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Maximally modular structure of growing hyperbolic
networks
Sámuel G. Balogh 1✉, Bianka Kovács1 & Gergely Palla 1,2

Hyperbolic network models provide a particularly successful approach to explain many

peculiar features of real complex networks including, for instance, the small-world and scale-

free properties, or the relatively high clustering coefficient. Here we show that for the

popularity-similarity optimisation (PSO) model from this family, the generated networks

become also extremely modular in the thermodynamic limit, despite lacking any explicitly

built-in community formation mechanism in the model definition. In particular, our analytical

calculations indicate that the modularity in PSO networks can get arbitrarily close to its

maximal value of 1 as the network size is increased. We also derive the convergence rate,

which turns out to be dependent on the popularity fading parameter controlling the

degree decay exponent of the generated networks.
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Networks representing the patterns of interactions between
the fundamental units of complex systems can show
immensely rich behaviour as demonstrated by a vast

number of studies, forming the core subject of an inter-
disciplinary field that became widely popular in the last two
decades1–5. The most important features of complex networks
that show a great deal of universality across systems ranging from
the metabolic networks within cells to the level of the entire
society are the inhomogeneous scale-free nature of the degree
distribution6,7, the high local transitivity characterised by a rela-
tively large average clustering coefficient8, and the small-world
property9,10. Furthermore, most real networks also display an
intricate community structure11–13, corresponding to the pre-
sence of denser modules in the network topology, in a similar
fashion to families and friendship circles in the society. Capturing
the most essential properties of complex networks with the help
of simple mathematical models has always been one of the key
goals in this field, and a notable approach in this respect is given
by hyperbolic models14–21, centred around the idea of placing the
nodes in hyperbolic space and connecting node pairs with a
probability depending on the hyperbolic distance.

A fundamental model based on this idea is the popularity-
similarity optimisation (PSO) model15, which simulates the
growth of networks in the two-dimensional hyperbolic space H2.
In this approach, we keep adding nodes one by one into the
native disk representation of H214 until there is altogether N
number of nodes in the system. New nodes always appear with
logarithmically increasing radial and uniformly random angular
coordinates, and once arrived, they establish connections with
previously added nodes according to a hyperbolic proximity rule.
More precisely, node i after its appearance on the disk gets
connected to node j < i with a probability decaying as a function
of the hyperbolic distance xij as

pðxijÞ ¼
1

1þ e
ζ
2Tðxij�RiÞ

; ð1Þ

where ζ ¼ ffiffiffiffiffiffiffiffi�K
p

parametrises the curvature K < 0 of the hyper-
bolic space (where usually ζ= 1 is used), T ≥ 0 is a model para-
meter called temperature, and Ri is the cutoff distance of the
connection probability at the arrival of node i. The latter is
adjusted in such a way that the expected number of links formed
between the new node i and the rest of the system is equal to m≥1
that acts as an additional model parameter related to the average
degree of the network �k where �k � 2m. Note that due to the
decaying nature of p(xij) in Eq. (1), nodes that are closer to each
other in the hyperbolic sense are more likely to become connected
than the ones found at large distances. This tendency that newly-
appearing nodes favour hyperbolically closer nodes to connect
can be regarded as an optimisation of a trade-off between the
popularity (reflected by the radial coordinate) of a possible can-
didate to connect and its similarity (the angular distance) com-
pared to the newly arriving node15. Owing to the hyperbolic
nature of the underlying geometry, the radial coordinate of the
nodes has a very strong effect on the degree, with the most inner
nodes usually becoming hubs in the long run. In order to allow
control over the degree distribution, an outward shift of the nodes
is also introduced as

rji ¼ βrjj þ ð1� βÞrii; ð2Þ

where rji denotes the radial coordinate of node j at the appearance
of node i, and β∈ (0, 1] is a further model parameter often
referred to as the popularity fading parameter. In particular, with
the update rule of the radial coordinates given by Eq. (2), the
degree distribution of the generated networks follows a scaling

form, that is,

PðkÞ � k�γ; ð3Þ
where the degree decay exponent γ is related to the popularity
fading parameter β as γ ¼ 1þ 1

β.
In the past couple of years, the original PSO model has been

extended in various directions. Examples include the E-PSO model
that can inherently account for the creation of internal links, i.e.
connections that emerge between old nodes in the network16.
Another paradigmatic example is given by the nonuniform
popularity-similarity optimisation (nPSO) model18 that, by
assuming a heterogeneous angular distribution of the nodes, allows
the generation of networks with an adjustable community struc-
ture. Quite recently, the original PSO model has been generalised
to higher-dimensional hyperbolic spaces as well21.

In the present article, we provide further insights into the
architecture of PSO networks with a special emphasis on their
extremely modular structure. One of the main reasons behind the
success of the PSO model is that the networks generated by this
approach simultaneously show the most ubiquitous features of
real networks, e.g. the small-world property, high clustering
coefficient, and the scale-free degree distribution. Quite recently,
however, numerical studies have revealed that PSO networks
inherently possess strong community structures as well for a wide
range of parameter settings22–25, albeit there is no clear analytical
explanation for that. Motivated by this lack, the present paper
brings the research focusing on the community structure of
hyperbolic networks to a new level by showing analytically that
the modularity in PSO networks can get arbitrarily close to 1 in
the thermodynamic limit.

Results
In order to characterise the modular structure of PSO networks,
we applied the modularity Q that corresponds to the most
commonly used quality measure for quantifying the strength of
communities11,12,26. This quantity basically compares a given
partitioning of a network to a random baseline based on the
difference between the observed fraction of links inside the
modules and its expected value in the random null model. In the
most basic form, this model corresponds to the configuration
model and Q can be written as

Q ¼ ∑
q

c¼1

lc
E
� ∑i2cki

2E

� �2
" #

; ð4Þ

where the summation runs over the communities, lc denotes the
number of links inside module c, ki is the degree of the com-
munity member i, and E stands for the total number of links in
the network. Introducing bi as the number of intra-community
links of node i, we can express Q also as

Q ¼ ∑
q

c¼1

∑i2cbi
2E

� ∑i2cki
2E

� �2
" #

: ð5Þ

Partitions defined by equally sized angular sectors. Earlier
works on the modular structure of hyperbolic networks pointed
out that state-of-the-art community finding methods usually
identify modules that correspond mostly to separated angular
regions on the hyperbolic disk22–25 (often referred to as angular
sectors). This angular separation of the communities is particu-
larly interesting since these community-finding methods are
completely unaware of the underlying hyperbolic metric. Some-
what simplifying, but still trying to capture the key point of the
previous observations, here we define the partitioning of the PSO
network according to the angular coordinates of the nodes and
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divide the native disk into q number of communities of equal
angular width given by 2π/q (where we assume that q ≥ 2 and
q≪N, allowing at least a few members in each community). The
boundary between the first and the second community can be
placed at any arbitrary angle α, and once this is fixed, the rest of
the community boundaries are found at α+ i2π/q, where i runs
up to q− 1. This uniform partitioning scheme of the hyperbolic
disk is illustrated in Fig. 1.

Naturally, the modularity Q depends on the chosen value of q
and, up to a certain variation, also on α – see the Supplementary
Note 1. However, by assuming that nodes and links are distributed
among the communities evenly, Q can be approximated as

QðqÞ � ∑N
i¼1 bi

� �
2E

� q
∑N

i¼1 ki
� �

=q
� �2

ð2EÞ2 : ð6Þ

Replacing bi with the expected number of internal links of node i
(denoted by �biðqÞ) and using that the sum of the node degrees in
the negative term is equal to 2E, the expected value of the
modularity can be given as

�QðqÞ � 1
2E

∑
N

i¼1

�biðqÞ �
1
q
: ð7Þ

Note that up to this point, nothing but the assumption of uniform
angular coordinates has been used; therefore, the approximation in
Eq. (7) applies to any hyperbolic model, where the angular
coordinates of the nodes are distributed uniformly at random.

The expected modularity in PSO networks. Following a similar
line of derivation as in the work by Papadopoulos et al.16 for the
expected degree �kiðtÞ of node i appearing at time t= i as a
function of t during the network generation process, the expected
internal degree for the same node, denoted by �biðtÞ, can also be
calculated. The main idea is to focus only on the links that appear
between node i and other members of the community of node i
by replacing the connection probability with a conditional
probability conditioned on that the other node falls into the same

angular region as node i. Taking additionally into account that
the angular distance of the nodes Δθ is no longer uniformly
distributed inside the communities, but instead follows the dis-
tribution given by

ϱðΔθÞ ¼ q
π
� 1

2
q
π

� �2
Δθ; ð8Þ

we obtain for the expected internal degree of any node i

�biðtÞ � �kiðtÞ � qm2 tanðTπÞ
4πT

i
t

� �1�2β � 1
� �
ið2β� 1ÞI2t

; ð9Þ

which holds for T < 1/2, where It ¼ 1�t�ð1�βÞ
1�β . For the sake of

simplicity, the details of the calculation are moved to the
“Methods” section. Naturally, we are interested in the result for
�biðtÞ at the end of the network generation process where t=N,
and the above approximation works best for N→∞. Substituting
Eq. (9) into Eq. (7), we arrive to one of the main results of the
paper:

�QðqÞ � 1� C1q�
1
q
; ð10Þ

where C1= C1(N,m, T, β) is independent of the number of
communities q and can be written as

C1 ¼ m
2ð2β�1ÞNI2N

tanðπTÞ
4πT ∑

N

i¼1

1
i

i
N

� �1�2β � 1
� �

¼N!1 m
2
tanðπTÞ
4πT

1
1�2βþ 1

2� 1
1�2β

� �
N2β�1�lnN

N 2β�1

ð1�βÞ2

ð11Þ

Before discussing the consequences of the above results, let us
examine how well Eq. (10) approximates the average modularity
measured in networks generated by the PSO model with uniform
angular partitioning into q communities. In Fig. 2a, we depict the
size-dependence of both the measured and the expected mod-
ularity calculated according to Eq. (4) and Eq. (10), respectively.
Besides, Fig. 2b shows the relative error δQ as a function of the
network size N at different q values and fixed m, β, T parameters,

Fig. 1 Visualisation of two different uniform partitioning schemes of the same PSO network with an average degree
--
k ¼ 8 and N= 100 nodes,

generated at β= 0.6, T= 0.1. In both panels, the red dashed lines indicate the boundaries of the modules obtained by dividing the entire hyperbolic disk
into equally sized angular sectors. In panel a we used q= 4 and α= 0, whereas panel b depicts a partitioning where the parameters were set to q= 6 and
α= 0.3.
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displaying a clear decreasing tendency. The similar behaviour of
the absolute error for the same parameter setting is presented in
the Supplementary Note 2, along with further δQ(N) curves at
various other values of the m, β, T parameters. Altogether, these
results clearly suggest that Eq. (10) provides a remarkably good
approximation for large networks and becomes exact in the
N→∞ thermodynamic limit.

Perhaps the most striking consequence of Eq. (10) emerges
when compared to the results appearing in the article of Fortunato
and Barthelemy27. Therein the authors addressed the very general
question of how to design a connected network with N number of
nodes and E number of links which (with an appropriate choice of
partitioning) yields the highest possible modularity. They have
shown that under the assumption of connected networks this can
be achieved by a simple ring-like configuration that consists of
multiple modules being connected by a minimal number of links.
More precisely, the maximal QM is realised when all modules
contain the same number of links yielding

QMðnÞ ¼ 1� n
E
� 1

n
; ð12Þ

where n denotes the number of modules in the above-mentioned
ring-like configuration27. Note that the form in Eq. (12) is quite
reminiscent of the one appearing in Eq. (10) obtained for PSO
networks with the only cardinal difference that the coefficient of
the linear term in Eq. (10) is apparently different. Although it may
seem insignificant, this difference guarantees that for given values
of N and q the modularity of PSO networks remains always below
the modularity of ring-like configurations, i.e

QMðqÞ> �QðqÞ; ð13Þ

in perfect accordance with our expectations (see the “Methods”
section for more details). Nevertheless, the formal analogy between
Eq. (10) and Eq. (12) leads us to the conclusion that PSO networks
in the thermodynamic limit start to behave in a similar way as
maximally modular objects realised by the above-discussed ring-
like configurations.

Optimal number of modules q*. According to Eq. (10), the
expected modularity is highly sensitive to the number of com-
munities the network is divided into. A reasonable choice is to
consider q� ¼ maxq �QðqÞ, i.e. the value of q for which the expected
modularity is maximised in Eq. (10). Treating q as a continuous
parameter and taking the derivative of Eq. (10) with respect to q,
one gets that

q� ¼ C�1=2
1 : ð14Þ

By substituting back into Eq. (10), we obtain that the maximal
value of the modularity is given by

�Qðq�Þ ¼ 1� 2C1=2
1 : ð15Þ

In the inset of Fig. 2, we show the relative error of �Qðq�Þ based
on Eq. (15), displaying a decreasing tendency with N in a fashion
similar to the main plot.

Number of modules at the resolution limit. It is a well-known
result that the maximisation of the modularity in sufficiently large
networks would fail to resolve smaller communities27. This can be
quantified by the resolution limit lres ¼

ffiffiffiffiffiffiffiffi
E=2

p
providing a lower

bound for the number of internal links in single modules below
which merging any pair of connected communities will certainly
increase the value of Q. Related to that, one can easily realise that
for sufficiently large values of q, the angular sectors and, conse-
quently, the corresponding modules become so small that the
number of their internal links might drop below lres. This natu-
rally allows us to rephrase the number of internal links at the
resolution limit as

lres �
∑N

i¼1
�biðqresÞ

2qres
; ð16Þ

where qres specifies an upper limit on the number of sectors: using
values of q larger than qres would result in the communities being
unresolvable based on Q. Recalling Eq. (9), the expected number
of intra-community links at qres can be calculated using Eq. (16)

Fig. 2 The measured and the predicted modularity values in PSO networks along with the relative error of the prediction as a function of the network
size N. The colours indicate the number q of equally sized communities into which the networks were divided. The examined PSO networks were
generated with parameters m= 2, β= 0.6 and T= 0.1. In panel a, we show both the theoretical prediction for the expected modularity �QðqÞ along with
the exact modularity Q(q) averaged over the studied PSO networks. Panel b depicts the relative error of the prediction, which is defined as
δQ ¼ ½�QðqÞ � hQðqÞi�=hQðqÞi. The number of samples considered in hQðqÞi decreases with the number of nodes N from 10000 at N= 102 to 50 at
N= 105. In both panels, the inset shows the corresponding curves at the optimal (N-dependent) q* value, where the expected modularity is maximal.
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too (the details are given in the “Methods” section), yielding

qres ¼
ffiffiffiffiffiffi
2E

p

1þ C1

ffiffiffiffiffiffi
2E

p ¼ q2�
1þ q2�ffiffiffiffi

2E
p

: ð17Þ

Maximally modular structure of PSO networks in the ther-
modynamic limit. Let us now turn to the behaviour of the
modularity itself by plotting 1� �QðqÞ in Fig. 3 as a function of
both N and q, where �QðqÞ is obtained from Eq. (10). The heat
map clearly indicates that the expected modularity approaches 1
if N is increased and q is in the vicinity of q*(N). According to the
calculations, the modularity of PSO networks can surpass 0.9
already at N= 104, and even 0.99 at N= 106, which is smaller
only by 1% compared to the theoretically possible maximum
value of 1.

Next, as an illustration, we show in Fig. 4a a PSO network of
N= 1000 number of nodes with the communities located by the
Louvain algorithm28 (corresponding to a very popular commu-
nity finding method built on modularity maximisation), com-
pared to the partitioning of the same network in Fig. 4b according
to the setup studied here, where the communities are defined by
q* number of angular sectors of equal size. Apparently, the
modules found by Louvain have varying sizes, and in general, the
total number of communities can also be different in the two
cases. Nevertheless, the overall look of the two partitionings is
quite similar, and the modularity of the setup with q* equally
sized communities is also in the same order of magnitude as the
modularity of the partitioning found by the Louvain algorithm.
These results altogether show that the proposed division of PSO
networks into communities based on equally sized angular sectors
is not far from optimal already at such small network sizes. We
note however that the true optimum of the modularity is expected
to be higher compared to the Q measured for our uniform
partitioning at finite network sizes, since angular sectors of
varying sizes may adapt better to fluctuations in the network
structure.

An interesting remaining question is how does the modularity
behave when q is kept at a fixed value while letting the size of the

network N tend to infinity? According to Eq. (10), for a fixed q
value

lim
N!1

�QðqÞ ¼ 1� 1
q
; ð18Þ

where we used that C1 approaches 0 when N→∞. Since the
number of communities q is not bounded for infinitely large PSO
networks, the above equation already shows that the modularity
of PSO networks can get arbitrarily close to 1 in the
thermodynamic limit. Note that an analogous formula holds for
the modularity of networks that are composed of disjoint sub-
graphs having the same number of internal links E/q (including,
for instance, a set of disjoint cliques)27. By assuming a fixed value
of q, this analogy also entails that as the network size is increased,
the communities defined by equally sized angular sectors formally
start to behave as if they were cliques that share no links with
each other. This again indicates that in general, modularity scores
in PSO networks are indeed not so far from the theoretically
possible maximum value.

Naturally, instead of working with a fixed q when N→∞, it
is a better idea to consider the communities obtained at the
optimal q*(N) when seeking the maximal modularity. Never-
theless, based on Eqs. (15) and (11), the rate at which �Qðq�Þ
approaches 1 is β-dependent. For simplicity, we move the
details of the calculations into the “Methods” section and
summarise the scaling of a few quantities of interest (including
1� �Qðq�Þ) in Table 1. According to the results, the modularity

at q* converges to 1 as fast as lnN
N

� �1=2
when β< 1

2, and still as
fast as Nβ−1 when β> 1

2. Surprisingly, the modularity at qres
corresponding to the resolution limit also approaches 1 if β< 3

4;
however, always at a slower rate compared to Q(q*).

Finally, based on the above results one may also ask whether
it is possible to set the model parameters in such a way that the
modularity does not approach 1 in the thermodynamic limit. By
leaving the more rigorous examination of this question to
future work, here we conjecture that for large values of the
temperature T, the modularity is likely to converge to a non-
unit value, perhaps even to zero, in the thermodynamic limit.
This hypothesis seems plausible considering the conclusions of
the work by Kovács and Palla25, where low values of Q were
reported in numerical investigations of PSO networks gener-
ated at temperatures close to T= 1. However, unfortunately,
this change of the modularity in the thermodynamic limit
towards the higher temperatures cannot be confirmed analy-
tically in the current framework, since our calculations are valid
only for T < 1/2.

Discussion
We have shown that despite having no built-in community
formation mechanism included in the network generation
process, the modularity of PSO networks can converge to 1 in
the asymptotic limit, and we have also analysed the dependence
of the convergence rate on the model parameters. Although
modularity scores reaching above Q= 0.3 could be a convin-
cing sign of a strong community structure in practice27,29, it is
worth remarking that a high modularity value alone does not
necessarily indicate a true underlying community structure. For
instance, it has been shown that under appropriate circum-
stances even Erdős–Rényi graphs can have high values of Q
despite lacking real modules of any kind30. However, this is not
the case for hyperbolic networks, where high Q values de facto
entail the presence of real communities, which was explicitly
confirmed from various points of view25. For example, it can be
shown that there is a strong consensus and, as a consequence,
reasonably high adjusted mutual information31 values between

Fig. 3 The expected modularity as a function of N and q. For a better
visibility, we plot 1� �Q with the help of the colourmap, showing that �Q can
get very close to 1 already in the examined network size range. The
continuous line corresponds to q*(N), whereas the dashed line shows
qresðNÞ.
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the modules identified by different community finding algo-
rithms, even if these methods do not directly locate the modules
based on modularity optimisation25. Moreover, the angular
separation index32 (which is a quality measure independent of
the modularity) also shows significantly high values25, con-
firming again the statistical significance of the communities
identified in PSO networks. In the present work, we com-
plemented these results by establishing an extended theoretical
background and also by providing pieces of analytical evidence
that PSO networks are becoming extremely modular in the
thermodynamic limit. The possibly maximal modularity is a
remarkable feature of hyperbolic networks, given that their
overall structure is very similar to that of real systems.

Very recently, closely related results were obtained for the
random hyperbolic graph (RHG) model as well33. According to
Chellig et al.33, the static networks generated by this model
exhibit modularity of 1 with probability 1 in the thermodynamic
limit at temperature T= 0 for degree decay exponents γ > 2 and
any average degree. Taken together, the attainability of extremely
large modularity values seems to be a universal feature of
hyperbolic network models. The fact that maximally modular
networks can be obtained using both the PSO and the RHG
models naturally leads to the question of whether the modularity
maximisation mechanism is the same in the two approaches.

Although the fine details of this behaviour can be different, it
seems that the fundamental basis of the effect is the same. In both
approaches, by fixing the model parameters we implicitly define a
characteristic distance at which the connection probability
between nodes drops down close to zero. When increasing the
system size to the thermodynamic limit, the size of the disk
occupied by the network in the hyperbolic plane becomes very
large compared to this distance, hence the vast majority of the
links will connect nodes that are very close to each other com-
pared to the size of the entire disk. The results indicate that in this
state, it is possible for both models to segment the network into
parts in such a way that the fraction of links between the seg-
ments becomes negligible compared to the fraction of links inside
the segments, resulting in a modularity value approaching 1 in
the N→∞ limit.

Since the above argument is based mainly on the difference
between the scale of the typical distance between connected nodes
and the scale of the system size, one may ask whether a similar
behaviour could occur also in geometric graphs living in Eucli-
dean spaces. In our view, homogeneously distributed nodes and a
connection probability that decays as a function of the node-node
distance may lead to highly modular networks also in Euclidean
spaces. It is plausible that networks generated under the above
circumstances can be divided into parts where the links con-
necting different communities are mainly located on the surface
of the modules, whereas the internal connections of the com-
munities can occupy the entire volume of the given module.
When increasing the system size to the thermodynamic limit in
networks of this type, the fraction of external links can become
negligible compared to the fraction of internal links, leading to a
high modularity value. Nevertheless, it is very important to note
that such Euclidean networks are expected to have homogeneous
degree distribution instead of a scale-free one, and are not going
to be small-world networks either. In contrast, the hyperbolic
networks considered in this paper retain the scale-free degree
distribution and the small-world property at any system size.

So far, only a few graph construction mechanisms were
reported to generate networks with such an enhanced community

Table 1 Asymptotic scaling of the modularity.

β 2 0; 12
� �

β ¼ 1
2 β 2 1

2 ;
3
4

� 	
β 2 3

4 ; 1
� �

β= 1

C1(N) lnN
N

ðlnNÞ2
N

N2β−2 ðlnNÞ�2

q*(N) N
lnN

� �1
2 N

1
2

lnN
N1−β lnN

qresðNÞ N
1
2 N2−2β ðlnNÞ2

1� �Q q�
� �

lnN
N

� �1
2 lnN

N
1
2

Nβ−1 ðlnNÞ�1

1� �Q qres
� �

lnN

N
1
2

ln2N

N
1
2

N2β�3
2 o(1)

We list the scaling of C1ðNÞ; q�ðNÞ; qresðNÞ; 1� �Qðq�Þ and 1� �QðqresÞ with the system size N in
the thermodynamic limit N→∞ for different values of the popularity fading parameter β at any
T < 0.5.

Fig. 4 Communities in a PSO network with an average degree
--
k ¼ 8 and N= 1000 nodes, generated at β= 0.6, T= 0.1. a The modules found by the

Louvain algorithm, indicated by colours. b The communities according to the partitioning studied in this paper, consisting of equally sized angular regions.
The number of modules in this case was set to the optimal q� ¼ C�1=2

1 value.
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structure that the modularity or similar quality measures take
their maximal value. Schematic, but at the same time very illus-
trative examples where Q can approach 1 in the thermodynamic
limit for graphs with a topology deliberately optimised for max-
imal modularity were provided by Brandes et al.34 and by For-
tunato and Barthelemy27. Another emblematic example is given
by the combination of the triadic closure mechanism with pre-
ferential attachment35,36, where additional triad formation steps
are also carried out during the graph generation process to
increase the clustering coefficient in networks that eventually
become scale-free. Combining these mechanisms in different
types of growing network models can lead to significantly high
values of the so-called node-based embeddedness37, which,
similarly to Q, quantifies how pronounced the communities are.
In addition to this, the networks generated in these approaches
also display heavy-tailed degree distributions and relatively high
values of the clustering coefficient as well, making them more
similar to real networks compared to the constructions optimised
solely for maximal modularity.

Hyperbolic network models including both the RHG and PSO
models are now proven to constitute an equally important family
of graph construction mechanisms from the point of view of the
maximal modularity. The advantage of these models is that they
are capable of simultaneously explaining all the above features in
a natural manner, without the need for any exogenous triad
formation mechanism during the network growth or graph
generation process. The seen universal properties of hyperbolic
networks (corresponding to the scale-free degree distribution, the
high clustering coefficient and the extremely large modularity) are
making them without a doubt ideal candidates for modelling real-
world networks.

Methods
Detailed description of the PSO model. In the popularity-similarity optimisa-
tion (PSO) model15 initially the network is empty, and the network nodes are
placed one by one on the hyperbolic plane with increasing radial coordinates and
uniformly random angular coordinates. The new node always connects to the
previously appeared nodes with a linking probability that decreases as a function
of the hyperbolic distance. The model works in the native representation of the
hyperbolic plane of curvature K < 0, where the hyperbolic plane is represented in
the Euclidean plane by a disk of infinite radius. The hyperbolic distance x
between two points located at polar coordinates (r, θ) and ðr0; θ0Þ can be
expressed as

x ¼ 1
ζ
� acoshðcoshðζrÞ coshðζr0Þ � sinhðζrÞ sinhðζr0Þ cosðΔθÞÞ ð19Þ

from the hyperbolic law of cosines, where Δθ ¼ π � jπ � jθ � θ0jj is the angular
distance between the examined points and ζ ¼ ffiffiffiffiffiffiffiffi�K

p
. At Δθ ¼ π; x ¼ r þ r0 ,

while for Δθ ¼ 0; x ¼ jr � r0j, meaning that in this representation, the hyper-
bolic distance of a point from the disk centre is equal to its radial coordinate r,
i.e. its Euclidean distance from the disk centre.

The properties of a PSO network that can be tuned are the total number of
nodes N, the expected average degree �k (via the model parameter m that
corresponds to �k=2), the exponent γ ≥ 2 of the tail of the degree distribution that
decays as PðkÞ � k�γ (via the popularity fading parameter β ∈ (0, 1] that
controls the speed of the outward drift of the nodes during the network growth),
and the average clustering coefficient �c (via the temperature T ∈ [0, 1) that
regulates how sharp the cutoff in the connection probability function is).
Interpreting m as the expected number of new connections per step – as in the
Model20 variant of the PSO model–, the network growth can be realised using the
following rules:

1. In the ith step, node i appears with the radial coordinate rii ¼ 2
ζ ln i and an

angular coordinate θi sampled from the interval [0, 2π) uniformly at
random. (Note that due to this choice of the radial coordinate formula,
changing the value of the curvature K=− ζ2 of the hyperbolic plane
corresponds to a simple rescaling of all the hyperbolic distances. The usual
custom is to simply set the value of ζ to 1).

2. The radial coordinates of all the previous nodes j < i are increased toward rii
as rji= βrjj+ (1− β)rii. This outward shift of the node positions is usually
referred to as ‘popularity fading’, as it reduces the differences in the nodes’
radial attractivity.

3. The new node i gets attached to the already existing nodes as follows:

a. If T= 0, then node i becomes connected to all nodes j < i at a hyperbolic
distance xij not larger than

Ri ¼
rii � 2

ζ ln
2
π � 1�e�

ζ
2ð1�βÞrii

mð1�βÞ

� �
if β< 1;

rii � 2
ζ ln

ζrii
π�m

� �
if β ¼ 1:

8><
>: ð20Þ

b. If T > 0, then node i becomes connected to nodes j < i with a probability
depending on the hyperbolic distance xij as

pðxijÞ ¼
1

1þ e
ζ
2Tðxij�RiÞ

; ð21Þ

where the cutoff distance Ri can be written as

Ri ¼
rii � 2

ζ ln
2T

sinðTπÞ � 1�e�
ζ
2ð1�βÞrii

mð1�βÞ

� �
if β< 1;

rii � 2
ζ ln

T
sinðTπÞ �

ζrii
m

� �
if β ¼ 1:

8><
>: ð22Þ

Calculation of the expected modularity
--
Q. In this section, we explain in detail

how the expected value of the modularity can be calculated in PSO networks for a
uniform partition scheme.

Expected modularity for a uniform partition scheme. Let us rewrite Eq. (4) in the
“Results” section as follows:

Q ¼ ∑
q

c¼1
∑
i2c

bi
2E

� ∑
q

c¼1
∑
i2c

ki
2E

� �2

: ð23Þ

Provided that each node is assigned to a community, the double sum in Eq. (23)
can simply be replaced with a single summation running over the whole set of
nodes, yielding

Q ¼ ∑
N

i¼1

bi
2E

� ∑
q

c¼1
∑
i2c

ki
2E

� �2

: ð24Þ

Based on the fact that the angular position of the nodes is distributed uniformly
and we identified the communities as equally sized circular sectors of the hyper-
bolic disk, the sum of the node degrees has to be equal for each community in the
thermodynamic N→∞ limit. This assumption of homogeneous mixing implies
that

lim
N!1

∑
i2c1

ki ¼ lim
N!1

∑
i2c2

ki ¼ lim
N!1

1
q
∑
N

i¼1
ki ð25Þ

for any community c1 and c2, based on which Eq. (24) can be approximated as

Q � ∑
N

i¼1

bi
2E

� ∑
q

c¼1
∑
N

i¼1

ki
2Eq

� �2

¼ ∑
N

i¼1

bi
2E

� q ∑
N

i¼1

ki
2Eq

� �2

ð26Þ

¼ ∑
N

i¼1

bi
2E

� 1
q
: ð27Þ

By taking the expected value of the modularity Q given by Eq. (27) over dif-
ferent PSO networks of the same model parameters, we obtain

�Q � ∑N
i¼1

�bi
2E

� 1
q
; ð28Þ

which is the same as Eq. (7) in the “Results” section.
In order to provide a closed-form expression for the expected value of the

modularity in PSO networks, one needs to compute the expected number of intra-
community links �bi for each node i at the end of the network generation process,
i.e. at time t=N. Since �bi is a degree-based quantity, its evaluation is similar to that
of �ki. Thus, in the followings we first revisit the derivation of �ki first proposed by
Papadopoulos et al.15 and then, we turn to discuss in detail how to calculate �bi by
applying a similar set of arguments.

Derivation of the expected degree �ks of node s at the end of the network growth. We
again emphasize that here we use the variant of the PSO model called Model20
introduced in the Supplementary Information of the article of Papadopoulos
et al.15. According to the results shown therein, during the growth of PSO networks
of T > 0, the probability that node t connects to a previously appeared node s can be
given by

Πðs; tÞ ¼ 1
π

Z π

0

1

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst �
2T

sinðTπÞ
1

Xðs; tÞ ; ð29Þ
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where

1
Xðs; tÞ ¼ e�

ζ
2�ðrstþrtt�Rt Þ ¼ s�βt�ð1�βÞ sinðTπÞ

2T
mð1� βÞ
1� t�ð1�βÞ : ð30Þ

By using Eq. (30), Π(s, t) in Eq. (29) can equivalently be rephrased as

Πðs; tÞ ¼ m
s�βt�ð1�βÞ

It
ð31Þ

with It ¼ 1�t�ð1�βÞ
1�β . Based on the the form of attraction probability Π(s, t) in Eq. (31),

one can determine the expected number of connections that node s establishes by
time t, yielding

�ksðtÞ ¼
Z s

1
Πði; sÞdiþ

Z t

s
Πðs; jÞdj � mþm

Z t

s

s�βj�ð1�βÞ

Ij
dj ð32Þ

� mþ m
Itβ

s
t

� ��β
� 1

� �
; ð33Þ

where we have exploited that
R s
1 Πði; sÞdi ¼ m and Ij ≈ It for sufficiently large values

of j and t, in accordance with the approximation used by Papadopoulos et al.16.
Note that as T→ 0, the connection probability in Eq. (21) converges to a

reversed Heaviside step function, that is,

lim
T!0

pðxstÞ ¼
1 if Δθst ≤

2
Xðs;tÞ

0 otherwise ;



ð34Þ

meaning that only nodes with Δθst ≤
2

Xðs;tÞ can establish connections between one
another, but those with a probability of 1. In this case, the probability that node t
connects to a previously appeared node s can be given by

Πðs; tÞ ¼ 1
π

Z 2=Xðs;tÞ

0
dΔθst ¼

2
π

1
Xðs; tÞ ; ð35Þ

which can also be obtained by taking the T→ 0 limit in the right-hand side of Eq.
(29). Note that however, Π(s, t) in Eq. (31) does not depend on T, therefore letting
T→ 0 does not influence the value of �ksðtÞ in Eq. (33) either. Finally, if we are
interested in the value of �ksðtÞ at the end of the network growth, we simply evaluate
the formula appearing in Eq. (33) at time t=N, yielding

�ksðt ¼ NÞ � �ks � mþ m
INβ

s
N

� ��β
� 1

� �
: ð36Þ

Derivation of the expected internal degree �bs of node s at the end of the network
growth. Let us assume that the entire two-dimensional hyperbolic disk is divided
into q number of equally sized circular sectors that correspond to communities.
Although the angular distance Δθst is distributed uniformly for the whole set of
nodes, its distribution is no longer uniform within a given circular sector. Instead,
given that two nodes s and t fall into the same sector Sc ðc ¼ 1; :::; qÞ corresponding
to the angular interval αþ 2πðc�1Þ

q ; αþ 2πc
q

h �
, the probability density for them to

have angular distance Δθst can be calculated as follows:

ϱðΔθst js; t 2 ScÞ ¼
q
π
� 1

2
q
π

� �2
Δθst ; ð37Þ

where Δθst 2 αþ 2πðc�1Þ
q ; αþ 2πc

q

h �
. Note that by means of rotational symmetry

and the statistical equivalence of the sectors the α and c parameters above can
always be set to α= 0 and c= 1 without any loss of generality. For a detailed
derivation of Eq. (37), see section “Distribution of angular distances within a
circular sector”.

Since communities are identified as angular sectors on the hyperbolic disk,
intra-community links correspond to the connections between nodes located in the
same circular sector. Based on this, the probability that node s forms an intra-
community link with a new-coming node t given that both nodes are inside
community c of width 2π/q can be written as

Πqðs; tjs; t 2 ScÞ ¼
Z 2π=q

0

ϱðΔθst js; t 2 ScÞ
1þ Xðs;tÞ

2 Δθst

� �1=T dΔθst ; ð38Þ

where ϱðΔθst js; t 2 ScÞ is given by Eq. (37). However, there are altogether q number
of distinct communities; therefore, the total probability that a node pair s, t shares
an intra-community link in any community can be written as

Πqðs; tÞ ¼ ∑
q

c¼1
Πqðs; tjs; t 2 ScÞPðs; t 2 ScÞ; ð39Þ

where Pðs; t 2 ScÞ ¼ 1=q2 denotes the probability that both node s and node t fall
into the circular sector Sc. Due to the statistical equivalence of the communities,
each term in Eq. (39) gives the same contribution, which, along with the

substitution of Eq. (38) into Eq. (39), yields

Πqðs; tÞ ¼
1
q

Z 2π=q

0

q
π � 1

2
q
π

� �2
Δθst

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst ð40Þ

¼ 1
q

Z 2π=q

0

q
π

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst þ
1
q

Z 2π=q

0

� 1
2

q
π

� �2
Δθst

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst

:¼ I1 þ I2:

ð41Þ
Let us evaluate I1 and I2 separately. The first term I1 turns out to have the same

form as Π(s, t) in Eq. (29), that is,

I1 ¼
1
q

Z 2π=q

0

q
π

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst ¼
1
π

2
Xðs; tÞ

Z Xðs;tÞπ
q

0

1

1þ y1=T
dy

� 1
π

2
Xðs; tÞ

Z 1

0

1

1þ y1=T
dy ¼ 2T

sinðTπÞ
1

Xðs; tÞ ;
ð42Þ

being valid for any T < 1 temperature values. In Eq. (42) we have also taken
advantage of the fact that for sufficiently large networks at temperatures T < 1 the
main contribution to the integral I1 comes from the range of small angular
distances Δθst≪ 2π/q, and consequently, the upper bound of the integral can safely
be extended to infinity. The second term I2 in Eq. (41) is a bit more complicated to
evaluate; however, similar considerations suggest that

I2 ¼ � 1
q

Z 2π=q

0

1
2

q
π

� �2
Δθst

1þ Xðs;tÞ
2 Δθst

� �1=T dΔθst ¼ � q
πXðs; tÞ

� �2 Z Xðs;tÞπ
q

� �2
0

1

1þ y1=ð2TÞ
dy

� � q
πXðs; tÞ

� �2 Z 1

0

1

1þ y1=ð2TÞ
dy ¼ � q

π

2T
sinð2TπÞ

1

X2ðs; tÞ ;

ð43Þ
where we have used the change of variables with a new variable defined as

y ¼ Xðs;tÞ
2 Δθst

� �2
. Using Eq. (34), one can show that the T= 0 case is again well-

defined. Taking the T→ 0 limit in Eqs. (42) and (43) yields

lim
T!0

I1 ¼
2
π

1
Xðs; tÞ ð44Þ

and

lim
T!0

I2 ¼ � q
π2

1
X2ðs;tÞ ; ð45Þ

respectively. Nevertheless, it is important to note that the approximation in Eq.
(43) is no longer applicable for T ≥ 1/2 values since in such case the corresponding
integral becomes divergent.

Finally, combining Eq. (41) with Eqs. (42) and (43) yields

Πqðs; tÞ ¼ I1 þ I2 � 2T
sinðTπÞ

1
Xðs;tÞ 1� q

2π cosðTπÞ
1

Xðs;tÞ

� �
; ð46Þ

which can be rephrased as

Πqðs; tÞ ¼ s�βt�ð1�βÞ m
It

1� q
tanðTπÞ
4πT

s�βt�ð1�βÞ m
It

� �
ð47Þ

¼ Πðs; tÞ � q
tanðTπÞ
4πT

s�2βt�2ð1�βÞ m
2

I2t
ð48Þ

¼ Πðs; tÞ � q
tanðTπÞ
4πT

Π2ðs; tÞ; ð49Þ

In the above derivation, we used the formulae of 1
Xðs;tÞ and Π(s, t) defined by Eqs.

(30) and (31), respectively. Analogously to Eq. (32), the expected number of intra-
community links of node s emerged by time t can be calculated as

�bsðtÞ ¼
Z s

1
Πqði; sÞdiþ

Z t

s
Πqðs; jÞdj: ð50Þ

The first term in Eq. (50) can be simplified toZ s

1
Πqði; sÞdi ¼

Z s

1
Πði; sÞ � q

tanðTπÞ
4Tπ

Π2ði; sÞ
� �

di ð51Þ

¼ m� q
tanðTπÞ
4Tπ

Z s

1
i�2βs�2ð1�βÞ m

2

I2s
di ð52Þ

¼ m� q
tanðTπÞ
4Tπ

s�1 � s�2þ2β

1� 2β
m2

I2s
; ð53Þ

where we used Eq. (49) in the first step, and Eq. (32) together with the definition of
m ¼ R s1 Πði; sÞdi in the second step. As the second term in Eq. (53) is a decreasing
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function of s, in sufficiently large networks for the majority of the nodes theR s
1 Πqði; sÞdi integral is close to m. For the sake of simplicity, in the following, we
extend this approximation for all nodes and replace the first term in Eq. (50) by m.

Furthermore, substituting Eq. (49) into the second term of Eq. (50) yields

�bsðtÞ � mþ
Z t

s
Πðs; iÞdi� qm2 tanðTπÞ

4πT

Z t

s

s�2βi2β�2

I2i
di ð54Þ

¼ �ksðtÞ � qm2 tanðTπÞ
4πT

Z t

s

s�2βi2β�2

I2i
di ð55Þ

� �ksðtÞ � qm2 tanðTπÞ
4πT

s�2β

I2t

Z t

s
i2β�2di ð56Þ

¼ �ksðtÞ � qm2 tanðTπÞ
4πT

s
t

� �1�2β � 1
� �
sð2β� 1ÞI2t

; ð57Þ

where the same approximation has been utilised as in the case of Eq. (33). In terms
of modularity, we are specifically interested in the value of �bsðtÞ for each node
s= 1, . . . ,N at the end of the network generation process, i.e. at t=N, which
simply reads as

�bsðt ¼ NÞ � �bs � �ks � qm2 tanðTπÞ
4πT

s
N

� �1�2β � 1
� �
sð2β� 1ÞI2N

: ð58Þ

Hereinafter, for the sake of notational simplicity, the argument of �bsðtÞ is always
omitted when being evaluated at t=N. As an illustration, in Fig. 5 we show the
measured values of �bs in PSO networks as a function of the node index s for
different values of the number of communities q in comparison with the analytical
prediction given by Eq. (58). According to the results, in the q regime of interest
(q ≤ qres) our approximation works well.

Distribution of angular distances within a circular sector. As it is discussed in the
previous section, the angular distance of the nodes is not uniform within a circular
sector, but instead follows a linearly decreasing form given by Eq. (37). In the proof
of this statement, because of the statistical equivalence of the communities, it is
sufficient to consider only one circular sector, namely e.g. the one that corresponds

to the angular interval ½α; αþ 2π
q Þ. Due to the rotational invariance that is statis-

tically valid for the system, α can be set to 0 in the proof.
First, let us examine the cumulative distribution function FΔθst

ðχÞ of the angular
distances inside the chosen angular sector given by the interval ½0; 2πq Þ. By
definition, FΔθst

ðχÞ denotes the probability that the value of the angular distance
Δθst is less than χ, given that nodes s and t both belong to the chosen sector, i.e.
θs 2 ½0; 2πq Þ and θt 2 ½0; 2πq Þ. Using Fig. 6, FΔθst

ðχÞ can be determined in a purely

geometric way. The grey shaded strip in Fig. 6 covers the set of points where
Δθst= π− ∣π− ∣θs− θt∣∣= ∣θs− θt∣ < χ holds, whereas the points of the whole
square represent all possible values of the angular coordinates that nodes s and t
can have inside the given circular sector. Since θs and θt are distributed uniformly,
FΔθst

ðχÞ can be calculated as the area of the grey strip Astrip divided by the total area
of the yellow square Atotal in Fig. 6, that is,

FΔθst
ðχÞ ¼ AstripðχÞ

AtotalðχÞ
¼

2π
q

� �2
� ð2πq � χÞ2

2π
q

� �2 : ð59Þ

Now taking the derivative of Eq. (59) with respect to χ, we obtain the
corresponding probability density function, yielding

d
dχ

FΔθst
ðχÞ ¼ 2

q
2π

� �2 2π
q
� χ

� �
¼ q

π
� 1

2
q
π

� �2
χ; ð60Þ

from which we immediately recover Eq. (37).

Expected modularity as a function of q and the introduction of the C1 parameter. Let
us now turn to the q-dependence of �Q. This can be determined by plugging Eq.
(58) into Eq. (28), which yields

�QðqÞ �
∑N

i¼1
�ki � qm2

ð2β�1ÞI2N
tanðπTÞ
4πT ∑N

i¼1
1
i

i
N

� �1�2β � 1
� �

2E
� 1

q
ð61Þ

¼ 1� q
m2

2Eð2β� 1ÞI2N
tanðπTÞ
4πT

∑
N

i¼1

1
i

i
N

� �1�2β

� 1

 !
� 1

q
ð62Þ

¼ 1� C1q�
1
q
; ð63Þ

Fig. 5 The expected number of intra-community links
--
bi in PSO networks as a function of the node index i for different values of the number of

communities q. In all the panels a–d, the solid green curves correspond to the number of intra-community links obtained by averaging over 10 PSO
networks generated independently with parameters ζ= 1, N= 10000,m= 2, β= 0.6 and T= 0.1, while the red dashed lines show the analytic prediction
for the same model parameters. The number of communities used for creating panel c and panel d at this parameter setting were q*= 48 and qres ¼ 133,
respectively.
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where C1 is defined as

C1 �
m2

2Eð2β� 1ÞI2N
tanðπTÞ
4πT

∑
N

i¼1

1
i

i
N

� �1�2β

� 1

 !
; ð64Þ

or, using E ≈mN, as

C1 ¼
m

2ð2β� 1ÞNI2N
tanðπTÞ
4πT

∑
N

i¼1

1
i

i
N

� �1�2β

� 1

 !
: ð65Þ

The dependence of C1 on the system size N. Many key quantities discussed in the
“Results” section – including e.g. q* or qres – are strongly related to the value of C1.
Therefore, it would be more convenient to re-express C1 in a simplified form.
Although it is impossible to analytically evaluate the summation in Eq. (65) for
arbitrary values of N, fair approximations can still be done in the large network size
limit, i.e. when N≫ 1. Using an integral approximation with a midpoint rule in Eq.
(65), for β ≠ 1 one obtains

∑
N

i¼1
i�2β ¼ N1�2β ∑

N

i¼1

1
N

i
N

� ��2β

� N1�2β
Z 1

1=N
x�2βdx þ N2β�1 þ 1=N

2

 !

¼ N1�2β � 1
1� 2β

þ 1þ N�2β

2
;

ð66Þ

based on which C1 can be simplified to

C1 ¼
m
2
tanðπTÞ
4πT

∑N
i¼1

1
i

i
N

� �1�2β � 1
� �

NI2N ð2β� 1Þ

¼ m
2
tanðπTÞ
4πT

N2β�1 ∑N
i¼1 i

�2β �∑N
i¼1 i

�1

NI2N ð2β� 1Þ

� m
2
tanðπTÞ
4πT

1
1�2β þ 1

2 � 1
1�2β

� �
N2β�1 � lnN

N 2β�1
ð1�βÞ2

;

ð67Þ

where we used that IN ¼ 1�N�ð1�βÞ
1�β � 1

1�β and ∑N
i¼1 i

�1 � lnN in the thermo-

dynamic limit N→∞. The validity of this approximation is supported by Fig. 7,
where we show the value of C1 as a function of the number of nodes N according to
Eq. (65) and also its approximated form appearing in Eq. (67).

It is worth remarking that for different values of the popularity fading
parameter β, C1 in Eq. (67) behaves in a slightly different manner. Further

simplifications in the thermodynamic limit suggest that

C1 �
m tanðπTÞ

8πT
�

ð1�βÞ2
1�2β

lnN
N ; if β< 1

2 ;

ln2N
N ; if β ¼ 1

2 ;

2ðβþ1Þð1�βÞ2
2ð2β�1Þ N2β�2; if 1

2 < β< 1;

8>>><
>>>:

ð68Þ

where the β ¼ 1
2 case can be verified by applying the L’Hôpital’s rule in Eq. (67).

For β equal to 1, IN in Eq. (65) diverges as lnN , therefore it should be handled as a
separate case. A quick calculation reveals that for β= 1, the parameter C1 decays
slower than any power law, more precisely,

C1ðβ ¼ 1Þ � m tanðπTÞ
8πT

N π2

6 � lnN

N ln2N
� m tanðπTÞ

8πT
π2

6ln2N
; ð69Þ

where we used the fact that ∑N
i¼1 i

�2 � π2

6 for large values of N. Although C1 can
display fundamentally different types of scaling with N, it can easily be shown that
for any values of the β parameter, C1 is a decreasing function of N and

lim
N!1

C1 ¼ 0; ð70Þ

as a result of which further calculations in the thermodynamic limit become
considerably easier. Combining Eq. (70) with Eq. (10) suggests that when q is kept
at a fixed value while letting N→∞ expected modularity can be written as

lim
N!1

�QðqÞ ¼ 1� 1
q
; ð71Þ

from which immediately recover Eq. (18) in the “Results” section.
In the the following sections, we derive two key quantities used in the “Results”

section, namely the optimal q* value at which the modularity is maximal and the
resolution limit qres. Moreover, we are going to discuss in detail how these
quantities are related to the parameter C1.

Optimal number of communities. One can simply compute q* by setting the
derivative of �QðqÞ to zero in Eq. (10), which yields

d�QðqÞ
dq

����
q�

¼ C1 �
1
q2�

¼ 0; ð72Þ

from which we recover that q� ¼ C�1=2
1 as it is given by Eq. (14). Utilising Eqs. (68)

and (69) allows us to express how the optimal number of communities q* depends

Fig. 7 Comparison between the exact and the approximate values of the
parameter C1 as a function of the system size N for different values of the
popularity fading parameter β. Each panel corresponds to a different value
of β, showing the exact values of C1 with a red dashed line, whereas the
approximating form of C1 is displayed with a green solid line. In all panels
a–d, we used ζ= 1,m= 2 and T= 0.1.

Fig. 6 Graphical solution for calculating the distribution of the angular
distance between nodes inside a given circular sector. The yellow region
represents all possible values of the angular coordinates θs, θt of two
arbitrary nodes s, t conditioned on that they fall into the same angular
sector with a central angle 2π/q. The grey strip shows those combinations
of θs and θt values, where Δθst is smaller than a given value of χ.
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on the system size N. Namely, at N→∞ this can be written as

q�ðNÞ � 8πT
m tanðπTÞ

� �1
2

�

ð1�2βÞ12
ð1�βÞ

N
lnN

� �1
2; if β< 1

2 ;

N
1
2

lnN ; if β ¼ 1
2 ;

ð2β�1Þ12
ðβþ1Þ12ð1�βÞ

N1�β; if 1
2 < β< 1;

6
1
2

π lnN; if β ¼ 1:

8>>>>>>>><
>>>>>>>>:

ð73Þ

The above results are concisely summarised in the second row of Table 1 in the
“Results” section.

Maximum value of the modularity. Once q* is known, the maximum value of
the expected modularity can be obtained by plugging Eq. (14) into Eq. (63),
yielding

�Qðq�Þ ¼ 1� C1q� �
1
q�

¼ 1� 2
q�

¼ 1� 2C1=2
1 ; ð74Þ

which, by means of Eq. (70), goes to 1 in the thermodynamic limit N→∞. Based
on Eqs. (74) and Eq. (68), one can also calculate how quickly the modularity
reaches 1 as a function of N. The corresponding results are summarised in the
fourth row of Table 1 in the “Results” section.

Resolution limit. The resolution limit can naturally be phrased in the language of q
as

l � ∑N
i¼1

�biðqÞ
2q

> lres ¼
∑N

i¼1
�biðqresÞ

2qres
� ðE=2Þ1=2; ð75Þ

where qres specifies an upper limit on the number of partitions; using values of q
larger than qres would result in the communities being certainly unresolvable. By
means of Eq. (58), the last part of Eq. (75) can be rewritten as

∑N
i¼1

�biðqresÞ
2qres

� ∑N
i¼1

�ki � 2EC1qres
2qres

¼ 2Eð1� C1qresÞ
2qres

¼ ðE=2Þ1=2; ð76Þ

which, after rearrangement, yields

qres ¼
ð2EÞ1=2

1þ C1ð2EÞ1=2
¼ ð2EÞ1=2

1þ ð2EÞ1=2
q2�

: ð77Þ

The dependence of qres on the system size N is conjointly determined by C1(N)
and E ≈mN. More precisely, taking the N→∞ limit in Eq. (77) and additionally
using Eqs. (68) and (69) suggest that

qresðNÞ �
N

1
2; if β< 3

4 ;

N2�2β; if 3
4 ≤ β<1:

ln2N; if β ¼ 1:

8><
>: ð78Þ

Modularity at qres. In the followings, we discuss the rate at which �QðqresÞ goes to 1
as a function of the system size N. The value of the modularity at qres can be
expressed by plugging Eq. (77) into Eq. (63) yielding

�QðqresÞ ¼ 1� C1ð2EÞ1=2
1þ C1ð2EÞ1=2

� 1þ C1ð2EÞ1=2
ð2EÞ1=2

ð79Þ

¼ 1� 2EC1

ð2EÞ1=2 þ 2EC1

� ð1þ C1ð2EÞ1=2Þ
2

ð2EÞ1=2 þ 2EC1

: ð80Þ

Since E ~N and C1 is a decreasing function of N, the dominant part of �QðqresÞ is
always given by the first term in Eq. (80). This simplification suggests that

1� �QðqresÞ �
C1ð2EÞ1=2

1þ C1ð2EÞ1=2
; ð81Þ

which, along with the result obtained for C1 in Eq. (68), leads to

1� �QðqresÞ � C1ð2EÞ1=2 �

lnN
N1=2 ; if β< 1

2 ;

ln2N
N1=2 ; if β ¼ 1

2 ;

N2β�3=2; if 1
2<β<

3
4 ;

8>><
>>: ð82Þ

where we exploited the fact that C1(2E)1/2 goes to zero as N→∞ for β < 3/4, and thus,
the Taylor-expansion of x

1þx � x with x=C1(2E)1/2 can be used in Eq. (81). Note,
however, that for β ≥ 3/4 values the above approximation does not hold since C1(2E)1/2

in Eq. (81) is either divergent or converges to a non-zero value in the thermodynamic
limit. More precisely, based on Eqs. (68) and (80) one can show that for β= 3/4

1� �QðqresÞ �
K1

1þ K1
þ 1þ K1

ð2mNÞ1=2
� K1

1þ K1
; ð83Þ

where K1 :¼ ð2mÞ1=2m tanðπTÞ
8πT

3
4þ1ð Þ 1�3

4ð Þ2
3
2�1ð Þ is a constant which does not depend on the

system size N. For β > 3/4, similar considerations suggest that we can approximate
1� �QðqresÞ as

1� �QðqresÞ �
K2N

2β�3=2

1þ K2N
2β�3=2

� 1

1þ K�1
2 N3=2�2β

� 1� K�1
2 N3=2�2β; ð84Þ

where K2 is again a constant defined as K2 :¼ ð2mÞ1=2m tanðπTÞ
8πT

ðβþ1Þð1�βÞ2
ð2β�1Þ . In the last step

above we have exploited that since K2N2β−3/2→∞ as N→∞, therefore the Taylor
expansion 1

1þx � 1� x with x ¼ K�1
2 N3=2�2β can be utilised in Eq. (84). The results

presented herein are concisely summarised in Table 1 of the “Results” section.

Data availability
Since this is a theoretical work, only synthetic data was used to validate the calculations.
This computer generated data is available from the corresponding author upon request.

Code availability
Computational and visualisation codes to reproduce the results of this work are available
from request to the authors.
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