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Scalable quantum processors empowered by the
Fermi scattering of Rydberg electrons
Mohammadsadegh Khazali 1,2,3✉ & Wolfgang Lechner 4,5

Quantum computing promises exponential speed-up compared to its classical counterpart.

While the neutral atom processors are the pioneering platform in terms of scalability, the

dipolar Rydberg gates impose the main bottlenecks on the scaling of these devices. This

article presents an alternative scheme for neutral atom quantum processing, based on the

Fermi scattering of a Rydberg electron from ground-state atoms in spin-dependent lattice

geometries. Instead of relying on Rydberg pair-potentials, the interaction is controlled by

engineering the electron cloud of a sole Rydberg atom. The present scheme addresses the

scaling obstacles in Rydberg processors by exponentially suppressing the population of short-

lived states and by operating in ultra-dense atomic lattices. The restoring forces in molecule

type Rydberg-Fermi potential preserve the trapping over a long interaction period. Further-

more, the proposed scheme mitigates different competing infidelity criteria, eliminates

unwanted cross-talks, and significantly suppresses the operation depth in running compli-

cated quantum algorithms.
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In the transition from the noisy intermediate scale quantum
(NISQ) devices, the neutral atom quantum processors are the
pioneering platform in terms of scalability with capacities up

to 324 qubits1–4. The current limit on the size of optical lattices is
imposed by the available laser powers, calling for denser lattice
configurations. While accommodating orders of magnitude more
atoms in the same lattice area is possible, the minimum intera-
tomic distance of a few micrometers are used in Rydberg dipolar
processors5–7. This limit is imposed to avoid level mixing and to
preserve the trapping under strong interaction. Considering the
new advances in sub-wavelength imaging, trapping, and laser
addressing of atoms8–15, new types of interaction that operates at
small interatomic distances are quite demanding.

Another bottleneck in the scalability of neutral atom processors
is the short lifetime of the Rydberg states. The corresponding
error scales with the number of qubits and the depth of algorithm
to the limit that fails the operation of complicated tasks. The
correction capabilities come with encoding the logical qubits in
multiple physical qubits and are protected by error-correction
codes16,17. This would significantly downgrade the qubit numbers
that are available for logical operation. Furthermore, quantum
operations on the logic level are performed by an overload of
operations at the level of physical qubits and require costly
techniques17–23. This would dramatically increase the required
computational power. The alternative solution is to use system-
specific properties to suppress the Rydberg population over
running complicated algorithms.

The other approach to harness maximum computational
power from the current NISQ processors is by circumventing the
circuit model. In this approach the system-specific characteristics
are deployed to directly run complicated algorithms instead of
performing concatenation of one- and two-qubit gates24,25 with
significant overhead26,27. In this regard, long-range many-body
Rydberg interaction is vastly used for direct implementation of
multi-qubit gates28–35, as well as other parallel-operations in
different quantum processing schemes36–43. In an architecture of
one vs many qubits, the presence/absence of inter/intra compo-
nent interaction paves the way for parallel computation. Some
examples include the fast implementation of Ck-NOT28–31 and
C-NOTk 29 gates with minimal steps as well as direct operations
in logical basis44. The parallel operation of multi-qubit gates in
the Rydberg-dipolar scheme is carried out by exciting all k control
atoms in 0c

�� �
state to the Rydberg level followed by target Ryd-

berg rotation29–31. This results in competing requirements i.e. to
preserve the lattice trapping against strong dipolar interaction, to
overcome/preserve the blockade between inter/intra components,
and to avoid exciting the neighboring Rydberg levels28–30,45–47.
More importantly, the unwanted intra-componant interaction
disrupts the operation for specific qubit configurations, see
Discussions.

There are two prominent multi-qubit operations that a full-
fledged quantum processor must be able to perform with minimal
steps. The Toffoli closes a set of universal gates next to the
available Hadamard rotation48. It also plays a pivotal role in
quantum error correction49,50, fault-tolerant quantum computa-
tion (QC)51,52, and Shore’s algorithm53. The other prominent
gate, the stabilizer, is vastly used for running different quantum
algorithms namely Kitaev’s toric code54, color code55, and
quantum optimization problems56,57. For example, the parity
architecture56,57 translates a problem with all to all connectivity
to a simple nearest-neighbor problem-independent interaction.
Hence, the quantum approximate optimization algorithm
(QAOA)58,59 implementation would be simplified to program-
ming single-qubit operations, as well as applying problem-
independent four-body stabilizer-phase gate.

In search of an alternative interaction to empower quantum
computation, a distinguished choice is the Fermi scattering of the
Rydberg electron from other ground-state atoms embedded in the
wave function of this atomic giant. This phenomenon has been
widely studied in the context of Rydberg molecules in the Bose-
Einstein condensate (BEC)60–64. The main challenge in deploying
this interaction for quantum computation is to make the inter-
action qubit-dependent. A previous study observed the spin-flip
via Rydberg-Fermi interaction at very short inter-atomic dis-
tances of ~30 nm in BEC65. However, above 50 nm the scattering
interaction would not be spin-dependent, depriving the imple-
mentation of the scheme in a realistic atomic lattice.

This paper deploys dual spin/spatial encoding to harness the
Fermi scattering of a Rydberg electron from neighboring lattice
sites as a source of qubit-dependent interaction. The spin-
dependent geometrical shift of atoms66–75 accommodates them
inside or outside of the Rydberg electron cloud, generating the
desired contrast of scattering interaction between different qubit
configurations and thus, performing the desired quantum
operation. Regarding the scalability, the scheme operates at sig-
nificantly densified atomic lattices with exponentially suppressed
Rydberg population compared to the dipolar counterparts. The
system-specific nature of the scheme allows for performing multi-
qubit operations on the nearest neighbor qubits by exciting a sole
atom in a single step. Thus, it operates at a different regime of
energy hierarchy without the mentioned rivalry in Rydberg-
dipolar systems. Furthermore, the absence of intra-component
interaction eliminates the unwanted phase errors in multi-qubit
gates, see Discussion. These characteristics promises running
complicated algorithms with current experimental limitations.

Results
Rydberg-Fermi interaction in a qubit-dependent lattice. In a
two-dimensional lattice shown in Fig. 1a, atoms in spin-states 0j i,
1j i are trapped in shifted lattices distinguished by red and blue.
The gate operations are carried out by exciting the central atom in
a plaquette to the Rydberg level. Depending on whether the
central atom is excited from 0j i or 1j i state, the plaquette atoms
in 0j i or 1j i spin-lattices would be localized on the nodes and
antinodes of the Rydberg electron’s last lobe, see Fig. 1d–f. This
provides contrast on the Fermi scattering of the electron from
distinguished qubit states of plaquette atoms. The qubit-
dependent interaction could also be realized by the spin-
dependent shift perpendicular to the lattice plane as depicted in
Fig. 2c.

The spin-dependent lattice is formed by counter-propagating
linearly polarized lights, see Fig. 1b, c. Introducing a relative shift
between the fields’ polarizations of 2θ, the total electric field can be
written in terms of the sum of right and left circularly polarized
lights E ¼ E0 expð�iνtÞðεþ sinðkz þ θÞ þ ε� sinðkz � θÞÞ. To make
a spin-dependent lattice-shift, the spin polarizabilities should be
linked to different circular polarization components of lights66. To
cancel the polarizabilities with unwanted light elements shown by
dashed lines in Fig. 1b, the trapping laser must be tuned between P3/
2 and P1/2 states so that the ac-Stark shifts of these two levels cancel
each other. As a result the mj= ± 1/2 levels of the ground state
would be trapped by V ± ¼ αjE0j2 sinðkz ± θÞ. The hyperfine qubit
states 0j i ¼ F ¼ 1;mF ¼ 1

�� �
and 1j i ¼ F ¼ 2;mF ¼ 2

�� �
experi-

ence the trapping potentials V0= (V++ 3V−)/4 and V 1j i ¼ Vþ,
see Supplementary Note 1 for alternative encodings. A spin-
dependent lattice provides dual spin/spatial encoding of the qubit. A
Raman transition coherently transfers atoms from one internal state
to the other, thereby causing hopping between the two Wannier-
functions76–78. The spin rotation Rabi frequency in qubit-
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dependent lattice would be modified by the Frank-Condon factor,
see Methods.

Ryd-Fermi Interaction. The interaction between the Rydberg
electron and the ground state atom is a Fermi-type pseudo
potential79–81,

VRF ¼ 2π
tanðδsÞ
kðRÞ � 6π

tanðδpÞ
k3ðRÞ ∇

 
r:∇
!

r

� �
δðr� RÞ ð1Þ

with r and R being the positions of the Rydberg electron and the
ground state atom with respect to the ionic core, and δ{s, p} are the
triplet s- and p-wave scattering phase shift of the Rydberg elec-
tron from the neighboring ground state atom82. The electron
wave-vector k is defined by the kinetic energy of the Rydberg
electron at energy E=− 1/2n2 when it collides with a ground-
state atom at position R from the ionic core, i.e. k2(R)/2= E+ 1/
R. The level-shift caused by the Rydberg electron scattering from
the lth plaquette atom in the qubit state i ¼ 0; 1j i would be
characterized by two parameters

�VRF ilj i ¼
Z
jwðR� liÞj2VRFðRÞdR

MDVRF ilj i
¼
Z
jwðR� liÞj2jVRFðRÞ � �VRF 1lj ijdR

ð2Þ

that are the average and the mean deviation of the scattering
energy over the lth plaquette atom’s Wannier-state w centered at
li. Considering the wave-function’s symmetry of the centered
Rydberg atom, all surrounding plaquette atoms would experience

the same qubit-dependent interactions, see Fig. 1a, d and Fig. 2c,
d. The Rydberg electron’s wave-packet dynamics are in the ps
range83,84. Therefore, over the MHz scale of operation, the
interaction of the Rydberg electron with all the plaquette atoms in
1j i qubit state would be alike and add up64.
Two-color excitation of the superposition state ðj65P3=2; 1=2i þ
j65P1=2; 1=2iÞ=

ffiffiffi
2
p

with in-plane quantization axis provides sites’
specific couplings along a line, see Fig. 1f. The two-color light could
be obtained in a setup of beamsplitters and acusto-optical
modulators. The generated superposition mainly contains the
Y1,0 spherical harmonic term, which significantly concentrates the
electron wave-function along the quantization axis and hence
enhances the interaction strength. The atoms prepared in the
ground motional state85–88 are considered delocalized over the
Gaussian wave-function. Hence they would experience an effective
Rydberg-Fermi interaction that is averaged over their spatial
profile. The scattering energy of Rydberg electron over the qubit-
dependent Wannier-state of the lth plaquette atom with FWHM=
20 nm would be quantified by Eq. (2) as

�VRF 1lj i ¼ 2MHz; MDVRF 1lj i
¼ 0:1MHz

�VRF 0lj i ¼ 0:3MHz; MDVRF 0lj i
¼ 0:2MHz

ð3Þ

where the qubit-dependent lattice-shift of D= 36.8 nm is
considered.

To apply a uniform interaction on all the plaquette atoms, the
polarization axis must be perpendicular to the lattice plane, see
Fig. 1d and 2d. The interaction enhancement can be obtained by

Fig. 1 Rydberg-Fermi interaction in Spin-dependent lattice. a In a 2D structure with a single atom per site, applying a qubit-dependent lattice-shift
makes each atom in a spatial superposition of being in red and blue sites where the components are controlled by the internal electronic qubit-states
0j i and 1j i. Hence the Rydberg electron of the central atom would exclusively scatter from the plaquette atoms in a specific spin-lattice, providing
qubit-dependent interaction. b In 87Rb, tuning the trapping laser between 5P3/2 and 5P1/2, the polarizability of qubit states 0j i and 1j i are given by
distinguished left ε− and right ε+ circularly polarized lights respectively. c, c' Counter propagating linearly polarized lights with relative polarization of
2θ, form two distinguished optical-lattices of ε− and ε+ displaced by D{x, y}= 2θ/k in each dimension, trapping different qubit states. d Exciting the
Rydberg superposition state of Eq. (4) with n=64 with the quantization axis being perpendicular to the lattice plane provides a symmetric interaction
over the four neighboring plaquette atoms. e The zoomed vision shows that the 0j i and 1j i qubit states of the plaquette atoms are localized on the
node and anti-node of the Rydberg wave-function, providing a qubit-dependent contrast of Fermi scattering. f Two-color excitation of ðj65P3=2; 1=2i þ
65P1=2; 1=2
��� E

Þ=
ffiffiffi
2
p

with in-plane quantization axis provides couplings with two opposite plaquette atoms in the lattice.
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exciting superposition of Rydberg levels. The spatial constructive
(destructive) interference of Rydberg wave-functions over the
position of plaquette qubits (elsewhere) could further confine the
electron and hence enhances the interaction. The desired Rydberg
superposition could be controlled by the polarization angles θ{R, B}
of the two linearly polarized lights Ω{R, B} used for Rydberg
excitations, see Fig. 2. These fields are propagating perpendicular
to the lattice plane along the z direction. The linear polarized light
could be expressed in terms of circular polarizations
Ωj ¼ ðexpðiθjÞΩþj þ expð�iθjÞΩ�j Þ=

ffiffiffi
2
p

. Adjusting θR− θB= π/2
the transition to jnDj;mj ¼ 1=2i would be canceled by destruc-
tive interference. Hence the excited state would be

eiðθRþθBÞ
nD5

2
; 52

��� E
ffiffiffi
2
p þ e�iðθRþθBÞ

nD5
2
; �32

��� E
þ nD3

2
; �32

��� E
2

: ð4Þ

The simultaneous excitation of both jnD3=2i and jnD5=2i could be
obtained by beam splitting and frequency adjustment of the blue
laser by acusto-optical modulators. The polarization angles in Eq.
(4) would act as a controlling parameter to rotate the interaction
maxima e.g. θR+ θB= π, 0 are corresponding to Fig. 2d and the
same pattern rotated by π/4 around the ẑ axis. For the sake of
presentation, Fig. 1 and 2 only plot the s-wave scattering part of
VRF, which is the dominant term at the desired last lobe in 87Rb
atoms. The exciting laser’s polarization and propagation direction
could act as a controlling knob to program different interaction
connectivities among neighboring lattice sites.

In the setup of Fig. 1d with the lattice constant of 400nm,
exciting the central atom to the superposition state of Eq. (4) with
n= 64, the scattering energy of the Rydberg electron over the
qubit-dependent Wannier-state of the lth plaquette atom with
FWHMx,y= 20 nm and FWHMz= 35 nm would be quantified by

Eq. (2) as

�VRF 1lj i ¼ 2:5MHz; MDVRF 1lj i
¼ 0:25MHz

�VRF 0lj i ¼ 0:35MHz; MDVRF 0lj i
¼ 0:2MHz;

ð5Þ

where the magic qubit-dependent lattice-shift of D= 35.6 nm
results in uniform �VRF 0lj i inside and outside the last lob. To
further narrow the interaction-induced line broadening MDVRF ilj i

,

ultra-tight confinement could be obtained in quantum-twist
optical-lattices14.

The scale of interaction to loss ratio improves by going to
smaller Rydberg principal numbers. The volume of the Rydberg
electron’s wave-function scales by n6 81. Hence the electron
density and the interaction scales by VRF∝ n−6. Since the lifetime
of the Rydberg state scales by n3 89, the interaction to loss ratio
would scale by n−3, see Fig. 3a. While the lattice configuration of
Fig. 2c allows tuning the desired inter-atomic distance, going to
lower principal numbers would raise the errors related to single
site addressing, see Fig. 3b and Methods. However, the new
advances in sub-wavelength trapping, spin rotating, and
imaging8–14 alleviate the current limits and provide a wide range
of opportunities for the Rydberg-Fermi QC. Also, dual-species
lattices56,90–92 could be used to suppress the laser-cross talk issues
in compact lattices.

Applying the lattice shift perpendicular to the lattice plane
provides freedom in choosing the inter-atomic distance, see
Fig. 2c–e. In the λ= 1064 nm optical lattice13, exciting the central
atom to the superposition state of Eq. (4) with n= 74, the
scattering energy of the Rydberg electron over the qubit-
dependent Wannier-state of the lth plaquette atom with
FWHMx,y=25 nm and FWHMz= 35 nm would be quantified

Fig. 2 Rydberg superposition states. a The desired Rydberg superposition could be controlled by the polarization angles θR,B of the two linearly polarized
fields with Rabi-frequencies ΩR,B propagating along the z direction. b Decomposing each of the linearly polarized lights Ω in terms of right Ω+ and left Ω−

circularly polarized elements, the transitions shown by dashed lines would form destructive interference when θR− θB= π/2, leading to the superposition
of ðeiðθRþθBÞ mj ¼ 5=2

�� �þ e�iðθRþθBÞ mj ¼ �3=2
�� �Þ= ffiffiffi

2
p

states of 74D Rydberg level. c Applying the qubit-dependent shift perpendicular to the lattice plane
allows tunning the in-plain inter-atomic distance. The d xy and e xz cross-sections of Rydberg-Fermi interaction. The excited Rydberg superposition state
would be further confined around the position of plaquette atoms and hence enhances the interaction. Red and White ovals present the qubit-dependent
position of 0j i and 1j i states.
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by Eq. (2) as
�VRF 1lj i ¼ 1:1MHz; MDVRF 1lj i

¼ 0:07MHz

�VRF 0lj i ¼ 0:1MHz; MDVRF 0lj i
¼ 0:05MHz;

ð6Þ

where the qubit-dependent lattice-shift of Dz= 180 nm is
considered.

Implementation of multi-qubit gates
Parallelized gate. The Ryd-Fermi interaction in qubit-dependent
atomic lattice could be used for the implementation of the (C-
NOTk) parallelized gate

Ug ¼ 0j ic 0h j � Iþ 1j ic 1h j �
Y4
i¼1

σ ix ð7Þ

which is an essential element in realizing the stabilizer-phase
gates42, see Methods for a detailed discussion.

In this proposal, the target atoms are localized on the square
plaquette around the central control atom. Exciting the j1ci state
of the control atom to the Rydberg level, its electron creates
potential energy shits via Fermi scattering. In the spin-dependent
lattice, the contrast of scattering energy depends on the presence
or absence of the Rydberg electron at the position of different
qubit states. Over the operation time τ, the effective Hamiltonian

H ¼ ayc1ac1 ∑l2p
ð�VRF 1lj ia

y
l1
al1 þ �VRF 0lj ia

y
l0
al0 Þ ð8Þ

accumulates a contrast of π phase on each target atom in 1j i qubit
state conditioned on the control atom being in state j1ci. Here aðyÞli
annihilates (creates) the Wannier-state of the lth target qubit in
the plaquette, centered at li with i∈ {0, 1} defining the qubit-
dependent trap. Compensating the background phase and
applying Hadamard to the individual target atoms before
and after the Rydberg excitation results in the desired operation
of Eq. (7).

Gate fidelity: The main sources of errors in quantifying the
C-NOT4 gate’s operation are spontaneous emission and popula-
tion rotation errors. The errors are averaged over the 25 qubit
configurations. The average spontaneous emission error from the
Rydberg level is given by Esp;r ¼ 1

2
π

URF
Γr, where URF is the qubit-

dependent contrast of �VRF and Γr is the decay rate of the Rydberg
state89. In a two-photon excitation scheme of Fig. 2a, b, partial
population of the intermediate j6P3=2i level results in an
extra source of loss. Considering the effective two-photon
excitation Ωr ¼ Ω420Ω1013

2δp
, using high power lasers93 facilitates

large Rabi frequencies Ω1013/2π= 250MHz, Ω420/2π= 250MHz
and δp/2π= 5 GHz. The corresponding average error would be

Ese;p ¼ π
4τpδp
ðqþ 1=qÞ ¼ 4 ´ 10�4 94 with intermediate level life-

time of τp= 113 ns and q=Ω420/Ω1013. The control atom’s
rotation error is due to the unwanted excitation of neighboring
accessible Rydberg levels separated in energy by δr/2π= 17 GHz,
21 GHz, and 6 GHz in Fig. 1f, d and 2 respectively. The
corresponding error averaged over qubit configurations would

be 1=2 Ω2
r

4δ2r
. Finally, non-deterministic excitation of the Rydberg

atom due to qubit-dependent level-shift caused by Rydberg-Fermi
interaction should be overcome by the strong exciting laser Ωr

tuned to the middle of the spectrum leading to the average error

of 1=25∑4
j¼0

� 4
j

� ðj�2Þ2U2
RF

Ω2
r

. Overall, using the schemes described in

Fig. 1f, 1d, 2d with interactions quantified in Eq. 3, 5, 6 and with
the respective Rabi-frequencies Ωr= 200, 100, 40MHz results in
high fidelity fan-out gate with the average fidelity of F= 99.8%,
99.7%, 99.6% at the cryogenic environment of 77 K and
F= 99.5%, 99.3%, 99.2% without cryogenic environment at
300 K. The bottleneck in operation fidelity comes from the small
lifetime of the Rydberg level. Using Rydberg circular state
enhances the interaction-to-loss ratio by four orders of
magnitude, see Methods.

Toffoli gate. The Toffoli gate Ck-NOT with k= 4, 6 could be
realized in square and triangular lattices, by placing the control
atoms over the plaquette and exciting the central target atom in
1t
�� �

state to the Rydberg level. The Fermi scattering of the
Rydberg electron from control atoms forms an interaction-based
level-shift on the target atom that depends on the spatial qubit
configuration of the entire system. Unlike the C-NOTk gate,
Toffoli does not operate with a strong laser for deterministic
Rydberg excitation. Here a weak transition Ωr ¼ Ω420Ω1013

2δp
� VRF

would selectively excite the Rydberg atom conditioned on the
control atoms to be in 0j i�kc state. The presence of any 1c

�� �
state

localized that control atom inside the Rydberg wave-function of
the target atom, shifting the laser out of resonance and blocking
the transition. The operation Hamiltonian would be

Htof ¼ðΩ1σ1p þΩ2σrp þ h:c:Þ þ δpσpp þ Δσrr

þ σrr ∑
l2p
ð�VRF 1lj ia

y
l1al1 þ �VRF 0lj ia

y
l0al0Þ

ð9Þ

where σ ij ¼ ij ihjj is the transition/projection operator acting on
the target atom, Ω and δp, Δ are the Rabi frequency, and laser
detuning from the intermediate and Rydberg levels in a two-
photon excitation. The last term would sum over the control
qubits around the central target atoms and apply qubit-dependent
Rydberg-Fermi interaction. Adjusting the laser to Δ ¼ �k�VRF 0lj i,

Fig. 3 Scaling of interaction-to-loss ratio. a The scattering interaction of Rydberg electron from the four plaquette atoms over the decay rate of the central
Rydberg atom is plotted as a function of the principal number for Rydberg states jnS1=2; 1=2i, jnP3=2; 3=2i, and for the state presented in Eq. (4). b While
operating at smaller n enhances the coherence, it requires smaller inter-atomic distances, raising concerns about single-site addressing, see Methods.
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the 2π rotation of the target atom would be conditioned on the
presence of 0kc1t

�� �
state, generates a π phase, and apply the

desired Ck-Z operation. Sandwiching the target atom with
Hadamard gates results in the desired Toffoli operation. The
Rydberg-Fermi interaction operates the Ck-Z with a single 2π
pulse addressing the Rydberg level, leaving no Rydberg popula-
tion unprotected from the laser. This would eliminate the errors
associated with the conventional gate schemes with π-gap-π
Rydberg exciting pulses as discussed in95–97.

The main sources of errors in quantifying the Ck-NOT gate’s
operation are spontaneous emission of the atomic levels, and
population rotation errors. The spontaneous emission from the
Rydberg level only occurs in the qubit configuration j0kc1ti where
the single target atom gets excited to the Rydberg state. Hence the
averaged operation error of Esp;r ¼ 1

2kþ1
π
Ωr
Γr is expected. Off-

resonant Rydberg excitation results in blockade leakage adding up

to the average error of Er1 ¼ 1
2kþ1 ∑

k
j¼1

� k
j

� Ω2
r

4j2U2
RF
, where j is the

number of control atoms in j1ci qubit-dependent lattice. In the
two-photon excitation, the blockade is sensitive to the locking
bandwidth of the lasers, which could be made less than 1kHz93.
Also in the case of fast operation, the large frequency bandwidth
of exciting pulses might affect the blockade at the heart of the
scheme. Circle signs in Fig. 4 quantify the operation of the gate by
simulating the master equation encountering the spontaneous
emission from intermediate and Rydberg levels as well as the de-
phasing terms associated with lasers’ line-width. Also, the
frequency profiles of the laser pulses are encountered in the
lasers’ detuning and Rabi frequencies as discussed in Methods.
The analytic and numeric simulations of Fig. 4 suggest high
fidelity operations of 99.8% could be expected in the setup of
Fig. 1d. Other avenues in enhancing the fidelity are discussed in
Methods, which are based on improving the interaction-to-loss
ratio by using the resonance scattering in Cs atoms or exciting
higher orbital angular momentum quantum numbers.

Other sources of error
Rydberg molecule loss channels. Rydberg-Fermi scattering could
enhance the decoherence rate in BEC98. This decoherence only
occurs at short inter-atomic distances well inside the Rydberg

orbital when the attractive Rydberg-Fermi and atom-ion inter-
action, move the two interacting atoms to a very small separation
of order 2 nm, where the binding energy of the molecules can
ionize the Rydberg electron and form a Rbþ2 molecule99. Without
the mass transport, step-wise decay or ionization of the Rydberg
atom is ruled out by the quantization of the Rydberg state, as
discussed and experimentally tested in98. This is because the small
molecular binding energy at the last lobe of the Rydberg wave-
function is orders of magnitude smaller than the closest Rydberg
levels for the range of principal numbers applied here. The
occurrence of ion-pair formation is also highly unlikely in this
system99. In conclusion, confining the atoms by an optical-lattice
at the last lobe of the Rydberg wave-function, prevents the
described mass transport and completely closes the Rydberg
molecule loss channels.

Entanglement of computational and motional states. The other
source of error is the unwanted entanglement between the
motional state and the qubit configurations. In the parallelized
C-NOTk gate, the Rydberg-Fermi potential modifies the optical
trapping experienced by the plaquette atoms in 1t

�� �
Wannier

states. It is important to apply the changes adiabatically to avoid
an unwanted entanglement between the computational and the
motional states. Over the Rydberg excitation of the control atom,
target atoms in 1t

�� �
Wannier state would experience trap evo-

lution Utrap ¼ Uop þ Prc
ðtÞVRF where Uop is the optical trap

potential, and Prc
is the Rydberg population of the central atom.

As long as the dynamic is adiabatic, i.e. _ωtrap � ω2
trap

100, the

1t
�� �

Wannier states can adapt continuously and stays close to the
instantaneous ground motional state. For example, operating the
C-NOTk with the setup associated with Fig. 2/Eq. (6), a linear
change of Rabi frequency from Ωr= 30MHz to Ωr= 45MHz
would preserve the ground motional state. Unlike the parallelized
gate in Toffoli, the presence of a plaquette atom in the Rydberg
wave-function blocks the Rydberg excitation. Hence no bound
state would be formed and the above adiabaticity discussion does
not limit the Toffoli scheme. Stronger confinement of atoms in
quantum-twist optical-lattices14, allows faster adiabatic opera-
tions. Effects of laser rotations on entangling the thermal states
are also discussed in Supplementary Note 2.

Fig. 4 Optimal gate performance. a The infidelity of C4-NOT operation as a function of Rydberg exciting Rabi-frequency for the setup of Fig. 1d with the
interaction values quantified in Eq. (5). The solid line is based on analytic estimates discussed in the text for a square laser pulse while the circles are based

on the numerical simulation of Eq. (9), calculated for a Gaussian pulse Ωre
�ðt�T=2Þ2

2σ2 e�
ðT=2Þ2
2σ2 with σ= T/5 and a pulse duration T given by

R T
0 ΩðtÞdt ¼ 2π. The

fidelity quantified by Eq. (10), encounters spontaneous emission and rotation errors. Different environment temperatures of 77 K and 300 K are

considered. b Blockade leakage of the target atom for different qubit configurations with j plaquette atoms in 1c
�� �

state. In the numerics, the effective Rabi

frequency Ωr ¼ Ω420Ω1013
2δp

in two-photon excitation is obtained by Ω420=Ω1013 lasers that are detuned from intermediate level by δp/2π= 5 GHz and the

lasers are locked out of phase with the locking bandwidth of 1 kHz93. The results are averaged over the frequency profile of the pulse as discussed in
Methods.
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Discussion
The proposed scheme significantly improves the gate fidelity
compared to Rydberg dipolar counterparts by mitigating different
sources of imperfections and simplifying the process as
discussed below.

The main bottleneck in the Rydberg quantum processors is the
short lifetime of Rydberg levels. The Rydberg dipolar multi-qubit
Toffoli Ck-NOT gate could be realized by two approaches as
explained in30. In the fast scheme, all control atoms in 0j i qubit
state would get excited to the Rydberg level with strong simul-
taneous pulses. In that case, the average population of Rydberg
levels in control atoms over the 2k+ 1 qubit configurations
would scale by k leading to an average Rydberg decay error of
kΓ(π/2Ωc+ 3π/2Ωt) see Eq. 5 in Isenhower et al.30. In the other
scheme operating with sequential excitation steps, the Rydberg
population is limited to one due to the global Blockade effect but
the 2k+ 3 sequence of excitation would result in a long operation
time leading to the same scaling of average Rydberg decay error of
control atoms kΓπ/2Ω30. This is in contrast to the Rydberg-Fermi
scheme where the only qubit configuration with a single Rydberg
population is 0kc1t

�� �
qubit state. In the other 2k+1− 1 qubit

configurations, the target laser would be out of resonance and no
population would be excited. Hence the Rydberg decay error
averaged over all qubit configurations would be 1

2kþ1 πΓ=2Ω.
Considering the Rydberg-Fermi operation in 2D and 3D trian-
gular lattices with k= 6 and 18, the averaged population of
Rydberg atoms would be suppressed by 2 × 103 and 4 × 106 times
compared to dipolar implementations. This would also make the
Rydberg-Fermi scheme ideal for the implementation of quantum
search algorithms101,102.

Considering the current trap power shortage for the scalability
of neutral-atom processors, densifying the atomic lattice remains
a major priority and an immense challenge. In the Ryd-Fermi
scheme, the interaction-to-loss ratio improves by going to smaller
interatomic distances, see Fig. 3. At small inter-atomic distances,
the dipolar scheme is limited to short-lived Rydberg states with
low principal numbers to avoid strong level-mixing and line-
broadening103–105. In the Rydberg-Fermi scheme, the absence of
strong level-mixing around the outer shell of the Rydberg wave-
function allows for choosing highly excited Rydberg states with
longer lifetimes. Unlike the dipolar scheme, the restoring forces in
the molecule type Rydberg-Fermi potential preserve the trapping
at short interatomic distances over a long interaction period.
These facts provide the advantage of operating at denser lattice
geometries compared to dipolar counterparts.

One of the advantages of implementing multi-qubit operations
with the single-step Rydberg-Fermi scheme is the absence of
intra-component interaction. To quantify the effects of this
unwanted phase on the performance of conventional Rydberg
dipolar operations, the phase-sensitive form of fidelity is used

Fid ¼ TrðjM þMMyjÞ=2n; ð10Þ

where M ¼ UyidUgate, with Uid and Ugate representing the ideal
and realistic gate operations. Dimension of the qubit configura-
tions in Ck-NOT or C-NOTk is given by n= 2k+1.

Evaluating the fidelity of Rydberg-dipolar Toffoli gate C4-NOT
proposed in30, with the phase-dependent definition of fidelity in
Eq. (10) reveal the effects of unwanted phase. In the dipolar-
scheme30, control and target atoms are getting excited to 60Sj i
and 60Pj i, with optimum laser couplings of Ωc/2π= 180MHz,
Ωt/2π= 0.8 MHz, and lattice separation of 4 μm. Simulating the
gate operation under the Schrödinger equation, encountering
spontaneous emission and population rotation errors in addition
to the infidelity encountered by unwanted phases leads to the
average infidelity of 5% quantified by Eq. (10). One should note

that large phase-dependent infidelities occur in specific qubit
configurations with large Rydberg population e.g. 1111j ic 1ð0Þ

�� �
t

experience 52% (12%) infidelity. In the Rydberg-Fermi approach,
the absence of unwanted intra-component interaction eliminates
the unwanted phase and control atoms’ rotation errors. Notably,
obtained fidelities reported in Fig. 4, 7 are below the 1% infidelity
threshold for surface error correction codes106.

The implementation of Rydberg-dipolar parallelized C-NOTk

gate43 is also sensitive to the intra-component interaction. In that
scheme43, in qubit configurations with 0c

�� �
state, each of the

target atoms would follow the dark state with the Rydberg

population of PR ¼ ð
Ωp

Ωc
Þ2. Here Ωp is the Rabi-frequencies that

connect the qubit basis to the intermediate level, and Ωc couples
the intermediate level with the Rydberg state, see Supplementary
Note 3. For the abbreviation, the readers are referred to Muller
et al.43 for the scheme explanation. Applying the phase-
dependent definition of fidelity in Eq. (10), the dipolar Rydberg
gate43 shows significant sensitivity to intra-component interac-
tion, see Supplementary Figure S2. These unwanted phases
directly affect the implementation of the stabilizer operator42.
This comparison shows the importance of the complete elim-
ination of unwanted intra-component interactions in the
Rydberg-Fermi scheme.

Another advantage of having a single Rydberg atom is closing
the collective decoherence channels107,108. Besides, the proposed
Rydberg-Fermi Ck-Z gate operates with a continuous 2π pulse,
leaving no Rydberg population unprotected from the laser. This
would eliminate the errors associated with the conventional
schemes with π-gap-π Rydberg exciting pulses as discussed in
refs. 95–97. Finally, the direct implementation of multi-qubit gates
in this proposal would reduce the operation steps and the accu-
mulative errors. For example, the C6-NOT gate operation with
concatenated Rydberg C-NOT gates26,27 requires 112 pulses.
Significant contrast obtains in the Rydberg-Fermi scheme oper-
ating by three pulses.

In the outlook, the proposed Rydberg-Fermi interaction paves
the way for long-distance entanglement and direct operations
among logical basis44.

Methods
Rydberg cloud engineering in a triangular lattice
Rydberg states with high orbital angular momentum in rubidium lattice. Going to
high orbital angular momentum numbers, the centrifugal force pushes the electron
away from the core towards the neighboring ground-state atoms. This could
enhance the interaction strength. In the extreme limit, the maximum angular
momentum l= n− 1 in the circular Rydberg state forms an ideal torus wave-
function, see below.

Exciting jnLj;mj ¼ ji Rydberg state would exclusively excite the YL,L spherical
harmonic. With the quantization axis being perpendicular to the lattice, the
electron wave-function would be confined close to the 2D lattice plane providing a
homogenous interaction for all plaquette atoms. The electronic cloud of two
Rydberg states j64D5=2; 5=2i and j62G9=2; 9=2i are plotted in Fig. 5a–c. Please note
that nDj i and nGj i state could be excited via a single photon109 and double photon
quadrupole transitions respectively. Corresponding Rydberg-Fermi interaction and
gate fidelities in a triangular lattice are quantified in Table 1.

Further confinement of electron cloud perpendicular to the lattice, allows
smaller qubit-dependent lattice-shift Dz. This would enhance the Franc-Condone
factor and facilitates the qubit rotation on the spin-dependent lattice. Exciting
jnLj; 1=2i forms a cloud with L angular nodes. The two examples of j64D5=2; 1=2i
and j62G9=2; 1=2i are plotted in Fig. 5d, e. These states allow operation in small Dz

qubit-dependent lattices with significant overlap of two-qubit Wannier states. The
drawback in choosing these types of states is the weak strength of the interaction,
see Table 1.

Realization with circular states. The recent advances in fast transition to the
Rydberg circular states110,111, would make them an ideal choice for the Rydberg-
Fermi gates’ application. The ponderomotive potential of focused Laguerre-Gauss
(LG) beams, enables site addressing in exciting circular states111. Exciting the
circular state 58Cj i of a 87Rb atom, the electron would be confined at the position
of neighboring qubits at 176 nm, see Fig. 6a, b. Considering a plaquette atom with
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Gaussian ground motional state of FWHM= 18 nm and qubit-dependent lattice
shift of D= 50 nm, the interaction would be quantified according to Eq. (2) as

�VRF 1lj i ¼ 39MHz; MDVRF 1lj i
¼ 4MHz

�VRF 0lj i ¼ 0:5MHz; MDVRF 0lj i
¼ 0:27MHz

ð11Þ

The other advantage of the circular state comes from the minimized overlap of the
wave-function with the ionic-core which results in an enhanced lifetime in the
order of minutes112.

In an alternative approach, one can encode the central atom’s 0c
�� �

and 1c
�� �

qubit states in the ground g
�� �

and the circular state nCj i. The laser transition
between close circular states 1c

�� � ¼ nCj i and ðnþ 11ÞC
�� �

113 could be used to turn
on the Ryd-Fermi interaction. The radial interaction profile of 58Cj i and 47Cj i are
plotted in Fig. 6c showing maximum and minimum overlap with a plaquette atom
confined at 176 nm. The interaction of 1c

�� �
central qubits would be compensated

with global dynamical decoupling (DD) sequences such as WAHUHA114.

Strong resonance scattering in Cs atoms. The interaction-to-loss ratio could also get
enhanced by harnessing the p-wave near-resonance scattering from 133Cs atoms.
Compared to 87Rb, this resonance occurs at smaller electron kinetic energies
corresponding to larger interatomic distances62. Figure 7a plots the potential
energy curves (PEC) coupled with the neighboring Rydberg states
43H þ 42H þ 47P þ 48Sj i þ 6Sj i under Ryd-Fermi interaction

VRF ¼ 2π
tanðδsÞ
kðRÞ � 6π

tanðδpÞ
k3ðRÞ ∇

 
r:∇
!

r

� �
δðr� RÞ: ð12Þ

Here nHj i ¼ ∑l;m n; l;mj i represents the Hydrogen state encountering semi-

degenerate orbital angular momentum numbers 2 < l < n. The matrix elements in
the manifold of coupled states are given by

Hnlm;n0 l0m0 ðRÞ ¼ ψnlmðRÞ
	 ��VRF ψn0 l0m0 ðRÞ

�� �
; Hnlm;nlm ¼ �

Ry
n�2

ð13Þ

where Ry is the Rydberg constant of Cs atoms and n* is the effective Rydberg
principal number. Diagonalizing 8000 coupled states, the energy potential is
plotted in Fig. 7. In a UV optical-lattice with λ= 350 nm, the Fermi scattering of
Rydberg electron from the neighboring lattice site would result in about 400MHz
level-shift of the Rydberg level ideal for fast quantum operations.

To evaluate the p-wave scattering of Rydberg electron from the neighboring
ground state atom, the gradient of the Rydberg wave-function ψ ¼ RnlðrÞYm

l ðθ;ϕÞ
at the position of the neighboring lattice site is required which is

∇ψðr; θ; ϕÞ ¼

∂Rnl
∂r Ym

l

1
r Rnl

∂Ym
l

∂θ

1
r sin θ Rnl

∂Ym
l

∂ϕ

2
6664

3
7775

¼

∂Rnl ðrÞ
∂r Ym

l ðθ; ϕÞffiffiffiffiffiffiffiffiffiffi
l2�m2
p

Rnl ðrÞ
2r ½Ymþ1

l ðθ;ϕÞe�iϕ � ðl þmþ 1ÞYm�1
l ðθ; ϕÞeiϕ�

im ψðr;θ;ϕÞ
r sinðθÞ

2
6664

3
7775

ð14Þ

in the spherical coordinate. The radial wave-function and its derivative are
calculated numerically using the Numerov technique115.

In a triangular lattice of Fig. 7b, the in-plane x−y Cs trap is formed by 350 nm
UV laser dressing the ground state to 10Pj i state. Alternative approaches for the
implementation of small lattice constants using dual-species lattices and dark-state

Fig. 5 Controling the Rydberg cloud by adjusting the azimuthal and magnetic quantum numbers. The cloud geometry are depicted with respect to lattice
sites presented by red/white ovals corresponding to the 0j i/ 1j i qubit states. a Shining the laser perpendicular to the lattice plane (that defines the
quantization axis along z), the symmetry of the wave function in the lattice plane results in a uniform interaction with all plaquette qubits. b, c Exciting
nLj;mj ¼ j
�� �

would confine the cloud close to the lattice plane providing larger interaction. The centrifugal force at higher orbital angular momentum
numbers, pushes the electron away from the core towards the neighboring ground-state atoms, enhancing the interaction. d, e Exciting nLj;mj ¼ 1=2

�� �
increases the number of the angular nodes, allowing a significant reduction of the qubit-dependent lattice shift with the price of reducing the interaction
strength.

Table 1 Rydberg-Fermi gate operation with high orbital angular momentum Rydberg states.

# State Dz (σ{x, y},σz)
--
VRF 1lj i MDVRF 1lj i

--
VRF 0lj i MDVRF 0lj i

1-Fid

(nm) (nm,nm) (MHz) (MHz) (MHz) (MHz) C6-NOT

1 64D5=2; 5=2
��� E

150 (25,30) 1.2 0.13 0.17 0.09 0.002

2 62G9=2;9=2
��� E

150 (25,30) 1.7 0.17 0.16 0.08 -

3 64D5=2; 1=2
��� E

100 (25,30) 0.45 0.047 0.04 0.015 0.003

4 62G9=2; 1=2
��� E

45 (20,20) 0.45 0.08 0.04 0.017 -

The wavelength of the in-plain optical-Lattice in #1,3 is λ= 795 nm and in #2,4 is λ= 780 nm121. In calculating the fidelity, spontaneous emission of nD state at 300 K environment temperature is
considered89.
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approach are discussed in44,116. Considering the Gaussian ground motional state
with a half-width at 1/e maximum of σx,y= 8.7 nm, the atom would accommodate
within a single lobe of VRF, see Fig. 7b, c. For spin-dependent trap perpendicular to
the plane (along the z) the λ= 870 nm laser could be used for dressing 6Sj i to 6Pj i,
with U/2π= 2MHz, σz= 20 nm, Dz= 100 nm. Exciting the target atom to
j46D5=2; 5=2i, the Rydberg-Fermi interaction averaged over the lth plaquette atom’s
wave-function in the ground motional state would be

�VRF 1lj i ¼ 365MHz; MDVRF 1lj i
¼ 0:07MHz

�VRF 0lj i ¼ 2MHz; MDVRF 0lj i
¼ 0:06MHz

ð15Þ

see Eq. (2) for the definitions. This contrast of spin-dependent level-shift with
narrow lines allows fast selective laser excitation of the central atom conditioned on
the plaquette qubits’ configurations. This would result in high fidelity operation of
C6-NOT gate as depicted in Fig. 7d. The fidelity is quantified along the same lines
described in Fig. 4.

Qubit-Rotation in the spin-dependent lattice. A spin-dependent lattice provides
dual spin/spatial encoding of the qubit. A Raman transition coherently transfers an
atom from one internal state to the other, thereby causing hopping between the two
Wannier-functions76–78, see Fig. 8d. The polarizability of the qubit states 0j i, 1j i and

the intermediate electronic-level j5P1=2; 1=2i in the optical lattice are given by dif-
ferent light polarization elements, see Fig. 8a,b. Hence by tuning the polarization
angle θ between counter-propagating linearly polarized lights it is possible to confine
the intermediate state between the two-qubit-dependent lattices, see Fig. 8c, d.

Here the Raman-assisted transition of a trapped neutral atom between the two
spin-dependent lattices centered at l0 and l1 is analyzed. A Raman transition between
the atom’s internal states 0j i and 1j i makes the atom experience a different trap
shifted by D where the initial and final vibrational wave-functions have overlap. This
scheme resembles the Franck-Condon principle in molecular physics. Under the
Born-Oppenheimer approximation, the electronic and the nuclear motions are
separated and hence the effective wave-function would be presented as a product of
the electronic wave-function and the vibrational wave-function

ψli
ðR; rÞ ¼ wðR� liÞψe;iðR; rÞ ð16Þ

where r and R are addressing the electronic and center of mass positions. The
Wannier function of the lth site in the i∈ {0, 1, p} spin dependent lattices is given by
w(R− li). The electric dipole transition from a state A to an excited state B is given by

ψA

	 ��ðRþ rÞ ψB

�� � ¼ wðR� lAÞjwðR� lBÞ
	 �hψe;Ajrjψe;Bi: ð17Þ

Here we have the orthogonality of the electronic eigenstates but the vibrational states
are belonging to different traps and do not need to be orthogonal. Also using the

Fig. 6 Rydberg-Fermi interaction with circular states. Exciting 58Cj i, cross-sections of the interaction are plotted along a xy and b xz. The white and black
circles depict the confining area of the 0j i and 1j i qubit states of the plaquette lattice sites, while the Rb+ core is at the origin. c The minimal overlap of the
interaction profile of 47Cj i and 58Cj i could be used for laser switching of the circular Rydberg-Fermi interaction, see the text.

Fig. 7 Interaction enhancement by resonance scattering in Cs atoms. a PEC with S- and P-wave scattering in Cs atoms. The coupling of the Rydberg state
j46D5=2; 5=2i with the neighboring states 43Hþ 42Hþ 47Pþ 48Sj i is considered under Eq. (12). Interaction strength is plotted across the radial direction
from the Cs+ core with θ= π/2 in spherical coordinates. The solid line and dashed line show the total and exclusive s-wave scattering respectively. b, c The
cross-sections of j46D5=2; 5=2i Rydberg wave-function along b xy and c xz are plotted. The red and white circles depict the confining area of the 0j i and 1j i
qubit states of a plaquette lattice site, while the Cs+ core is at the origin. d The infidelity of C6-NOT operation as a function of Rydberg exciting Rabi-
frequency. The solid line is based on the analytic model for a square laser pulse while the circles are based on the numerical simulation of Eq. (9), obtained
for a Gaussian pulse Ωr expð� ðt�T=2Þ

2

2σ2 Þ expð�
ðT=2Þ2
2σ2 Þ with σ= T/5 and a pulse duration T given by

R T
0 ΩðtÞdt ¼ 2π. The fidelity quantified by Eq. (10),

encounters spontaneous emission and rotation errors.
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Condon approximation, the dipole transition of electronic states is assumed
independent of nuclear coordinates. In conclusion, the dipole transition would be
modified by the overlap of the wave-functions i.e. Franck-Condon factor
f ¼ wðR� lAÞjwðR� lBÞ

	 �
.

Effective qubit-rotation rate. The Hamiltonian H=H0+Hd consists of the energy
level of electronic states H0, and the dipole transitions Hd. The Hamiltonian of the
system in the rotating wave approximation and in the basis
f 0j i0; 1j i0; p

�� �
0
; p
�� �

1
; p
�� �

2
; :::; p

�� �
n
g would be

~H ¼

0 0 f 0p0Ω0=2 ¼ f 0pnΩ0=2

0 δ f 1p0Ω1=2 ¼ f 1pnΩ1=2

f 0p0Ω0=2 f 1p0Ω1=2 Δ ¼ 0

..

. ..
. ..

. . .
. ..

.

f 0pnΩ0=2 f 1pnΩ1=2 0 ¼ Δ� nωtr

2
666666664

3
777777775

ð18Þ

where Δ= ωL0− (ωp0−ω0)=ωL1− (ωp0− ω1), δ= (ωL0− ωL1)− (ω1− ω0) being
the one and two-photon detunings and subscript L distinguishes the laser frequency
from atomic energies. The Frank-Condon factors f in ¼

R
w�i ðx � liÞwpn

ðx � lpÞdx
quantify the overlapping of the qubit states i ¼ 0; 1j in¼0 and intermediate p

�� �
n
state’s

Wannier function wpn
in the nth motional state. The Schrödinger equation in the

interaction picture could be written in terms of coupled equations:

dC0

dt
¼ i ∑

n

j¼0

f 0jΩ0

2
Cpj

dC1

dt
¼ i ∑

n

j¼0

f 1jΩ1

2
Cpj

dCpj

dt
¼ i

f 0jΩ0

2
C0 þ

f 1jΩ1

2
C1 þ ½Δ� jωtr�Cpj

� �
ð19Þ

Under the condition that Δ is the dominant term, the intermediate levels could be
adiabatically eliminated. The effective Rabi frequency in the two-level system would
be

~Ω ¼ Ω0Ω1

4Δ
∑
n

j¼0
f 0jf j1 ð20Þ

and the effective detuning of the two-level system would be

δeff ¼ δ � ∑
n

j¼0

f 21jΩ
2
1 � f 20jΩ

2
0

4Δ
ð21Þ

The qubit-rotation is performed in the regime of ~Ω� ωtr to avoid exciting the
motional Bloch bands.

Gate simulation under large bandwidth driving pulses. The other concern about
pulse duration is related to the pulse bandwidth. While fast operation makes short
pulses desirable, short pulses would be wide in bandwidth and might excite the
neighboring Rydberg levels117 in fan-out or disturb the blockade in Toffoli gate.
For the chosen Rydberg levels j65P3=2i, 64Dj i and 75Dj i in Fig. 1 and 2, the level
spacing to the next dipole accessible Rydberg level would be 17 GHz, 21 GHz and 6
GHz respectively. The fan-out gate operates with stronger Rabi frequencies com-
pared to Toffoli and in principle could operate with shorter pulses τ≳ 140ns.
Corresponding pulse bandwidths would be at least three orders of magnitude
smaller than the level spacing in the above-mentioned cases.

In the fast operation of the Toffoli gate, the laser pulse bandwidth might be
comparable with the interaction-induced level-shift suppressing the blockade at the
heart of the scheme. Circle signs in Fig. 4 quantify the gate’s operation by
simulating the master equation encountering the pulse bandwidth, the spontaneous
emissions in two-photon excitation, and the de-phasing terms associated with laser
line-widths as described below. The effective Rabi frequency in two-photon
excitation Ωr ¼ Ω420Ω1013

2δp
is obtained by Ω420=Ω1013 lasers that are detuned from

intermediate p
�� �

level by δp/2π= 5 GHz. The Gaussian pulses Ωre
�ðt�T=2Þ2

2σ2 e�
ðT=2Þ2
2σ2 are

considered in the numerics with σ= T/5 and a pulse duration T given byR T
0 ΩðtÞdt ¼ 2π. The driving Hamiltonian of Eq. (9) is a function of the pulse
frequency elements ωl2 and ωl1 both in Rabi frequencies and detunings. Over the
two-photon excitation, the Fourier transform of the two laser pulses would be

Ω1ðωl1Þ ¼ Ω420e
�ωl1�ω1c

4w2 and Ω2ðωl2Þ ¼ Ω1013e
�ωl2�ω2c

4w2 with ωc indicating the central
frequency of the pulse and the pulse bandwidth is presented by w= 1/σ. The laser
detunings from the intermediate and Rydberg levels δp= ωl1− ω1p and
Δ= ωl1+ ωl2− ω1r are also a function of the pulse frequency elements. In Fig. 4a,b
the master equation (Eq. (22)) is simulated for distinct pulse frequencies ωl1, ωl2

and the final results are averaged over the Gaussian frequency profile of the two
laser pulses.

In the operation, the target atom is subject to de-phasing and decay terms that
are encountered by the master equation

∂t ρ̂ ¼ �i½Ĥ; ρ̂� þ Lðρ̂Þ ð22Þ
where the Liouvillian term LðρÞ ¼ ∑βDðcβÞρ with DðcÞρ ¼ cρcy � 1=2ðcycρþ
ρcycÞ in the Lindblad form governs the dissipative time evolution. Lindblad terms
encounter spontaneous emission from the intermediate level to the qubit states

c1p ¼
ffiffiffiffiffiffiffiffiffi
γp=2

q
1j i p
	 ��, c0p ¼

ffiffiffiffiffiffiffiffiffi
γp=2

q
0j i p
	 �� as well as the loss of population from

Rydberg state to other electronic states cor ¼ ffiffiffiffi
γr
p

oj i rh j. Furthermore, the de-
phasing terms associated by the lasers’ linewidth are included as c11 ¼

ffiffiffiffiffiffi
Γ11
p

1j i 1h j,
cpp ¼

ffiffiffiffiffiffi
Γpp

p
p
�� �

p
	 ��, crr ¼ ffiffiffiffiffiffi

Γrr
p

rj i rh j, where Γ11= (γLock+ γl1− γl2)/2,
Γpp= (−γLock+ γl1+ γl2)/2, Γrr= (γLock− γl1+ γl2)/2118 with γl1 and γl2 being the
line-widths of Ω1 and Ω2 lasers (corresponding to 420 nm and 1013 nm lasers
respectively). The coherence in two-photon excitation would be sensitive to the
linewidth of the Lock γLock when the lasers are locked out of phase118, which could
be suppressed to less than 1 kHz33.

Single site addressing
Applying local light-shift. The Laser cross-talk and misalignment could affect the
accuracy of gate operation in compact lattices. The population that does not return
to the qubit basis over the Rydberg excitation would be considered as loss. Inspired
by13, single-site addressing could be performed by applying site-selective differ-
ential light-shift to the 1j i rh j transition. Focusing the 788 nm auxiliary laser on the
targeted site, only the desired atom would get in-resonance with the Rydberg
exciting laser.

To quantify the single site addressing efficiency, we consider a microscope with
NA= 0.68 that focuses the 788 nm light to 1/e2 intensity waists of w= 370 nm and
500 nm13. The alignment accuracy of 25 nm has been achieved for single-site
addressing13, which is subject to improvement by e.g., sub-wavelength localization
of atoms10,11. The generated light-shift by the focused laser has the form of
ULSðx; yÞ ¼ ULSe

�2ððx�x0Þ2þðy�y0Þ2 Þ=w2
with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
being the laser

misalignment. At the central site, this misalignment would cause a detuning
Δðr0Þ ¼ ULSð1� e�2r

2
0=w

2
0 Þ in 1j i rh j transition that changes the effective Rabi

frequency ~Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ Δ2
p

. Hence for the central atom, starting at 1j i qubit state,
after the gate operation time τ ¼ 2π

Ω , the qubit state would not be fully retrieved,

which results in an error of Ec ¼ Ω2

~Ω
2 sin2ð~Ωτ=2Þ. Considering the uncertainty in

addressing a specific site within distance r0, the error of the centered atom must be
averaged �Ec ¼ 1

πr20

R r0
0 EcðrÞ2πr dr. Taking into account the error distribution

profile, the optimum operation time would be modified from τ ¼ 2π
Ω to

τopt ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2þΔð34r0 Þ
p . The averaged error of the central atom �Ec is plotted by dashed

lines in Fig. 9 as a function of ULS/Ω. The infidelities caused by laser misalignment
could be suppressed by the spatial beam shaping119.

Concerning the laser cross-talk, the detuning experienced by the neighboring
plaquette atoms must be large enough to avoid population leakage out of the qubit
basis. The leakage probability of a plaquette atom in 1j i qubit state over the

operation time τopt is given by Ep ¼ Ω2

Ω2þΔðjrjÞ2 sin
2ðΩ2þΔðjrjÞ2

Ω2þΔð34r0 Þ
2 πÞ where ∣r∣= ∣a−

rl− rp∣ is the distance from the center of the laser beam to the neighboring

Fig. 8 Qubit rotation in the spin-dependent lattice. a In Rb (Cs), tuning the trapping laser between 5P3/2 (6P3/2) and 5P1/2 (6P1/2), the polarizability of
qubit states 0j i and 1j i are given by left ε− and right ε+ circularly polarized lights respectively. b The same fields, trap the pj i ¼ j5ð6ÞP1=2; 1=2i electronic
state with ε0 and ε+ elements. c The relative polarization of 2θ between counter-propagating linearly polarized lights could be tuned to trap the
intermediate state between the qubit states (d). The Raman transition in a dual spin/spatial encoded qubit would be modified by the Frank-Condon factor.
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plaquette atom. Here a is the distance vector between centered and a plaquette site,
and one needs to average over the laser misalignment rl and also over the position
of the plaquette atom rp considering its Wannier wave-function to find the average
loss of a plaquette atom �Ep in 1j i state. The variation of the averaged plaquette
error is plotted by solid lines in Fig. 9a, b as a function of ULS/Ω. The Oscillation is
due to the change of effective Rabi frequency ~Ω, which leads to different values of
Rydberg leakage at the plaquette sites after the gate operation. At large ULS/Ω and
also for weak laser focusing (large w) the variation of detuning over the plaquette
atoms’ wave-functions would be large and hence averaging the error over r1 and rp
washes the oscillation pattern. The laser cross-talk could be suppressed by using
two species lattices44,90–92. Considering both plaquette error �Ep and the central
atom error �Ec, Fig. 9 shows that single-site operations with high fidelity is
achievable in the designed setups discussed in the main text.

The scattering of the auxiliary laser could also affect the fidelity. To give an
example a 420 nm auxiliary laser focused to 370 nm, dresses the 1j i qubit state by
j6P1=2i with ΩLS/2π= 200MHz and the laser detuning of ΔLS/ΩLS=− 150. This
laser imposes a differential light-shift of ULS ¼ Ω2

LS=4ΔLS ¼ �2:1 MHz on the
1j i � rj i transition. In a Toffoli gate with Ωr/2π= 30 kHz (Fig. 4), the single-site
addressing infidelity of 0.003 is expected, see Fig. 9b. Over the 30 μs operation time,
the photon scattering from the j6P1=2i state would cause 0.0015 gate infidelity. An
alternative approach is to initially change the hyperfine state of the desired site13

and then excite the new auxiliary hyperfine state to the Rydberg level. In this case, it
would be important that both hyperfine states get trapped at the same position in
the qubit-dependent lattice of Fig. 1a–c. A possible choice is changing 0j i ¼ jF ¼ 1;
mf ¼ 1i to jF ¼ 2;mf ¼ �1i which has the same distribution of mj components
and hence experiences the same trapping potential.

Interferometric approach. Single-site addressing could be realized with precisions
below the diffraction limit using an interferometer technique introduced before in

sub-wavelength localization8–12. Over this process the qubit state 0j i ¼ j5S; F ¼ 1;
mf ¼ 1i of the desired site would be changed to an auxiliary hyperfine state jgi ¼
j5S; F ¼ 2;mf ¼ �1i via an intermediate level 6Pj i. The three-level Λ transition is
operated by a standing-wave driving field (Ωc) and a focused laser (Ωp), see Fig. 10a,
b. The standing-wave is formed in each dimension by counter-propagating fields
Ωc1q expðikqÞ and Ωc2q expð�ikqþ ϕqÞ where q∈ {x, y}. The transition occurs under
the dark state STIRAP mechanism. The dark-state in the described Λ system is a
superposition of the g

�� �
and 0j i states with spatially varying amplitudes:

DðrÞ
�� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩcðrÞ2 þ ΩpðrÞ2
q ½ΩcðrÞ 0j i �ΩpðrÞ g

�� ��: ð23Þ

To apply the transition, first the Ωc1q field would be applied. The probe field would
then be applied focused on the targeted site with a Gaussian profile ΩpðrÞ ¼
Ωpe

�ðr�r0Þ2=w2
and Ωp≪Ωc. In the next step Ωc2q would be applied adiabatically11

to form the standing-wave with a node being adjusted on the position of the
targeted site via the ϕ2q angle. At the nodes of Ωc standing-wave Ωp(r)≫Ωc(r) the
dark-state composition is predominantly g

�� �
while away from the nodes Ωp(r)≪

Ωc(r) the dark state would remain at 0j i qubit state.
Considering the wave-function density ∣ψ(r)∣2 of atoms initialized in 0j i states,

the local population of g
�� �

state after applying Ωp,c fields would be f(r)∣ψ(r)∣2 where
f(r) is obtained from Eq. (23) as

f ðrÞ ¼
Ω2

pe
�2ðr�r0 Þ2

w2

Ω2
pe
�2ðr�r0 Þ2

w2 þ Ω2
c sin

2~kðx � x0Þsin2~kðy � y0Þ
; ð24Þ

where ~k ¼ k sin θ=2 with θ being the angle between the Ωc1 and Ωc2 lasers.
Figure 10b plots the narrow peaks of f(r) at the nodes of Ωc. Going away from the

Fig. 9 Single-site addressing—effects of laser cross-talk and misalignment on gate’s fidelity. The population that does not return to the qubit basis after
gate operation would be considered as loss. The errors are averaged over the laser’s misalignment area which is a circle with radius r0 and also over the
Wannier state of atoms. The reported error is averaged over all qubit configurations in a C4-NOT gate. Red and blue lines are corresponding to systems
described in Fig. 1 and 2 with lattice constants a= 400 and 532 nm. The solid and dashed lines are corresponding to errors of plaquette �Ep and central
atoms �Ec. To apply the single-site addressing the 788 nm laser is focused to 1/e2 intensity waist of a w= 500 nm and b w= 370 nm with an alignment
accuracy of r0= 25 nm, generating a differential light-shift ULS on 1j i rh j transition. The Oscillation is due to the change of effective Rabi frequency ~Ω, which
leads to different values of Rydberg leakage at the plaquette sites after the gate operation.

Fig. 10 Dark-state single site addressing technique. a the level scheme containes a Λ configuration transferring the population from 0j i to gj i at the
nodes of Ωc standing-wave where Ωc≪Ωp. The transferred atom would then get excited to the Rydberg state. b The spatial profile of the transition Rabi
frequencies Ωc,p as well as the 0j i gh j transition probabilities f(x) and the wave-function density ∣ψ(x)∣2 of the atoms in 0j i qubit states are plotted. f(r) maps
the ∣ψ(x)∣2 to gj i state upon the spatial overlap which is designed to only occurs at the targeted site. b Sample applied parameters are Ωc/Ωp= 30,
~k ¼ 1 μm�1 and the Gaussian width of Ωp laser is w= 2 μm.
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focusing point of Ωp at r0, the profile width of f(r) gets narrower and disappears. The
full width at half maximum of an f peak located at r0 would be given by
FWHMf ðr0 Þ ¼ 2Ωp expð�ðr0 � r0Þ2=w2Þ=~kΩc

10,11. While the nearest peaks of f shown
in Fig. 10b do not overlap with the atomic lattice sites the next nearest neighbors are at
the position where the amplitude of Ωp would approach zero. In the next step, the Ωp

and Ωc lasers would be turned off simultaneously keeping the ratio of Ωc(t)/Ωp(t)
constant to preserve the dark state components. At this stage, only the desired site
would be in the g

�� �
state and hence would get excited to the Rydberg level by the

subsequent Ωr laser. Considering the qubit-dependent lattice of Fig. 1a–c, the auxiliary
state g

�� �
would experience the same trapping potential as 0j i state since the

distribution of mj components in the two hyperfine states are the same.
The initial calibration of the Ωc standing wave with the optical lattice could be

done by fluorescence imaging with the approach of ref. 11. The nodes of the Ωc

standing wave could be then moved by high resolution adjusting of the Ωc2q

phase120. For the chosen parameters of Fig. 10b applied in a lattice of a= 532 nm
with the atom confinement of FWHM= 20 nm, and focusing Ωp laser to the
Gaussian width of 2 μm, the single site addressing infidelity averaged over the qubit
configurations would be 0.01. This calculation encounters the population leakage of
the neighboring lattices as well as the imperfect transition of the targeted site. Using
the two species lattice44,56,90–92 could improve the addressing fidelity.

Implementing stabilizer phase-gate using parallelized gate. The implementa-
tion of the stabilizer operator Bp ¼

Q
i2p σ

ðiÞ
z over the plaquette spins applies in

three steps i.e. Bp=H−1UgH where H ¼ ∑
i2fp;cg

expðiπ=2σðiÞx Þ is Hadamard applying

over all the plaquette and control atoms and Ug is the parallelized Ryd-Fermi gate
of Eq. (7). For the control qubit prepared in 0j ic , the gate Bp coherently transfers
the control qubit into the state 1j ic ( 0j ic) for the odd (even) parity of plaquette
spin. The Ap ¼

Q
i2pσ

ðiÞ
x stabilizer would be obtained by exclusive application of

Hadamard on the control atom. The desired stabilizer-phase gate would be
implemented by application of a phase shift on the control qubit, sandwiched by
applying/reverting the stabilizer operator Bp

U&ðθÞ ¼ eiθBp ¼ B�1p eiθσ
ðcÞ
z Bp; ð25Þ

with θ being optimized between [0, π] in QAOA. At the end, the control atom
would be factored out by transferring to the ground state.
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