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Modulation of antichiral edge states in zigzag
honeycomb nanoribbons by side potentials
Jia-En Yang 1,2, Xiao-Long Lü 3✉ & Hang Xie 2,4✉

The antichiral edge states induced by the modified Haldane model have been predicted in the

previous studies. In this study, other types of antichiral edge states are proposed by applying

the side potentials composed of a potential field, staggered electric field, and exchange field

along the boundaries of zigzag honeycomb nanoribbons (zHNRs). Their corresponding

transport properties are investigated. The results show that the side potentials can lift the

spin degeneracy of the edge modes, inducing five types of antichiral edge states. By calcu-

lating the spin-dependent energies in K’ and K valleys of the edge modes, an interpretation for

generating antichiral edge states is proposed. In addition, the spin/charge switcher in the

three-terminal device consisting of zHNRs is developed based on the induced edge states.

We believe that these results can be used in the design of future spintronic devices.
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In two-dimensional honeycomb materials, such as graphene,
silicene, and stanene1–4, topological phases determine the
protected edge states in the nanoribbons. The quantum

anomalous Hall effect (QAH) corresponds to chiral edge
modes5,6, where the spin-up and spin-down modes flow along the
same direction at the same upper or lower edges. The quantum
spin Hall effect (QSH) corresponds to the helical edge states7. In
this case, each edge contains a pair of counterpropagating spin-
filtered states. While the spin-polarized QAH corresponds to the
spin-polarized edge state, with only spin-up or spin-down modes
flowing in opposite directions between the two edges8. These
topological edge states can be applied in designing low-
dissipation electronic devices9–16. Therefore, researchers are
dedicated to finding more topological edge states.

Based on the modified Haldane model, Colomés and Franz17

proposed the antichiral edge state propagating in the same
direction along two parallel boundaries. As required by the
conservation of flow momentum, the number of states must
remain equal for the entire system toward left and right. As a
result, two counterpropagating bulk states appear, which belong
to the strip bulk and are spatially separated from the edge
states17,18. Some possible schemes19–26 have been proposed for
realizing the antichiral edge states. For example, Hang et al. 25

constructed a circuit to realize a modified Haldane lattice with
antichiral edge states, which has practical implications for theo-
retical applications. Based on the modified Haldane model,
researchers proposed unipolar-bipolar filters27, valley
polarization28, and topological phase transitions under uniaxial
strain29 in a honeycomb lattice. Besides, although the antichiral
edge states are bulk gapless, it is robust against disorder17. Thus,
antichiral edge states have intriguing transport properties and
potential applications in designing low-dissipation spintronic
devices.

In previous studies, several methods have been used to
manipulate topological edge states. Xu et al.30 proposed aniso-
tropic chiral edge modes by applying circularly polarized light on
silicene. Mannaï et al.29 investigated the effect of the strain on the
antichiral edge modes. The results suggested that the strain may
reverse the propagation direction of edge modes or eventually
destroy them. In addition, studies on graphene demonstrated the
effectiveness of side potentials in regulating the electronic
structure31–34. Lu et al.35,36 investigated the effect of side
potentials on the QSH state edges of silicene. Various spin- and
valley-related polarized edge states were obtained by adjusting the
side potentials and ribbon widths. However, the side potential on
the antichiral edge states of zigzag honeycomb ribbons (zHNRs)
was rarely studied.

This study investigates the side potential-tunable antichiral
edge states in zHNRs with a modified Haldane model. The
schematic diagram of side potentials is shown in Fig. 1. The side
potentials are composed of a potential field, staggered electric
field, and exchange field applied on the boundaries of zHNRs.
Five antichiral edge states are proposed by modulating the side
potentials, which is important for designing the spin/charge
switcher. Furthermore, an interpretation is proposed by calcu-
lating the spin-dependent energies in K’ and K valleys of the edge
modes. A case study of Type-3 is conducted to illustrate the
potential applications of induced antichiral edge states in the
spin/charge switcher designs.

Results and Discussion
The Hamiltonian of the tight-binding model. The antichiral
edge states can be obtained based on the modified Haldane model
in zHNRs. Considering the side potentials U1,2, EZ1,2, and M1,2,
the corresponding Hamiltonian of the tight-binding model can be

described as:

H ¼� t ∑
hi;jiσ
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where cyiα(ciα) is the electronic creation (annihilation) operator
with the spin σ ðσ ¼"#Þ at site i; i; j

� �
and i; j

� �� �
run over all the

nearest and the next-nearest-neighbor hopping sites. The first
term describes the nearest-neighbor coupling of electrons with
t= 2.7 eV. The second term denotes the modified Haldane model
resulting in the antichiral edge state, which has been experi-
mentally demonstrated25,26. The t2 and ϕ is set as 0.03 eV and
�π=2, respectively. For the modified Haldane model, vij ¼ 1ð�1Þ
represents the counterclockwise (clockwise) hopping between
sublattice A, while vij ¼ �1ð1Þ represents that between sublattice
B. The third and last terms are the side potentials, including the
potential field U1,2, the staggered electric potential EZ1,2 with μi ¼
± 1 for A or B sublattice, and the exchange field M1,2. These side
potentials are applied along the boundaries of the nanoribbon. σz
is the z component of the 2 ´ 2 Pauli matrix for the electron spin.
The side potentials U and EZ can be induced by the gate voltages
and the electrostatic potential effects of the substrate, such as SiC
and hBN37. The M can be induced by the ferromagnetic insula-
tors in the experiment. Experimentally, several groups have
achieved local gate control of the electrostatic potential with
nanoscale and hundreds of meV in nanoribbon-based
devices38–40. A local exchange field with nanoscale on the 2D
honeycomb lattices can be induced by the magnetic proximity
effect with a magnetic insulator such as EuO41–43.

The low-energy effective Hamiltonian. In the continuum theory
with the phase ϕ ¼ �π=2, the low-energy Hamiltonian of the
modified Haldane model with a uniformly applied external field
(U, E, and M) in zHNRs can be expressed as28:

Hs
η ¼ _vFðησxkx þ σykyÞ þ ηλMHMσ0 þ Uσ0 þ EZσz þ sMσ0;

ð2Þ
where vF is the Fermi velocity; η ¼ þ1ð�1Þ represents the K (K’)
valley. In the effective continuum model, this modified Haldane is
given in the form of ηλMHMσ0. For simplicity, t2 in Eq. (1) is set as
t2 ¼ λMHM=3

ffiffiffi
3

p
28. The σ0is the 2´ 2 identity matrix, the Pauli

matrices σ i(i= x, y, z) represent the sublattice pseudospin, and
s= 1(-1) represents the spin-up (down) mode. The correspond-
ing energy dispersion is:

Eη;s ¼ ηλMHM þ U þ sM ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhvFkÞ2 þ E2

Z

q
: ð3Þ

In the later discussion, Eq. (3) will be used to propose an
interpretation for these edge states.

As shown in Fig. 1, the side potentials are applied along two
boundaries of zHNRs with the same width of W= 8. Depending
on the modulation requirements, the U, EZ, and M are applied
separately or jointly along two boundaries of zHNRs.

The non-equilibrium Green’s function approach. For three-
terminal devices, the transmission coefficients (Tij) from lead i to
lead j is calculated by the non-equilibrium Green’s function
formalism. In the spin-resolved case, it is expressed as
follows44–46:

Tσ
ijðEÞ ¼ Tr½Γσ

j ðEÞGR;σðEÞΓσ
i ðEÞGA;σðEÞ�: ð4Þ
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where GR;σðEÞ andGA;σðEÞ are the retarded and advanced Green’s
function with the spin σ, respectively; Γσ

i ðEÞ ði ¼ 1; 2; 3Þ is the
spin-resolved linewidth function of lead i, indicating the coupling
between the conductor region and lead i. The retarded (advanced)
Green’s function is calculated as follows:

GRðAÞ;σðEÞ ¼ ½Eþð�ÞI�Hσ
D �∑

i
ΣRðAÞ;σ
i ðEÞ��1: ð5Þ

where Eþ ¼ E þ iη ¼ ½E��*, with Eand η representing the
incoming electron energy and an infinitesimal positive number,
respectively; Idenotes the identity matrix; ΣR;σ

i ðEÞ ¼ HD;ig
R;σ
i Hi;D

is the retarded self-energy matrix, with HD;i and Hi;D representing

the coupling matrix between the conductor and the lead i; gR;σi is
the retarded surface Green’s function of lead i, which can be
calculated using the routine of Lopez-Sancho’s iterative method47.
In section: Spin/charge current swither in the three-terminal
device, the Hamiltonians of the conductor region are the same as
Eq. (1), and the coupling between three leads and the conductor
region is set as the first two terms of Eq. (1).

The local bond currents distribution. To investigate antichiral
edge states in zHNRs and the electron transport details in the
three-terminal device, the local bond currents were plotted in the
lead and conductor region. The energy-dependent local bond

current between sites i and j can be expressed as:48,49

JσijðEÞ ¼ Hσ
jiG

<;σ
ij ðEÞ � G<;σ

ji ðEÞHσ
ij ð6Þ

whereHσ
ij is the relevant matrix element of the conductor’s

Hamiltonian; G<;σðEÞ is the lesser Green’s function in the energy
domain, which can be expressed as:

G<;σðEÞ ¼ �iGR;σðEÞΓσ
αðEÞGA;σðEÞ ð7Þ

Notably, Eq. (6) is related to the local bond current from the
incidence of lead α.

In the following section, the impact of the side potentials on
pristine antichiral edge states is studied. The transport property of
the tunable antichiral edge states in the three-terminal device is
also discussed. The widths of the upper and lower potentials are
assumed to be the same (W= 8) for convenience, and the main
conclusions are still valid when the W becomes different. The
effectiveness is addressed in Supplementary Note 1. For a clear
view of the band for the edge states, only a partial outline is
displayed. In the following Figures, black, red, and blue curves (or
arrows) highlight the band structures (or the edge states) for spin
degeneracy, spin-up, and spin-down electrons, respectively.
According to the different modulation requirements, the U, EZ,
and M are applied separately or jointly along two boundaries of
zHNRs. For example, if the value of the U is not displayed,
U1=U2= 0. This law can also be applied to other cases.

Fig. 1 Schematic plot of zigzag honeycomb nanoribbons with side potential. The side potentials include potential field U1,2, staggered potential field EZ1,2,
and exchange field M1,2 along the boundaries. Ny is defined by the number of carbon atoms along the width direction, and W= 8 is the width of the side
potentials.

Fig. 2 The band structure and local bond current distribution for pristine antichiral edge states. a The band structure. Inset: schematic diagram of
corresponding edge states. b The local bond current distribution (E= 0.03 eV) for the pristine antichiral edge states. The black bands (arrows) denote the
spin degeneracy case, and the red (blue) arrows indicate the spin-up (down) case. The other fixed parameters are: Ny= 40, W= 8, λMHM ¼ 0:058t
(relevant parameter of the modified Haldane model).
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Five possible antichiral edge states. As shown in Fig. 2, the original
antichiral edge state is obtained based on the modified Haldane
model17 in zHNRs. These edge states and counterpropagating
associated bulk states are near the Fermi energy (zero energy), the
range of which is defined by the black dashed line. Figure 2a
shows the band structure, where the edge states propagate in the
same direction on two parallel boundaries (Fig. 2a inset: the thin
black arrows), and the gapless bulk states with counter-
propagating modes (Fig. 2a inset: the thick black arrows). In
addition, these edge states cross the Fermi energy (zero energy)
represented by the black dot. According to Eq. (3), there are
E ¼ �λMHM < 0 and E ¼ λMHM > 0 for K’ and K valleys, respec-
tively. Thus, the energy values in K’ and K valleys of the original
edge states are of opposite signs. For the two-terminal system
based on zHNRs, if both the leads and conductor are set to the
modified Haldane model, the edge states can be obtained by
calculating the local bond current distribution. Figure 2b shows
the result of the local bond current distribution of the spin-up
(down) edge states and spin degeneracy case, which is consistent
with the edge state in Fig. 2a. In addition, the robustness of the

antichiral edge states is investigated, and the results are presented
in Supplementary Note 2.

Both edge states (spin-up and spin-down modes) are at the
upper and lower boundaries of the zHNRs from pristine antichiral
edge states. On this basis, five antichiral edge states can be proposed
by removing the edge modes on the boundary of zHNRs. As shown
in Fig. 3, Type-1 occurs when eliminating one of the edge states in
the upper or lower boundaries. Type-2, Type-3, and Type-4 occur
when two edge modes are removed from the boundary. For Type-2,
the spin-up and spin-down edge states in the upper or lower
boundaries are removed simultaneously. Type-3 and Type-4 are
obtained by subtracting different and same spin edge states in the
upper and lower boundaries, respectively. Similarly, Type-5 can be
obtained when three edge modes are removed from the boundary
of the nanoribbon. The counterpropagating bulk states of antichiral
edges are marked by thick arrows, and the trivial bidirectional bulk
states are not displayed18.

Five antichiral edge states have been proposed, and how to
obtain these edge states by manipulating side potentials is
described below.

Side potentials-tunable antichiral edge states. This section shows
how to obtain the five antichiral edge states by modulating side
potentials. As shown in Fig. 1, the side potentials are composed of
potential field U, staggered potential field EZ, and exchange field
M along the boundaries of zHNRs (W= 8). Each type has two or
more cases, but only one case in each type is presented due to
similarities.

As shown in Fig. 4a, the energy band of Type-1 reveals that the
spin-up mode shifts to higher energy with the upper-edge
eigenstate, which can be obtained with U1= 0.2t and M1= 0.2t.
Three surviving edge states are present near the Fermi energy,
and their range is defined by the black dashed line. The edge
states and associated bulk states are marked by small black dots
and green dots, respectively. From the local bond current
distribution (illustration) and the probability distributions in
Fig. 4b, c, it can be seen that the spin-up edge modes with positive
velocity are only localized near the upper boundary of the ribbon.
In contrast, the spin-down modes with positive velocity are
localized on the upper and lower boundaries simultaneously. we
have also discussed Fig. 4a in the presence of the intrinsic spin-
orbit coupling (SOC) in the whole nanoribbons. The results show
that the antichiral edge states can be induced as anisotropic and
flat types. Afterward, anisotropic chiral edge states are induced
with increasing SOC strength. These results are shown in
Supplementary Note 3.

To further analyze the results obtained from Eq. (3), Ua= 0.2t
andMa= 0.2t are simultaneously applied to the entire zHNRs. As
shown in Fig. 4d, the position of the spin-down edge states

Fig. 3 Schematic diagram of the five possible antichiral edge states. The
black arrows denote the spin degeneracy case, and the red (blue) arrows
denote the spin-up (down) case. The thin and thick arrows represent the
antichiral edge states and the counterpropagating bulk states, respectively.

Fig. 4 The band structure, local bond current distribution and probability distribution for antichiral edge states. a The band structure of one case of
Type-1 with U1= 0.2t and M1= 0.2t along the boundaries. Inset: local current distribution (E= 0.03 eV) and schematic diagram of corresponding edge
states. b, c Corresponding probability distribution of edge states near the Fermi energy. d The band structure of zHNRs with the modified Haldane model
under the external fields Ua= 0.2t and Ma= 0.2t. The black bands (arrows) denote the spin degeneracy case, and the red (blue) bands or arrows denote
the spin-up (down) case. Other fixed parameters are the same as in Fig. 2.
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(defined by the black dashed line) has no change relative to the
original edge states of the modified Haldane model, and the edge
states cross the Fermi energy (zero energy). For the spin-up,
however, the edge states are shifted to the higher energy, and the
edge states no longer cross the Fermi energy (zero energy). This
result can be illustrated by calculating the sign of energy values in
K’ and K valleys. Due to the uniformity of the system, the
corresponding energy in K’ and K Dirac points can be expressed
as: EK’;s ¼ �λMHM þ U þ sM, and EK;s ¼ λMHM þ U þ sM. For
the spin-up edge modes, EK’;" ¼ �λMHM þ U þM ¼ 0:923eV
and EK;" ¼ λMHM þ U þM ¼ 1:237eV. Thus, the energy values
in K’ and K valleys of spin-up edge states share the same sign,
indicating the edge states do not cross the Fermi energy (zero
energy). For the spin-down edge modes, EK’;# ¼ �λMHM þ U �
M ¼ �λMHM < 0 and EK;# ¼ λMHM þ U �M ¼ λMHM > 0, sug-
gesting no position change relative to the original edge states of
the modified Haldane model.

Surprisingly, the approach used to understand the result of
Fig. 4d is also suitable for analyzing the zHNRs applied on side
potentials (Fig. 4a). Although it seems impossible to directly
quantify the results obtained with side potentials applied on a finite
width by Eq. (3), the qualitative analysis through Eq. (3) is effective,
which will be explained later by numerical calculation. For the spin-
up edge mode at the upper boundary of zHNRs, EK’;" ¼ �λMHM þ
U1 þM1 > 0 and EK;" ¼ λMHM þ U1 þM1 > 0. Due to the non-
uniformity of the system, EK’;"<0:923eV and EK;"<1:237eV. Thus,
the energy values in K’ and K valleys of the spin-up edge state are
the same sign that indicates the edge state does not cross the Fermi
energy and is elevated to a trivial bulk state. For the spin-down
mode at the upper edge, EK’;# ¼ �λMHM þ U1 �M1 < 0 and
EK;# ¼ λMHM þ U1 �M1 > 0, which suggests that the position of
the edge state has not changed from that of the original edge state.
In addition, if the energy values in K’ and K valleys of the spin-
down mode are the opposite sign, it indicates that the edge state
crosses the Fermi energy (the edge mode stays near the Fermi
energy). In other words, U1 need not be equal to M1. However, in

our work, the specific case of U1=M1 is considered to clearly show
the result of Type-1. Because if U1 is not equal to M1, the
simultaneous movement of the spin-up and spin-down energy
bands may be dazzling. Similarly, the corresponding energy
dispersion in K’ and K valleys of edge states at the lower boundary
is expressed as EK’ < 0 and EK > 0 since no side potentials are
applied. Thus, at the lower edge, the edge modes are also
unchanged: the two edge bands connecting K’ and K valleys across
the Fermi level. In summary, the side potentials can shift one or
more spin-polarized edge modes of the zHNRs out of the Femi
energy region and retain other bands.

A natural question is how to understand that the qualitative
analysis through Eq. (3) is valid in the system applying side
potentials. Next, we will continue to use the result in Fig. 4a to
show the effect of side potentials on the bands of edge states and
the effectiveness of the qualitative analysis.

Figure 5a shows the band structure of the pristine antichiral
edge state, with the illustration showing that no side potentials are
applied to the nanoribbons. As the analysis in section: Five possible
antichiral edge states, for K’ and K valleys, E ¼ �λMHM < 0 and
E ¼ λMHM > 0, respectively. Thus, the energy values in K’ and K
valleys of pristine edge states are the opposite sign that indicates
the edge state crosses the Fermi energy (zero energy).

As shown in Fig. 5b, when potentials are applied on the upper
boundary (W= 4 atoms), the band of the spin-up edge state in
the upper boundary is greatly affected and shifts to higher
energies. Thus, the side potentials can cause the spin-up edge
state to exceed the Fermi energy. Moreover, EK’;" and EK;"
slightly increase as the edge-potential region extends to the
middle of ribbons (Fig. 5b–e). Figure 5f shows the results of
applying Ua= 0.2t and Ma= 0.2t simultaneously over the entire
zHNRs, which has been analyzed in the result of Fig. 4d and will
not be repeated here. The above findings show that the result in
Figs. 4d, 5f can be obtained by increasing the width of potentials.
In other words, the potentials uniformly applied on zHNRs can
be divided into the upper boundary side potential, the middle
potential and the lower boundary side potential. However,
whether the edge state shifts and does not cross the Fermi energy

Fig. 5 The variation of energy band structure with the potential width. a W= 0. b W= 4. c W= 8. d W= 16. e W= 20. f W= 40. The ribbon width
Ny= 40 and is defined by the number of carbon atoms along the width direction. The fixed parameters are U1= 0.2t and M1= 0.2t.
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depends on the side potential. We believe that the side potentials
mainly affect the bands of the edge states. Therefore, although it
seems impossible to directly quantify the results obtained with the
potentials applied on a finite width by Eq. (3), the qualitative
analysis through Eq. (3) is effective.

Type-2 is obtained by applying U1= 0.2t or M1= 0.2t, where
the spin-up and spin-down modes are both removed from the
upper boundary or lower boundary of zHNRs. The edge states
near the Fermi energy and associated bulk states are marked by
little black and green dots, respectively. The results of Fig. 6a, b
correspond to U1= 0.2t and M1= 0.2t, respectively, and it is
worth noting that their results are the same. The result of the local
bond current distribution (illustration) shows that the spin-up
and spin-down edge modes with positive velocities are localized
near the lower boundary of the ribbon simultaneously.

The results of Fig. 6a, b can also be understood according to Eq.
(3). When U1 is applied on zHNRs, the corresponding energy values
in K′ and K valleys of the upper edge states (including spin-up and
spin-down modes) are obtained and expressed as EK’ ¼ �λMHM þ
U1 > 0 and EK ¼ λMHM þ U1 > 0, respectively. Thus, the energy
values in K′ and K valleys of the upper edge states have the same sign
that indicates these edge states do not cross the Fermi energy and are
lifted. The corresponding energy values in K′ and K valleys of the
lower edge states are expressed as EK’ ¼ �λMHM < 0 and EK ¼
λMHM > 0 since no side potentials are applied. Thus, the edge modes
of the lower edge are also not changed. When M1 is independently
applied on zHNRs, the corresponding energy values are expressed as

EK’;s ¼ �λMHM þ sM1 and EK;s ¼ λMHM þ sM1. It can be obtained
that EK’;" > 0, EK;" > 0 and EK’;# < 0, EK;# < 0. Thus, at the upper
boundary, the energy in K′ and K valleys of spin-up (down) edge
states have the same sign that indicates that the two edge states do
not cross the Fermi energy and are shifted out of the Fermi energy
range. For the edge modes originally existing at the lower boundary,
EK’;" ¼ EK’;# ¼ �λMHM < 0 and EK;" ¼ EK;# ¼ λMHM > 0; the
position of the edge state has not changed from that of the original
edge states. Thus, there exists a spin-degenerate edge current at the
lower edge.

Similarly, Type-3 (Fig. 7a) can be obtained by applying
M1= 0.2t, M2= 0.2t, and EZ= 0.2t simultaneously, Type-4
(Fig. 7b) can be obtained by applying U1= 0.1t, U2=−0.1t,
M1=−0.1t, and M2= 0.1t simultaneously, and Type-5 (Fig. 7c)
can be obtained by applying U1= 0.2t, M2= 0.2t, and EZ= 0.2t
simultaneously. These results can also be understood according to
the above analysis methods, which are not repeated here.

Spin/charge current switcher in the three-terminal device. By
modulating side potentials, we obtain five types of antichiral edge
states discussed above, where U, EZ andM were applied separately or
jointly to the two boundaries of zHNRs depending on different
modulation requirements. Next, we develop a spin/charge current
switcher based on these edge states in a three-terminal system con-
sisting of zHNRs. As shown in Fig. 8a, the three-terminal device
includes Lead 1, Conductor, Lead 2 and Lead 3. The currents are
incident from Lead 1 and finally transmitted into Lead 2 and Lead 3.

Fig. 6 The band structure of one case of Type-2. a U1= 0.2t. b M1= 0.2t. Inset: local current distribution (E= 0.03 eV) and schematic diagram of
corresponding edge states. The black bands (arrows) denote the spin degeneracy case, and the red (blue) bands denote the spin-up (down) case. Other
fixed parameters are the same as in Fig. 2.

Fig. 7 The band structure of one case of Type-3, Type-4 and Type-5. a Type-3 with M1= 0.2t, M2= 0.2t, and EZ= 0.2t; b Type-4 with U1= 0.1t,
U2=−0.1t,M1=−0.1t, andM2= 0.1t; c Type-4 with U1= 0.2t,M2= 0.2t, and EZ= 0.2t. Inset: local bond current distribution (E= 0.03 eV) and schematic
diagram of corresponding edge states. The black arrow denotes the spin degeneracy case, and the red (blue) bands or arrows denote the spin-up (down)
case. Other fixed parameters are the same as in Fig. 2.
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Lead 1, Lead 2 and Lead 3 are set as pristine antichiral edge states, but
the Conductor has the side potential-tunable antichiral edge mode.
Five types of outputs can be achieved by the side potentials in the
Conductor. Here, one case of Type-3 (Fig. 7a) is used as an example
to discuss its output, and other cases are similar. Figure 8b, c show
the results of transmission and local bond current, respectively. These
results indicate that the spin-up and spin-down currents are sepa-
rated and flow into the output leads when the edge state of the
Conductor is set to Type-3 (Fig. 2), which corresponds to the result
of Fig. 7a. The charge and spin currents can also be obtained when
the edge state of the Conductor is set to Type-1. Thus, the above
results show that the developed three-terminal device is a spin/charge
switcher.

Conclusions
In summary, based on the pristine antichiral edge states, we
propose five antichiral edge states by considering permutation
combinations. The pristine antichiral edge state has four edge
modes, including two spin-up and two spin-down edge modes.
Type-1 exists when one edge mode in the upper or lower
boundary is eliminated. Type-2, Type-3, and Type-4 are obtained
when two edge modes are removed from the boundary. Similarly,
Type-5 is obtained when three edge modes are removed from the
boundary of the nanoribbon. These antichiral edge states can be
obtained by modulating the side potentials applied to the
boundaries of zHNRs. The competition between λMHM ,U ,M, and
EZ , which leads to changes in the energy sign of K’ and K valleys
of the edge states, can shift the spin-polarized edge modes out of
the Fermi energy range, which disappears in the lower/upper
edge-potential region. In addition, we also develop an excellent
spin/charge switcher in the three-terminal device based on the
side potential-tunable antichiral edge states. These results can be
vital for future spintronic device designs. As a perspective of this
work, we consider the effect of the side potentials on the Haldane
model and obtain some preliminary results. In the next work, we
plan to delve into this project.

Methods
All methods are included in the Results and Discussion section.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
Codes used to produce the findings of this study are available from the corresponding
author upon reasonable request.
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