state of states j3i and j4i, and inves-
tigate the reflected mode, which is expected to be in the same
superposition state as the incident one. To be self-contained, we
discuss how the information mirror process proposed in ref. 14

can be realized in this system. In the following, j1ik;3 � cyk;3j0i
and j1ik;4 � cyk;4j0i are regarded as j1ik;" � cyk;"j0i and j1ik;# �
cyk;#j0i in the normal side, respectively. We consider an incident

mode from the normal phase jϕci ¼ ðacyk;3 þ bcyk;4Þj0i and a

tunneling Hamiltonian H0
t ¼ Ω∑σðdyk;σck;σ þH:c:Þ where a; b 2

C and Ω3,↑=Ω4,↓≡Ω is taken for simplicity. A combined state
in the direct product space of a single incident particle and a
particle-hole pair at the interface is defined as
jψi ¼ jϕci � ðdyq;"cq;" þ dyq;#cq;#ÞjGi, where jGi ¼ j1q;"1q;# � � � i

-3 -2 -1 0 1 2 3
/ S

0

2

4

6

8

I(1
) /X

=0.02
=0.03
=0.04

Fig. 5 Quasiparticle-tunneling current with broadened spectral functions.
X ¼ 2mkFðΩ2

";3 þΩ2
#;3Þ=π3 is the normalization constant for the current,

where kF is the Fermi momentum and Ωσ,3 represent the Rabi couplings.
The black, blue and purple solid lines depict the quasiparticle-tunneling
currents with the widths of spectra Γ/EF= 0.02, 0.03, and 0.04,
respectively. The values of the chemical potential μS and gap energy ΔS are
set to be μS/EF= 0.38 and ΔS/EF= 0.47 as those in unitary limit, while T is
set as T/TF= 0.06 (EF and TF are the Fermi energy and Fermi temperature
of the superfluid reservoir, respectively).
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denotes the fulfilled Fermi sea. The incident mode evolving with
the tunneling Hamiltonian reads

jϕðτÞi ¼ e�iτH0
t jϕci ¼ sinðΩτÞjϕdi þ cosðΩτÞjϕci; ð13Þ

where jϕdi ¼ ðadyk;" þ bdyk;#Þj0i, and τ is the smallest time
interval for the quantum system to make a change. While satis-
fying the uncertainty principle, τ≃ π/2Ω is adopted to permit a
complete mode transfer, cyk;σ ! dyk;σ . The combined state then

becomes jψi ! jϕdi � ðdyq;"cq;" þ dyq;#cq;#ÞjGi. The BCS ground

state jΨBCSi ¼
Q

kðuk þ vkd
y
k;"d

y
�k;#Þj0i treated as the final state

is imposed on the combined state, which yields a reflected state,

hΨBCSjψi / jϕhi: ð14Þ
We note the reflected mode jϕhi ¼ ðahy�q" þ bhy�q#Þj00i, where j00i
denotes the quasiparticle vacuum while hy�q;#j00i ¼ j0q;"1q;# � � � i
and hy�q;"j00i ¼ j1q;"0q;# � � � i denote holes, is a hole-like mode in
the same spin state as the incident mode. This indicates that the
quantum information is transferred from the incident mode to the
reflected one, which is known as the deterministic teleportation.

Methods
We apply the Schwinger-Keldysh Green’s function formalism to calculate the
tunneling current in a non-equilibrium steady state. We use the expanded Keldysh
contour, which includes two parts along the real time axis: a forward contour (from
t=−∞ to t=∞) and a backward contour (from t=∞ to t=−∞). The current
can be expressed in terms of lesser Green’s functions

G<
c ðk; t�; t0þÞ ¼ ihcykðt0þÞckðt�Þi;

G<
d ðk; t�; t0þÞ ¼ ihdykðt0þÞdkðt�Þi;

ð15Þ

where t− and t0þ respectively denote the time arguments on the forward and
backward parts. The integral over the Keldysh contour can be changed into that
over the real time axis according to the Langreth rules, which read

Cðt; t0Þ ¼
Z

C
dt1 Aðt; t1ÞBðt1; t0Þ; ð16Þ

C_ðt; t0Þ ¼
Z 1

�1
dt1 Aret:ðt; t1ÞB_ðt1; t0Þ

�

þ A_ðt; t1ÞBadv:ðt1; t0Þ
�
;

ð17Þ

Cret:ðt; t0Þ ¼
Z 1

�1
dt1 A

ret:ðt; t1ÞBret:ðt1; t0Þ: ð18Þ

Here A, B, and C denote arbitrary time-ordering correlation functions and the
superscripts “ > ” and “adv.” are respectively for greater and advanced correlation
functions. Since the Green’s function Gret:ðt; t0Þ or G<ðt; t0Þ only depends on the time
difference t � t0, its Fourier transform depends on a single frequencyω. Therefore, we
obtain Eq. (7) for the lowest order term of the momentum-conserved tunneling
current. The expressions for higer order terms, Ið3Þ1 , Ið3Þ2 , and IA are obtained similarly.

Data availability
Data supporting the findings of this study are available from the corresponding author
upon reasonable request.

Code availability
The code used for the numerical calculations in this study are available from the
corresponding author upon reasonable request.
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