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Drifting Faraday patterns under localised driving
Juan F. Marín 1✉, Rafael Riveros-Ávila 2, Saliya Coulibaly 3, Majid Taki3, Leonardo Gordillo 4✉ &

Mónica A. García-Ñustes 2

Physical systems undergoing spontaneous pattern formation are governed by intrinsic length

scales that may compete with extrinsic ones, resulting in exceptional spatiotemporal beha-

viour. In this work, we report experimental and theoretical evidence that spatial non-

uniformity sets Faraday-wave patterns in motion, which are noticeable in the zigzag and drift

dynamics exhibited by their wave crests. We provide a minimal theoretical model that

succeeds in characterising the growth of localised patterns under nonuniform parametric

driving. Furthermore, the derivation accounts for symmetry-breaking nonlinear gradients that

we show are the source of the drift mechanism, which comes into play right after the system

has crossed a secondary bifurcation point. Numerical solutions of the governing equations

match our experimental findings and theoretical predictions. Our results advance the

understanding of pattern behaviour induced by nonuniformity in generic nonlinear extended

systems far from equilibrium.
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H ighly ordered replication of individual structures in pat-
terns is generally related to the natural selection of an
intrinsic length scale. This length is deeply rooted in the

properties of the physical system supporting them, which can
drastically differ. Patterns are frequently observed in none-
quilibrium systems1 and in very different contexts from the
inanimate world, such as fluids, chemical reactions, magnetic
textures, nonlinear optics, and granular layers2–5. Often, most of
the geometric and dynamic features of the patterns can be
described by finding the link between the intrinsic length scale
and the physical quantities in play. However, there is little
understanding of how patterns may be affected if a second
extrinsic length scale comes into play. This is a relevant question
considering that systems are often driven into out-of-equilibrium
states in limited regions of space, and the driving extent may
compare to the intrinsic length scale of the system.

Standing gravity waves emerging on the free surface of a ver-
tically vibrated fluid are one of the simplest examples of patterns
in out-of-equilibrium systems. The vertical oscillation of the
container has the effect of modulating the effective gravity. When
the amplitude of such oscillations is above a certain threshold,
one observes the spontaneous formation of a regular pattern of
standing waves with a well-defined wavelength oscillating at half
the driving frequency (parametric instability). These waves are
known as Faraday patterns and were first reported in Faraday’s
seminal experimental work on vertically vibrated fluid and
granular layers6,7. When the container is uniformly vibrated as a
whole, Faraday patterns and localised structures support a rich
assortment of spatiotemporal phenomena, such as pattern
selection8, quasi-patterns9, alternating patterns10, supersquare
patterns11, oscillons12, underlying streaming flows13, wavelength
changing instabilities (Eckhaus instability)14,15, turbulence
generation16,17, and complex dynamics of localised
structures18–20. However, the influence of nonuniform vertical
vibration on the pattern dynamics21 remains a relevant open
question that is puzzling due to the lack of suitable models.

In this work, we report the existence of drift instabilities in
localised Faraday patterns induced at the surface of a fluid under
a spatially nonuniform parametric drive. The counterintuitive
effect of inducing a propagating phase in the system, even when
the vertical vibration modulation is fixed in space, is an intriguing
attribute and differs from other experimental realisations fea-
turing special types of boundary conditions, such as annular
channels22–24. We show that such drift is entirely induced by the
nonuniform nature of the vertical drive at the bottom of the fluid
container and thus cannot be observed under uniform driving.
We use the normal form theory to explain the observed drift
through an amplitude equation for Faraday patterns under
localised driving. We demonstrate that the evolution of the
instabilities at the first order of nonlinearity is described by a
quintic Complex Ginzburg-Landau equation with Weber-like and
self-phase modulation terms in the form of nonlinear gradients.
Such nonlinear gradients trigger drift instabilities through a
spontaneous nonlinear symmetry breaking above a secondary
bifurcation threshold.

Results
Drift instabilities in a vertically vibrated fluid. The experi-
mental setup in Fig. 1a was suitably devised to study the spatio-
temporal interactions of patterns under localised driving. Here,
Faraday patterns, i.e., subharmonic standing waves induced by
vertical vibrations, are sustained on the surface of a quasi-one-
dimensional fluid of depth h= 20 mm in a container with a soft
elastic bed. The free surface of the fluid is at y= 0 when at rest,
and displacements of the surface from the equilibrium condition

are described by the time-space dependent field η(x, t) as shown
in the Fig. 1d, e. The novelty of the setup is the way in which the
system is forced. Instead of uniform vibrations, an array of lin-
early spaced pistons mechanically actuates on the soft bed (at
y=− h), thus introducing localised vertical vibrations into the
system. As detailed in the Methods, pistons are driven by a
brushless motor through an array of rotating cams, which control
the frequency and amplitude of oscillations of the set of pistons.
For the bottom motion, we programmed a controlled oscillating
Gaussian profile, exp �x2=2σ2i

� �
, with a typical extrinsic length of

injection L ~ 20 cm. The wavelength of the standing wave is
related to L in a nontrivial way, but it is close to the uniform-
forcing case, λn= L/nπ, where n is the number of visible anti-
nodes on the stationary surface wave. The time-dependent part of
the oscillatory drive is controlled in the laboratory by

ΓðtÞ ¼ Γ0 cosð2πftÞ; ð1Þ

where f is the forcing frequency. The acceleration amplitude of
the forcing Γ0 can also be written as a function of the maximum
bottom displacement a0 and f.

To characterise the spatiotemporal patterns in our experiment,
we recorded the fluid surface with a high-velocity camera (400
frames per second), as shown in Fig. 1b. The spatiotemporal data
of the water level were obtained after several image-processing
steps, including brightness and gamma corrections, resulting in a
clear view of the liquid interface on the glass wall, as shown in
Fig. 1c and d. Afterwards, a Gaussian filter with kernel size 3 × 3
pixels was applied. A Canny edge detector was used to find
continuous edges in the image. For further analysis, the final data
were stored as a discrete matrix ηij representing the continuous
water level η(x, t). A typical spatiotemporal diagram is shown in
Fig. 1e. The temporal envelope of the pattern oscillations can be
extracted by applying a Hilbert transform over time to the
spatiotemporal data. Figure 1e shows a locally driven Faraday
pattern for f= 14.8 Hz and Γ0= 0.613, and Fig. 1f is a
spatiotemporal representation of the modulus of the Hilbert
transform. The real part of the Hilbert transform relates to a
stroboscopic view of the phenomenon at the frequency of the
wave oscillation f/2.

At a fixed forcing frequency f= 14.8 Hz, a locally driven
standing Faraday pattern with mode n= 6 forms above the
threshold Γf0 ¼ 0:331, as shown in Fig. 1e and f. By increasing the
drive amplitude above Γc0 ¼ 0:613, the pattern develops a zigzag
motion, noticeable in the oscillations exhibited by the wave crests
in the spatiotemporal diagrams of Fig. 2a. By further increasing
the driving amplitude above Γ0= 0.691, we discovered drifting
patterns and nonzero mean velocity in the system, as depicted in
Fig. 2a. The drift superimposes with the zigzag motion and
features the continuous annihilation and creation of modes at the
opposite sides of the pattern. Such a drift of localised Faraday
patterns is a nontrivial effect that has not been reported in the
literature.

Both the drift velocity and zigzag frequency display a strong
dependence on the drive amplitude. To characterise the
dependence, we analysed the mean trajectory of the crests to
compute the drift mean velocity as a function of Γ0. Figure 2b
shows the experimental measurements of the drift average
velocity 〈v〉 for different values of Γ0. Additionally, the
frequencies of the zigzag motion were calculated and fitted to a
power law, as shown in the inset of Fig. 2b. The curve fits the
experimental observations for Γ0≳ 0.676 well, especially when
we consider the nonnegligible effect of unavoidable small additive
noise, which is typical in experiments. Additive noise in
bifurcations of emerging patterns25 affects the most likely value

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01170-8

2 COMMUNICATIONS PHYSICS |            (2023) 6:63 | https://doi.org/10.1038/s42005-023-01170-8 | www.nature.com/commsphys

www.nature.com/commsphys


of the mean drift velocity as follows:

hvi ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ΔD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
D þ 2ξ

q� �s
; ð2Þ

where ΔD≔ Γ0− Γc, Γc is the critical drive amplitude for the
emergence of the drift velocity, and ξ is the noise intensity.
Figure 2b shows the fitting curve using Eq. (2) in a solid red line,
where the fitted parameter values are A= 2.463, Γc= 0.683, and
ξ= 0.01. We observed agreement between the experimental
measurements and the fit using Eq. (2).

Figure 3 summarises our experimental results. In Fig. 3a,
Γf0 < Γ0 < Γc0, and the pattern is absolutely steady. Note that
although the Gaussian driving profile in the bottom is centred
around the origin, the maximum of the pattern is slightly shifted
towards the negative values of x. Figure 3b, Γ0 > Γc, illustrates a
combination of a unidirectional drift with zigzag motion. A
further increase in Γ0 beyond the threshold of drift instability
creates a complex convective state, as shown in Fig. 3c. In this
latter case, the pattern dynamics exhibit convection towards both
possible directions. We also noticed the emergence of branching
phenomena, where a drifting maximum of the pattern breaks up
into two crests momentarily travelling in opposite directions. We

also observed intermittence in this regime: drift and branching
ceased to occur for a short period of time, as evidenced in Fig. 3c
for t≳ 5 × 105T. As explained below, the interplay of nonlinea-
rities and the localised vertical drive plays a fundamental role in
the underlying bifurcations behind these phenomena.

Modelling drift in localised Faraday patterns. It has been shown
that pattern formation in the surface of a weakly viscous fluid in a
trough with a large aspect ratio can be modelled by the para-
metrically driven nonlinear Schrödinger (pdnlS) equation3,

∂tψ ¼ �ðμþ iνÞψ � iα∂xxψ � i ψ
�� ��2ψ þ γðxÞψ�; ð3Þ

written here in dimensionless form. The pndlS model is simple
yet can provide profound insights into the generic phenomenon
of pattern formation in fluids and many extended nonequilibrium
systems26–31. In Eq. (3), pattern dynamics are described through
a complex order parameter ψ that depends on space and time and
is related to the displacement η of the free surface by
ηðx; tÞ ¼ Reψðx; tÞ expðiπftÞ. The parameter μ is the effective
dissipation of the system, which accounts for both the fluid bulk
viscosity and wave damping due to the friction with the walls32.
The parameter α is related to a spatial coupling length, and the

Fig. 1 Experimental generation of localised Faraday patterns. a Experimental setup for generating Faraday patterns in the surface of fluid under localised
vertical vibrations. b Image received from the high-velocity camera. c Processed image with gamma manipulation, brightness manipulation and Gaussian
filter. d Overlap of the processed image and detected free water surface η(x) at an arbitrary time t*. e Spatiotemporal diagram of the free surface
corresponding to a Faraday pattern η(x, t). f Modulus of ~ηðx; tÞ corresponding to the time envelope of the free surface oscillations.

Fig. 2 Experiments of zigzag and drifting patterns. a Typical behaviour of the drifting patterns in experiments with different drive amplitudes.
b Measurements of the mean velocity 〈v〉 of the drifting patterns as a function of the drive amplitude Γ0. The fit using Eq. (8) (without including noise
effects) is shown as dashed lines, while the fit including noise is shown as a solid line. The inlet figure shows a power-law fit of the crest oscillation
frequency as a function of the drive amplitude Γ0. Error bars represent the mean of the standard deviation of measurements performed for the
correspondent amplitude Γ0 at the same frequency.
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parameter ν ¼ ½ f =f 1
� �2 � 1�=2 is a small frequency detuning

between the driving frequency and the natural frequency of the
first transverse mode, f 1 ¼ 2πð Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gκ tanh κ

p
, with κ= 2π/λ

being the wavenumber of the fundamental mode33.
Under uniform driving, the system destabilises when3 γ> γhc ¼ μ

through the spontaneous growth of a pattern for positive values of ν
via a supercritical bifurcation31,34 with leading eigenmodes of
wavenumber κc ¼ ±

ffiffiffiffiffiffiffiffi
ν=α

p
. The effect of a localised profile in the

vertical drive has been analysed21 by introducing the space-
dependent Gaussian profile γðxÞ ¼ γ0 exp �x2=2σ2i

� �
, where σi gives

the extension of the injection zone and γ0= Γ0/4g is the
dimensionless amplitude of the vertical drive. The linear stability
analysis under a slightly localised Gaussian profile, i.e., σ i �

ffiffiffi
α

p
,

shows that the envelope C0 of the pattern has a discrete response
given by the Gauss-Hermite polynomials21. Urra et al.21 showed that
the threshold of the instability of the m-th Gauss-Hermite mode is
given by

γðmÞ
0 ¼ μþ ð2mþ 1Þ 1

σ i

ffiffiffi
ν

α

r
; ð4Þ

and therefore, localised Faraday patterns appear at γ0 > γð0Þ0 for
m= 0.

In the lower panel of Fig. 3, we show the results from the
numerical simulation of the pdnlS equation (3) for the given
values of the parameters. Near the fundamental threshold of
instability, the Faraday patterns are rather regular and highly
ordered, as shown in Fig. 3d. The amplitude of the pattern
increases with γ0. However, at some value γD 2 ðγð2Þ0 ; γð3Þ0 Þ, a
secondary instability emerges, and the pattern dynamics become
complex for both the amplitude and phase. In Fig. 3d, we fixed γ0
slightly below the secondary instability onset γD so the localised
pattern is absolutely stable. Note that the maximum of the wave
amplitude is shifted towards the left of the origin, as we observe in
Fig. 3a. If γ0 is slightly above the threshold γD, the unidirectional
zigzag drift becomes evident, as shown in Fig. 3e. Experiments
and simulations suggest the existence of a nonlinear symmetry-
breaking mechanism in the system. Further increasing the drive

amplitude γ0, the system evolves towards a more complex state
with a superposition of oscillations (suggesting an underlying
Hopf instability), branching and drifting in both directions, as
shown in Fig. 3f.

To provide a theoretical explanation of the observed behaviour,
we characterised the dynamics of localised Faraday patterns near
the fundamental threshold of instability through Eq. (3) using the
method of normal forms (see Methods). Under this widely used
formalism, a nonlinear system takes the “simplest”—or so-called
normal—form preserving its essential features, i.e., dynamic
behaviour, near a bifurcation point35. To capture the dynamics
close to the spatial instability, we introduced a bifurcation
parameter δ ¼ γ0 � γð0Þ0 and a small dimensionless parameter
ϵ ¼ ffiffiffi

α
p

=σ i � 1 characterising the length of the driving zone.
With the condition ϵ≪ 1 we assumed that the injection zone is
large compared to the spatial coupling length, i.e., the system
behaves as a weakly nonuniform system. We studied the
behaviour of solutions around a Faraday pattern with critical
wavenumber κc introducing a modulating complex amplitude
function C(x, t)—an order parameter—, i.e.

ψðx; tÞ ¼ Cðx; tÞeiκcx þ c:c:þ h:o:h:; ð5Þ

where h. o. h denotes the higher-order harmonics. Below the
bifurcation point, γ0 < γð0Þ0 , one observes a stable uniform solution
C= 0 (disordered phase). Such a uniform solution becomes
unstable just above the bifurcation point, and C(x, t) has its own
spatiotemporal dynamics modulating the underlying Faraday
pattern (self-organised phase). At the leading order of non-
linearity, one obtains the following governing equation for the
amplitude:

∂tC ¼ 2ν
αμ

∂xxC þ δ � μ

2σ2i
x2

� �
C � i

2
μ

ffiffiffi
ν

α

r
3∂x Cj j2C� �� 2C∂x Cj j2� �� 	� 9

2μ
Cj j4C: ð6Þ

For nonextended systems, the homogeneous limit of Eq. (6)
turns into the well-known normal form derived by Coullet
et al.34. The first two terms on the right-hand side of Eq. (6)
are Weber-like terms that give the known linear limit of the
nonuniform system21. At the modulational instability, the

Fig. 3 Comparison between experiments and simulations of drifting patterns. a–c Experimental evidence of the drift instability in a fluid subject to vertical
and localised drive. The amplitude of the vertical drive is (a) Γ0= 0.56, (b) Γ0= 0.70, and (c) Γ0= 0.84. The detected level of the surface of the fluid is
indicated by the colour scale. d–f Drift instability in the numerical simulations of the pdnlS equation (3) with μ= 0.45, α= 1, ν= 1.0, and σi= 16 for (d)
γ0= 0.55, (e)γ0= 0.8375, and (f)γ0= 0.9000.
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amplitude of the unstable Gauss-Hermite modes is saturated by
the quintic nonlinearity given by the last term in Eq. (6).

Surprisingly, Eq. (6) displays unexpected terms proportional to
∂x Cj j2C� �

and C∂x Cj j2� �
. These are gradient-driven terms

featuring self-phase modulation (SPM) effects in the slowly
evolving modes of the localised Faraday patterns. Such terms are
often introduced in the nonlinear Schrödinger equation to
account for self-steepening effects and self-frequency shifting
via stimulated Raman scattering36–40. To our knowledge, this is
the first time a complex quintic Ginzburg-Landau equation with
Weber-like terms has been derived with these SPM terms
appearing naturally from the weakly nonlinear analysis. We
show below that such terms explain both the absolute and drift
instabilities observed in our experiments of localised Faraday
patterns.

In Fig. 4a, b, we compare the predictions of our normal form
(6) and the pdnlS equation (3). In both cases, we numerically
solved Eqs. (3) and (6) with no-flux boundary conditions. The
initial conditions were given by small-amplitude random
distributions of values in space for the real and imaginary parts
of ψ and C. There is agreement between both models near the
fundamental threshold of instability. Figure 4a and b confirm that
the extension σ and the envelope profile of the Faraday pattern
are well described by the normal form. Beyond the fundamental
threshold, as one would expect, predictions from the normal form
show some mismatch from the outcome of the pdnlS equation.
Figure 4c shows the maximum amplitude of the Faraday pattern
as a function of γ0, and demonstrates that the normal form (6)
describes the nature of the bifurcation of the pattern well, as
explained in detail below.

The SPM terms in Eq. (6) are induced by nonlinear gradients,
which reveal underlying complex phase dynamics. The gradient
terms break the transverse reflection symmetry (x→− x) and
dramatically affect the pattern selection in the system41,42. Thus,

the nonlinear gradients in Eq. (6) yield a nonlinear symmetry
breaking where convection is characterised by an amplitude-
dependent group velocity. In Fig. 5, we demonstrate examples of
drift instabilities in the system obtained from numerical
simulation of Eq. (6) for some given parameter values.

In Fig. 5a, we show data for a run in which the system
exhibited absolute stability with a pattern amplitude dominating
over drifting and zigzag-like motion. In the absence of SPM
terms, the localised Faraday pattern spontaneously grows centred

around the Gaussian driving with width21 σw ¼
ffiffiffiffiffiffiffiffi
ν=α

p
σ i=μ


 �1=2
.

In Fig. 5a, we indicate with dashed lines the σw centred at the
Gaussian driving for reference, evidencing the clear shift in ReðCÞ
due to the SPM terms. The first frames of the simulation in
Fig. 5b show that there is a transient drift towards the left as the
pattern grows. However, the convection is too weak to overcome
saturation, and the system rapidly becomes absolutely stable.
Although the imaginary part of C displays a similar shift, the
absolute value ∣C∣ exhibits no shift, and the phase lacks any
spatiotemporal dynamics in this case, as shown in Fig. 5c.

Increasing the value of γ0, we found for some value
γD 2 ðγð2Þ0 ; γð3Þ0 Þ that the propagation overcomes amplification
and the system exhibits a nonlinear transition to drift instability.
Figure 5d shows this scenario, in which a Faraday pattern displays
a drift in the real part of its envelope. The real and imaginary
parts of C exhibit the same drift, except for a phase factor.
However, the absolute value ∣C∣ has no drift, as we show in
Fig. 5e. Thus, the pattern drift is entirely due to the phase
dynamics, as evidenced in Fig. 5f.

A further increase in γ0 results in acceleration of the drift, as
shown in Fig. 5g. The drifting wave also undergoes changes in
both the frequency and wavelength. These observations confirm
the nonlinear nature of the drift instability. Note that the drifting
pattern becomes nonpropagating near the tails of the Gaussian
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Fig. 4 Comparison between theory and numerical simulations. a, b Normalised amplitudes j~ψj and ∣C∣ obtained numerically from Eq. (3) and Eq. (6),
respectively, with μ= 0.45, ν= 1, α= 1, σi= 16, and (a)γ0= 0.67, (b)γ0= 0.8. c Normalised maximum amplitude of the saturated Faraday pattern, jCmaxj,
as a function of γ0, according to Eq. (7) (solid line) and the numerical solutions of pdnlS Eq. (3) (stars). Drift is observed above a critical value γD≃ 0.837
indicated with a vertical dashed line.
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drive, as highlighted in the inset of Fig. 5h. This pinning effect
stems from the spatial nonuniformity of the vertical drive, which
imposes smooth amplitude variations at the tails of the Gaussian
drive and induces a boundary-like condition. When spatial
variations in the pattern envelope become comparable to
modulation amplitude, they could result in coupling between
the slow scale of the envelope to the fast scale of the modulation
of the underlying Faraday pattern, leading to pinning of the
drifting wave43. Moreover, the phase dynamics exhibit travelling
waves inside the injection zone defined by the Gaussian drive, as
evidenced in Fig. 5f and i. The mean velocity of such travelling
waves decreases as γ0 decreases.

Drift velocity characterisation. To gain further insight into the
dynamic behaviour of the drifting localised patterns, we looked
for an explicit expression for the average pattern velocity, 〈v〉.
The key idea is that at the tails of the Gaussian driving, the
normal form of Eq. (6) has an extra nonresonant term arising
from the coupling between the slow-scale dynamics of C(x, t) and

the fast scale of the modulation of the Faraday pattern. This effect
has been observed in the pinning of patterns by a boundary-like
condition43. By calculating the normal form assuming that scale
separation is no longer valid at the tails of the localised drive, we
obtain the full amplitude equation,

∂tC ¼ 2ν
αμ

∂xxC þ δ � μ

2σ2i
x2

� �
C � i

2
μ

ffiffiffi
ν

α

r
3∂x Cj j2C� �� 2C∂x Cj j2� �� 	

� 9
2μ

Cj j4C � 3i
2

ffiffiffi
ν

p e�i2κcxC2∂xC;

ð7Þ
where the last term proportional to expð�i2κcxÞ is nonresonant
and has the form of a nonlinear gradient. Further calculations
lead to a formula for the average velocity (see Methods)

hvi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h� hc

p
; ð8Þ

where h is a drift bifurcation parameter and hc is a critical value.
Thus, we conclude that for h close to hc, the system exhibits a

Fig. 5 Drift instabilities in the normal form. Numerical results obtained from Eq. (6) with μ= 0.45, ν= 1, α= 1, and σi= 16. a–c A wave exhibiting absolute
stability for γ0= 0.80. d–f Drift instability for γ0= 1.2. g–i A strongly nonlinear drift instability for γ0= 1.62.
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saddle-node bifurcation to drift instability with the pattern
velocity increasing with the square root of h. In Fig. 2b, dashed
lines indicate the fit of the velocity experimental measurements
using Eq. (8). Note that neglecting noise effects on the bifurca-
tion, we have ξ→ 0 in Eq. (2), and we recover our theoretical
prediction on Eq. (8), which is valid for the deterministic case.

Figure 6 shows the results from numerical simulations of the
full normal form (7) for the given parameter values. Figure 6
shows that our full normal form captures the zigzag drifting and
branching phenomena observed in the experiments. Figure 6a–c
shows the real part of the order parameter C. The pattern in
Fig. 6a exhibits a unidirectional drift with a zigzag-like motion for
γ0= 0.3. Increasing the dimensionless drive amplitude to
γ0= 0.37, we observe that the frequency of the zigzag-like motion
increases, as shown in Fig. 6b, which is in agreement with our
experimental observations in Fig. 2. The drift velocity also
increases from Fig. 6a to Fig. 6b, as expected. Further increasing
the value of γ0, we observe the branching phenomenon shown in
Fig. 6c. Figure 6d–f shows the corresponding dynamics of the real
part of the complex field ψ, reconstructed from the numerical
solutions of Eq. (7) through Eq. (5). The similarity between
Fig. 6d, e and f with Fig. 3a–c, respectively, is noticeable.

Self-phase modulation and nonlinear saturation. Here, we
address the question of how drift instabilities impact our current
understanding of the nonlinear saturation mechanism of localised
patterns. This problem was first assessed in ref. 21 but without
taking into account the SPM terms. Following previous calcula-
tions, we performed a multiple-scale analysis on Eq. (6) to
investigate the role of the SPM terms. We found that SPM has no
effect on the saturation of the fundamental mode close to the
instability threshold. Assuming that the spatial and temporal
scales of perturbations on the pattern amplitude are large, one
obtains that the evolution of the amplitude D of the fundamental
mode for γ0 � γð0Þ0 is governed by

d
dt

D ¼ δD� 9

2
ffiffiffi
3

p
μ
D5; ð9Þ

in full agreement with previous results derived without the SPM
terms. Equation (9) predicts the scaling law D∝ δ1/4, which has

been previously verified in experiments21 and gives the signature
of a supercritical bifurcation. Figure 4c shows the maximum
stationary amplitude jCmaxj of the Faraday wave as a function of
γ0: solid lines are predicted from Eq. (9), and symbols depict the
results from the numerical simulations of the pdnlS Eq. (3). We
conclude that the results of the multiple-scale analysis on the
normal form (6) are in good agreement with both the numerical
simulations of the pdnlS equation (3) and the Faraday-wave
experiments.

Discussion
In ref. 21, we derived an amplitude equation describing the
growth of nonlinear instabilities around the fundamental
threshold γð0Þ0 , performing an appropriate expansion on the dis-
persion relation obtained from the WKBJ analysis. The resulting
amplitude equation provides insight into how the nonlinear
instability of the Gauss-Hermite modes gives rise to a saturated
pattern. However, such an amplitude equation was not formally
derived from the weakly nonlinear analysis.

Our findings unveil a connection between the drift instability
of coherent structures and heterogeneity in general nonlinear
systems far from equilibrium. In our system, such a connection is
provided by the interplay between the wavelength of the Faraday
pattern (an intrinsic length scale which depends mainly on the
intrinsic and drive parameters of the system) and the spatial
width σi of the Gaussian drive (an extrinsic length scale which is
independent on the intrinsic parameters of the system and tun-
able). Indeed, the drift instabilities reported in this work are
spontaneously induced by the spatial nonuniformity of the drive,
i.e. a spatially featured non-drifting drive can generate drifting
patterns. Under uniform drive, the amplitude of the Faraday
pattern will be space-independent, and hence, the SPM terms
causing the drift in Eq. (6) vanish. Note that only the nonuniform
Weber-like term in Eq. (6) vanishes in the limit σi→∞ (i.e.,
γ(x)→ γ0). However, although the SPM terms are not directly
coupled to the Gaussian driving width σi, they are indirectly
linked through the nonuniform profile of C(x, t) induced by the
Gaussian drive. We believe this is the reason why such drift has
not been reported in previous studies, which have been focused
on uniformly accelerated systems. Recently, the role of spatial
nonuniformity has often been identified as an important factor in

Fig. 6 Zigzag drifting and branching phenomena. Phenomena captured by the normal form with nonresonant terms. a–c Numerical simulations of Eq. (7)
for ν= 0.25, μ= 0.15, and (a)γ0= 0.3, (b)γ0= 0.37, and (c)γ0= 0.38. d–f Real part of the complex field ψ reconstructed from (a), (b) and (c) through
Eq. (5).
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nonlinear systems21,44–47. Our theoretical insights on the
underlying instabilities of localised patterns may be relevant in
understanding other wandering localised structures observed in
one and two-dimensional heterogeneous nonequilibrium systems.
Moreover, drift instabilities in two dimensions open up possibi-
lities for coherent structures arising from convection and multi-
directed stream. It also remains the open question of how a
spatial distribution of driving forces could interact with other self-
driven drifting phenomena, such as those observed in walking
droplets48. Our findings open avenues of research, validating the
use of SPM terms such as those naturally emerging in Eq. (6) to
capture drift instabilities induced by nonuniform drives in dif-
ferent physical, chemical, and biological systems.

To summarise, we have shown that nonuniformity can trigger
drift instabilities in the evolving amplitude of localised Faraday
patterns. We performed an experimental study of Faraday waves
on the free surface of a fluid under localised vertical driving. We
show that above a secondary threshold of instability, the localised
and nondrifting drive triggers drift instabilities in the surface
patterns. We provide a theoretical explanation of the phenom-
enon based on a nonuniform version of the pdnlS equation as a
simple model for parametric driven patterns. Under the
assumption of a vertical drive modulated by a spatially spread
Gaussian profile featured by an extrinsic length scale, we derived
an evolution equation governing the slow dynamics of the pattern
amplitude. The resulting normal form includes two unreported
SPM terms that are linked to complex dynamics in the underlying
patterns. We show that such terms trigger drift via nonlinear
symmetry breaking induced by a nonlinear gradient. Numerical
simulations of the pdnlS equation are also in agreement with both
the theory and experimental data. These results extend our gen-
eral understanding of nontrivial dynamical effects of non-
uniformity in nonlinear extended parametric oscillators and how
pattern selection can be dramatically affected by the nonuni-
form nature of the input of energy.

Methods
Experimental setup. We used a rectangular water basin, 15 mm long, 490 mm
wide, and 100 mm deep, whose bottom centre consists of a rectangular soft elas-
tomer made out of high-performance platinum cure liquid silicone Dragon Skin 10
medium 10A. The Gaussian drive, directly linked to γðxÞ ¼ γ0 exp �x2=2σ2i

� �
, is

mechanically achieved in this waterproof soft zone through bottom vibrations. To
control both the driving amplitude and frequency, we used a brushless servomotor
with feedback (Model No. BLM-N23-50-1000-B) controlled with a DMC-40x0
motion controller from Galil Motion Control. The servomotor was coupled to a
shaft to transmit the rotational motion to an evenly spaced array of 13 pistons
(Δx= 16 mm), which were placed underneath the soft zone. Each piston holds
linear bearings to maintain vertical motion and has a tiny roller in contact with a
rotary cam fixed to the shaft, making the transmission of rotational oscillatory
motion to linear oscillatory motion possible as shown in Fig. 7a. The key of the
mechanism is the special design of the cams (see Fig. 7b) according to the specific
formulae in Fig. 7c. The pistons are pushed with springs towards the cams to avoid
detachment under peak accelerations. The setup resembles the mechanical trans-
mission system of a music box, as shown in Fig. 1a, and allows to deform the
bottom of the channel with a programmed spatial distribution.

For the experiment, the basin was filled up to 20 mm with a mixture of water
and white ink for image detection purposes. For data acquisition, we used a
Phantom VEO 440L camera controlled by PCC 3.5 software. The resolution of the
images was 1280 × 252 pixels, and the acquisition time was approximately 94 s at
400 frames per second for every amplitude. Images were saved in greyscale to
simplify the contour detection process.

Numerical methods. Numerical simulations of the pdnlS equation (3) and our
normal form (6) were performed with no-flux boundary conditions (rigid
impermeable wall) using a 401-point spatial grid with resolution dx= 0.25. We
used finite differences of the second-order accuracy for the spatial derivatives, and
time integration was achieved using a fourth-order Runge-Kutta scheme with time-
step dt= 0.0001. To obtain the amplitude of the drifting localised Faraday patterns
shown in Fig. 3, we first numerically obtained the pattern profile ψ(x, t) from the
numerical simulation of Eq. (3). Then, the spatial complex amplitude C(x, t) was
obtained from the Hilbert transform in space,

bψðx; tÞ ¼ ð1=πÞ R L=2
�L=2 dχ ψðχ; tÞ=ðx � χÞ, which was computed at each time step of

the numerical integration. When needed, the temporal complex amplitude is

obtained via ~ψðx; tÞ ¼ ð1=πÞ R T=2
�T=2 dτ ψðτ; tÞ=ðx � τÞ. Both were obtained

numerically with Matlabⓒ.

Normal forms. The theory of normal forms is a powerful method for the
systematic construction of local, near-identity, and nonlinear transformations
to simplify the equations describing the dynamics of complex nonlinear
problems near a bifurcation point35. We started by writing Eq. (3) in the form
∂tΨ= LΨ+N, where Ψ≔ (ψR, ψI), ψ≔ ψR+ iψI, L is a linear operator, and N
is a nonlinear vector. We performed our transformations around a Faraday-pattern
solution with critical wavenumber κc according to

Ψ ¼ Cðη; tÞ 1

0

� �
eiκcx þ ∑

1

n¼1
W½n� þ c:c:; ð10Þ

where C(η, t) is a complex amplitude that varies as a function of η≔ ϵ1/2x, as
described in the Results, and the vector functions W½n� 2 C2; n≥ 1 are higher-
order corrections to be calculated. Assuming in Eq. (3) the scaling laws C ~ ϵ1/4,
δ ~ ϵ, ∂t ~ ϵ and ∂x ~ ϵ1/2, one can expand the pdnlS equation at different orders of
ϵ1/4 and obtain a hierarchy of linear problems of the form

LW½n� ¼ bn; ð11Þ
which can be solved for W[n] only if bn is in the image of the linear operator L.
According to the Fredholm alternative2, at least one solution for W[n] exists if
9! vj i 2 kerLy such that 〈v∣bn〉= 0. Defining the inner product in the vector
function space as

hf jgi ¼ κc

Z xoþ1=κc

xo

dx f�ð ÞTg; fj i; g
�� � 2 C2; ð12Þ

the Fredholm alternative yields a solvability condition to calculateW[n] at each order
of ϵ1/4. Our normal form (6) is the solvability condition obtained at order ϵ5/4.

Calculation of the drift velocity. We wrote our full normal form Eq. (7) in polar
coordinates by setting C ¼ ρ expðiθÞ. After removing the phase factor, the ima-
ginary part reads

∂τθ ¼ 4∂XXθ þ
8
ρ
∂Xρ∂Xθ � 4ρ2 3∂Xρþ 2j∂Xρj

� �� 3μ
β
ρ ρ sin 2 βX � θ

� �� 	
∂Xθþ cos 2 βX � θ

� �� 	
∂Xρ

� �
;

ð13Þ
with β ¼ ν=

ffiffiffi
α

p
, X ¼ x

ffiffiffiffiffiffiffiffi
ν=α

p
and τ= 2μt. As depicted in Fig. 5f and i, the phase

θðx; tÞ ¼ argðCÞ consists of two different superimposed dynamic behaviours: (i) a

Fig. 7 The cam-roller-spring-piston mechanism. a Angular oscillatory
motion displaces the piston to generate vertical oscillations. The special
design of the cam (b) according to the formulae shown in the table (c),
allows control of vertical displacement amplitude through angular
amplitude in a range suitable for experiments (shaded region). The
functions f and g smoothly close the cam edge, shown as the red curve in b.
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travelling wave with some phase velocity c= ω/k and (ii) a monotonically
increasing one modulo 2π, such that argðCÞ 2 ½�π; π� (following the conventional
restriction of the inverse trigonometric functions to the principal branch). Based on
this observation, we propose the ansatz
θðX; τÞ ¼ θcðX � cτÞ þ χðτÞ� 	

mod ð2πÞ � π, where θc and χ account for the tra-
velling and increasing phase dynamics, respectively.

Close to the drift instability threshold, d〈θ〉X/dt slowly evolves over time, and
therefore, χðτÞ ’ hχðτ0Þiτ . Averaging Eq. (13) in both space and time, with

hθðX; τÞiX ¼ σ�1
w

R σw=2
�σw=2

dX θðX; τÞ and hθðX; τ0Þiτ ¼ ðω=TÞ R τþT
τ dτ0 θðX; τ0Þ, one

obtains

dχ
dτ

¼ h
2
� 3μ

β
A0 cosð2χÞ � B0 sinð2χÞ
� 	

; ð14Þ

where A0 ¼ ρðρ� 1Þ∂Xθc sin 2 βX � θc
� �� 	
 �

X;τ ,

B0 ¼ ρðρ� 1Þ∂Xθc cos 2 βX � θc
� �� 	
 �

X;τ , and h ¼ �2h∂τ0θciX;τ . Finally,
analytically solving Eq. (14), we obtain Eq. (8) with hc ¼ 6μ=β

� �2ðA2
0 þ B2

0Þ.

Method of multiple scales. The method of multiple scales to study the effects of
SPM in the Faraday pattern near the fundamental threshold of instability separates
the time-scale dynamics of the different Gauss-Hermite modes controlling diver-
gences in the perturbative developments49. Just above the fundamental threshold of
instability, the fundamental Gauss-Hermite mode, G0, dominates the amplitude
dynamics of the Faraday pattern as higher-order modes decay21. As the bifurcation
parameter is further increased, more Gauss-Hermite modes are excited. Each mode
grows at its own growth rate or characteristic time. Assuming that the spatial and
temporal scales of perturbations on the wave amplitude are large, the spatial
derivative is rescaled by a small parameter ζ: ∂x→ ζ1/2∂x, and the time scales slowly
evolve as Ti≔ ζit (with i= 1, 2, …). Writing C as a perturbation series of the
different time scales,

Cðx; tÞ :¼ ∑
1

k¼1
ζk=4Akðx;T1;T2; ¼ Þ; ð15Þ

and using a similar expansion in the bifurcation parameter,
δ= δo+ ζδ1+ ζ2δ2+…, results in a hierarchy of problems at each order of ζ1/4,
similar to Eq. (11) for Ak, k ≥ 1.

At order ζ1/4, one obtains that A1 is governed by the (time-independent) Weber
equation21, whose general solution is given by a linear combination of the Gauss-
Hermite modes with time-dependent coefficients Dn(T1,…), n ≥ 0. In particular,
the saturation of the fundamental Gauss-Hermite mode will be given by the time
evolution of the first of such time-dependent coefficients, Do(T1,…).

At order ζ5/4, in the analogous hierarchical equation (11), one obtains a vector
b5 that contains SPM terms. Given that the set of all Gauss-Hermite modes fGng1n¼0
is a basis of the space, we write the functions A2 and A3 as the linear expansion

Ak ¼ DðkÞ
o ðT1ÞG0 þ ∑

1

n¼1
DðkÞ
n ðT1ÞGn; k ¼ 2; 3: ð16Þ

However, near the threshold of instability of the fundamental mode, the modes Gn

with n ≥ 2 are stable. Thus, the coefficients DðkÞ
n ðT1Þ for n ≥ 2 decay over time. Once

the Faraday pattern has completely evolved, the maximum amplitude of the pattern
is Cmax ’ Do :¼ D, and the functions Ak (k= 1, 2, 3) are even in space. Thus, using
the Fredholm alternative, from symmetry arguments and the inner product (12),
one obtains that the contribution of the self-phase modulation terms vanishes, and
the solvability conditions lead to Eq. (7).

Data availability
The data recorded during the localised Faraday experiments are available from the
corresponding author upon reasonable request. The remaining data that support the
findings of this work are generated from computational simulations (see code
availability), and are available from the corresponding author upon reasonable request.

Code availability
The code for image processing and computing the fields η(x, t) and ∣ψ(x, t)∣ are available
from our GitHub repository.
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