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Optimized frequency comb spectrum of
parametrically modulated bottle microresonators
Manuel Crespo-Ballesteros 1✉, Andrey B. Matsko 2 & Misha Sumetsky1

Optical frequency combs generated by parametric modulation of optical microresonators are

usually described by lumped-parameter models, which do not account for the spatial dis-

tribution of the modulation. This study highlights the importance of this spatial distribution in

the Surface Nanoscale Axial Photonics (SNAP) platform, specifically for elongated SNAP

bottle microresonators with a shallow nanometre-scale effective radius variation along its

axial length. SNAP bottle microresonators have much smaller free spectral range and may

have no dispersion compared to microresonators with other shapes (e.g., spherical and

toroidal), making them ideal for generating optical frequency combs with lower repetition

rates. By modulating parabolic SNAP bottle microresonators resonantly and adiabatically, we

show that the flatness and bandwidth of the optical frequency comb spectra can be enhanced

by optimizing the spatial distribution of the parametric modulation. The optimal spatial dis-

tribution can be achieved experimentally using piezoelectric, radiation pressure, and electro-

optical excitation of a SNAP bottle microresonator.
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The generation of optical frequency combs (OFCs) represents
a vibrant field of research in photonics1,2 with numerous
applications in precision spectroscopy, optical metrology,

and high-speed optical communications3–6. Currently, the main
techniques to generate OFCs use mode-locked lasers7, electro-optic
(EO) modulation of continuous wave lasers8, and nonlinear optical
processes in microresonators9,10. The most common method to
generate OFCs in microresonators is based on the nonlinear Kerr
effect11–14, but alternative approaches have been proposed, such as
the application of the EO effect in microresonators made of
materials with second-order nonlinearity15–20. The microresonator-
based comb technologies are particularly attractive because they
offer compact, efficient, and high-repetition-rate frequency combs
(of the order of GHz and THz). However, applications such as
high-precision spectroscopy require OFCs with lower repetition
rates (a few hundreds of MHz or smaller)3,21, which is more
challenging to achieve with microresonators. Indeed, the repetition
rate frequency of microresonator-based OFCs is usually equal to the
microresonator free spectral range (FSR), ΔνFSR, which, for the
commonly used ring, toroidal, and spherical microresonators, is
inversely proportional to their size. As an example, a silica toroidal
or spherical microresonator with ΔνFSR ¼ 50 MHz has a radius
r0 ¼ c=ð2πn0ΔνFSRÞ ¼ 65 cm (here c is the speed of light and
n0 ¼ 1:46 is the refractive index of silica). Therefore, to achieve
sufficiently low repetition rates, the microresonator size has to be
increased to dimensions which may be unpractical.

One approach to solve the challenge of generating OFCs with
low repetition rates in microresonators consists in the adiabatic
modulation of microresonator parameters at frequency νpar that is
much smaller than its FSR, νpar � ΔνFSR. In this case, the
repetition rate of the OFC is equal to the modulation frequency
and independent of the microresonator size. In a recent paper22,
the authors demonstrated a flat frequency comb spectrum with
repetition rate as low as 50 MHz generated by optomechanical
oscillations of a toroidal silica microresonator. The adiabatically
slow modulation of the microresonator eigenfrequency depends on
time as νeðtÞ ¼ νe0 þ δνparcosð2πνpartÞ, where δνpar is the
amplitude of modulation. This modulation can generate a close to
uniform OFC formed by N ffi δνpar=νpar spectral resonances
separated by the modulation frequency νpar (see consideration
below). For a microresonator with radius r0, the parametric
modulation corresponds to an amplitude change of the effective
radius variation (ERV) defined by the scaling relation
δreff ¼ r0δνpar=νe0. For the experimental parameters in the work
of Hu et al.22, r0 ffi 30 µm, νe0 ffi 200 THz, νpar ¼ 50 MHz, and
N ffi 1000, we find δreff ffi 8 nm. In ref. 22, this modulation was
generated by the radiation pressure of the resonant high-power
input light that excited the mechanical breathing mode of the
microresonator.

The application of SNAP bottle microresonators (SBMs) with
shallow nanoscale ERV, which are introduced at the surface of
optical fibres23–27, constitutes an alternative and promising
approach to generate OFCs with low repetition rates. Optical
eigenmodes in SNAP microresonators are whispering gallery
modes (WGMs) adjacent to the fibre surface and slowly
bouncing between turning points along the microresonator
axial length. The adiabatic generation of OFCs with low repe-
tition rates can be realized in SBMs by a strong input light,
similar to the approach of Hu et al.22. Alternatively, the EO
modulation of the microresonator refractive index can also be
used to generate OFCs (see15,18,19 and references therein). The
FSR of a SBM is estimated as ΔνFSR ¼ cð2πn0Þ�1ðr0RÞ�1=2

where r0 is the fibre radius, R � r0 represents the axial radius,
and n0 is the refractive index of the microresonator
material23,24. It is worth noting that for SBMs, the value of R

can be dramatically large. For example, for the semi-parabolic
SBM fabricated by Sumetsky28, the axial radius was R ffi 0:7 km
and, potentially, can be an order of magnitude greater. A fea-
sible FSR for a silica (n0 ¼ 1:46) SBM with R ¼ 10 km and
r0 ¼ 100 µm is ΔνFSR ffi 33 MHz. To maximise the frequency
comb bandwidth, the SBM should have equally spaced axial
eigenfrequencies. This feature is achievable with the SNAP
technology as we can fabricate SBMs with parabolic or semi-
parabolic shape28. Experimentally, OFCs generated by con-
ventional bottle microresonators with axial radius R of the order
of 100 µm have been presented by several groups29–31 starting
with the first demonstration by Savchenkov et al.32. The gen-
eration of OFCs in parabolic SBMs by the nonlinear Kerr effect
and by resonant harmonic parametric excitation has been the-
oretically studied33,34. However, to the best our knowledge,
OFCs generated by parametric modulation of parabolic SBMs
have not been experimentally demonstrated to date.

In this paper, we theoretically investigate the formation of
OFCs by the parametric modulation of parabolic SBMs going
beyond the lumped-element model15,18–20,22 and taking into
account the spatial distribution of the parametric modulation
(SDPM). Based on the theory of SNAP microresonators with
time-dependent parameters35, we optimize the SDPM targeting
to arrive at the maximum flat and broadband OFC spectrum.
Significantly, the characteristic ERV δrpar of the SDPM can be
much smaller than, as well as comparable to, the dramatically
small nanometre-scale ERV 4r0 of the SBM. Below, we demon-
strate the critical importance of the SDPM in the adiabatic
(νpar � ΔνFSR) and resonant (νpar ¼ 2ΔνFSR) cases as well as
for relatively small (δrpar � 4r0) and large (δrpar � 4r0)
modulation amplitudes.

Results and discussion
We consider a parabolic SBM formed by the nanoscale ERV of
an optical fibre with radius r0 illustrated in Fig. 1. Light is
coupled into the SBM by a transverse optical waveguide placed
at z ¼ z0. In our analysis, we model the input light as a
monochromatic source Ain z; tð Þ � e�2πiνpart where function
Ain z; tð Þ is localised near the point z0 and has the characteristic
switching time α�1:

Ain z; tð Þ ¼ A0δ z � z0
� � 1� e�αtð Þ t ≥ 0

0 t < 0
:

�
ð1Þ

If frequency νin is close to one of the cutoff frequencies of the
optical fibre νc z; tð Þ23, the input light excites a WGM that slowly
propagates along z and bounces between the SBM turning points
forming eigenmodes. The slowness of the propagating WGM
depends on the proximity of its frequency νin to the cutoff fre-
quency νc z; tð Þ which is assumed to have the parabolic shape
perturbed by the parametric modulation:

νc z; tð Þ ¼ νc0 þ δνpar � ξ z=L
� � � sin 2πνpart

� �
þ Δν0

z
L

� �2 � 1
h i

zj j≤ L
0 zj j>L

:

( ð2Þ

Here, 2L is the length of the SBM, νc0 is the cutoff frequency of
the uniform optical fibre away from the SBM, Δν0 is the max-
imum of the cutoff frequency variation (CFV) that forms the
SBM (Fig. 1), δνpar is the maximum of the modulation ampli-
tude, and ξ z=L

� �
is its dimensionless spatial distribution.

For sufficiently small and slow deformation of the optical fibre,
the WGM field distribution is separable in cylindrical coordinates
as eilϕΘpðrÞΨðz; tÞ � e�i2πνint , where l, and p, are the azimuthal and
radial quantum numbers. Then, under the condition that νc z; tð Þ
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is sufficiently close to νin, the function Ψ z; tð Þ obeys the Schrö-
dinger equation35:

i
1

2πνc0
∂tΨðz; tÞ ¼

h
� 1

2β2c0
∂2z þ

νc z; tð Þ � νin � iγ
νc0

� 1

β2c0
D0δ z � z0

� �i
Ψðz; tÞ þ Ain z; tð Þ:

ð3Þ

Here, βc0 ¼ 2πn0νc0=c is the cutoff wavenumber, n0 is the
refractive index of the SBM, and c is the speed of light. In Eq. (3),
the absorption losses in the SBM are determined by the parameter
γ while the complex number D0 takes into account the effect of
the input-output waveguide coupled to the SBM at z ¼ z0

23.
In the presence of coupling and losses, the frequencies of the

SBM are complex-valued and given by

eνq ¼ νq � iΓq ¼ νc0 � Δν0 þ qþ 1=2
� �

ΔνFSR � δνD0;q

� �
� iΓq; ΔνFSR ¼ c=2πn0L �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δν0=νc0

p ð4Þ

where q is the axial quantum number and ΔνFSR is the axial FSR
of the unmodulated SBM. Here δνD0;q

and Γq are the frequency
shift and width induced by coupling and material losses23,

δνD0;q
¼ c2

8π2n20νc0
Re D0

� �jφq z0
� �j2;

Γq ¼γþ c2

8π2n20νc0
Im D0

� �jφq z0
� �j2: ð5Þ

In this equation, φqðzÞ are the eigenmodes of Eq. (3) in the
absence of source, parametric modulation, coupling effects, and
losses (A0 ¼ δνpar ¼ D0 ¼ γ ¼ 0). From expression Eq. (5), the
Q-factor of the eigenmode q is calculated as

Qq ¼
νin
Γq

: ð6Þ

The OFC spectrum is determined from the solution of Eq. (3) as
follows. First, we calculate the Fourier transform of this solution at

the position z ¼ z0 of the source, Fðν; z0; δνparÞ ¼
R
dtexp

ð�2πiνtÞΨðz0; tÞ. Here, for convenience, the modulation amplitude
δνpar from Eq. (2) is included. Next, we normalise Fðν; z0; δνparÞ
by relating it to the maximum of the output spectrum at zero
modulation amplitude, max jF ν; z0; 0

� �j� 	
. Then, the output OFC

power spectrum is found as

P νð Þ ¼
F ν; z0; δνpar
� �

max jF ν; z0; 0
� �j� 	















2

ð7Þ

Below, we investigate the OFCs generated by the SBM deter-
mined by Eqs. (2) and (3) for the cases of adiabatically slow
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Fig. 1 Illustration of the considered system. A SNAP bottle microresonator (SBM) with parabolic cutoff frequency variation (CFV) centred at z0 ¼ 0
introduced at the surface of an optical fibre with radius r0. The SBM is coupled to the transverse waveguide that pumps light at frequency νin and excites
whispering gallery modes (WGMs). The SBM is parametrically modulated with frequency νpar and generates an optical frequency comb at the output of
the waveguide with the repetition rate νpar.

=
3

=
1

=
2 Analytical, = 2.0 GHzAnalytical = 2 0 GHz

Simulation, = 2.0 GHz
Analytical, = 0.75 GHzAnalytical = 0 75 GHz
Simulation, = 0.75 GHz

Frequency detuning, (GHz)

 re
wop tuptu

O (
)

(2
0 

)vid/
Bd

-3 -2 -1 0 1 2 3

Fig. 2 Optical frequency combs (OFCs) generated by the spatially
uniform adiabatic modulation of a parabolic SNAP bottle microresonator.
The blue and red lines correspond to the OFC spectrum obtained from
numerical solution of Eq. (3) for constant modulation amplitudes δνpar ¼ 2
GHz (blue line) and δνpar ¼ 0:75 GHz (orange line), respectively. In both
cases, the Q-factor is Qq0

¼ 1:2 ´ 107. The blue squares and the orange
triangles correspond to the spectrum found from Eq. (8) for δνpar ¼ 2 GHz
and δνpar ¼ 0:75 GHz, respectively.
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parametric modulation, νpar � ΔνFSR, and resonant parametric
modulation, νpar ¼ 2ΔνFSR.

Adiabatic parametric modulation of the SBM. In this section, we
consider the adiabatic modulation of the SBM assuming that the
frequency νpar is much smaller than the microresonator FSR,

νpar � ΔνFSR, and the OFC resonances are well defined so that
their width is much smaller than their separation, i.e., Γq � νpar.
We set the input frequency νin equal to one of the SBM eigen-
frequencies νq0 . The simplest parametric modulation corresponds to
an axially uniform SDPM with ξðz=LÞ ¼ 1 and ε z; tð Þ ¼ δνpar �
sinð2πνpartÞ: In this case, the transmission power spectrum P νð Þ

= 0.1Δ = 2 GHz = 0.04Δ = 0.75 GHz

-2 -1 0 1 2
Frequency detuning (GHz)

,0
= 0.02

Parabolic 
SBM

= 0.04

= 0.1
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a
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d

e

f
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/div)

-2 -1 0 1 2

Modulation /

Fig. 3 Optical frequency combs (OFCs) generated by the adiabatic modulation of the parabolic SNAP bottle microresonator (SBM) with Gaussian
spatial distribution of the modulations (SDPMs). The SDPM (green line) is defined by ξ z=L

� � ¼ e� z=σ�Lð Þ2 , where σ is the dimensionless SDPM width and
L is half the length of the SBM (red line). Rows show the OFC generated with different values of σ for two modulation amplitude maxima: δνpar ¼
0:1Δν0 ¼ 2 GHz and δνpar ¼ 0:04Δν0 ¼ 0:75 GHz. a A limited number of comb resonances are formed at σ ¼ 0:02 for both values of δνpar, when the
SDPM is strongly localized near the centre of the SBM. b–e The OFC spectrum becomes wider and flatter with growing σ. For δνpar ¼ 0:75 GHz, the OFC
has a smaller bandwidth, though the power level is ~ 10 dB higher than in the case of δνpar ¼ 2 GHz. f The generated OFC achieves its optimal shape for a
close to uniform SDPM, when σ ¼ 10.
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vanishes at frequencies ν≠νq0 þ nνpar, n ¼ 0; ± 1; ± 2; ¼ , and
(see Methods)

P νq0 þ nνpar
� �

¼ Jn
δνpar
νpar

 !
J0

δνpar
νpar

 !











2

: ð8Þ

From this equation, the OFC spectrum is formed by a series of
equally spaced resonances with magnitudes determined by the

dependence of Bessel functions Jnð
δνpar
νpar Þ on the comb resonance

number n. From the asymptotic of the Bessel function for large

order and argument, nj j; δνpar
νpar � 1, we find that the OFC

spectrum determined by Eq. (8) is relatively flat within the

bandwidth including N � 2δνpar
νpar resonances.

The comparison of the OFC spectrum obtained from the
numerical solution of Eq. (3) with that given by Eq. (8) and shown
in Fig. 2 demonstrates their excellent agreement. We consider an
SBM with maximum CFV Δν0 ¼ 20 GHz, total length 2L ¼ 284
μm and radius r0 ¼ 20 μm. The input-output waveguide is placed at
the centre of the SBM, z0 ¼ 0. The input light frequency is set to
νin ¼ νc0 ¼ 200 THz which is equal to the SBM eigenfrequency νq0
with axial quantum number q0 ¼ 2. For these parameters, the axial
FSR of the SBM determined by Eq. (4) is ΔνFSR ¼ 3:25 GHz. We
analyse the OFCs generated with two different relatively small
modulation amplitudes, δνpar ¼ 0:1Δν0 ¼ 2 GHz and δνpar ¼
0:04Δν0 ¼ 0:75 GHz, at frequency νpar ¼ 100 MHz. From the
scaling relation δrpar ¼ r0δνpar=νc0, these amplitudes correspond
to the ERV δrpar ¼ 200 pm and δrpar ¼ 75 pm, respectively, while

the total ERV of the SBM considered is Δr0 ¼ r0Δν0=νc0 ¼ 2 nm.
The material attenuation and coupling coefficient are set to γ ¼ 2π
MHz and D0 ¼ 0:001 1þ ið Þ μm�1, which corresponds to Qq0

¼
1:2´ 107 calculated from Eqs. (5) and (6).

We now investigate the effect of the SDPM, ξ z=L
� �

, on the
generation of OFCs. We assume the Gaussian SDPM,

ξ z=L
� � ¼ e� z=σLð Þ2 , where the dimensionless parameter σ deter-
mines the ratio of characteristic SDPM width and SBM length 2L.
Excitation of a broader OFC spectrum at the minimum required
power depends on the techniques to generate the parametric
modulations. In particular, the required input power may be
determined by the maximum amplitude of modulation, its
integrated intensity, or by a more complex functional dependence
of the modulation parameters on the input power. Here, we
suggest that the required power is determined by the maximum
amplitude of the SDPM and set the same δνpar for all the cases
considered.

Figure 3 shows the results of our numerical simulations for the
parabolic SBM (red line) with the parameters indicated above
using Gaussian SDPMs (green line) with different values of σ. We
present the OFC spectra of the signal obtained from Eq. (3) for
two modulation amplitude maxima δνpar ¼ 0:1Δν0 ¼ 2 GHz
and δνpar ¼ 0:04Δν0 ¼ 0:75 GHz, both much smaller that the
maximum CFV of the SBM Δν0 ¼ 20 GHz. In the case σ ¼ 0:02,
the Gaussian SDPM is localized near the centre of the SBM as
shown in Fig. 3a and the OFC spectrum exhibits only a few comb
resonances. The spectrum of the frequency combs becomes
wider and flater with growing σ (Fig. 3b–e). In the case σ ¼ 10
shown in Fig. 3f, the parametric modulation has a close to the
uniform SDPM over the whole length of the SBM and the
spectrum coincides with that obtained from Eq. (8) and
illustrated in Fig. 2.

So far, we considered the modulation of the SBM with
maximum amplitudes δνpar much smaller than the full CFV
4ν0 ¼ 20 GHz of the resonator. However, the dramatically small
CFV and corresponding ERV of the SBM (Δr0 ¼ 2 nm in the
cases considered) makes the modulations comparable or larger
than the resonator CFV realistic as well. As an example, we
modulate the same SBM with a uniform SDPM and maximum
amplitude δνpar ¼ 24ν0 ¼ 40 GHz (Fig. 4a). The corresponding
ERV modulation amplitude is 4 nm (compare it with the 8 nm
ERV oscillation amplitude experimentally achieved by Hu et al.22

and discussed in the introduction). It is seen from Fig. 4b that, as
expected, the generated OFC spectrum expands over the
bandwidth 54ν0 (from νq0 � 2:54ν0 to νq0 þ 2:54ν0). The
number of OFC resonances within the central most uniform part
of this spectrum, from −40 to 40 GHz, is well estimated by N �
2δνpar=νpar ¼ 44ν0=νpar ¼ 800, followed from the asymptotic
of Eq. (8) discussed above, while the full bandwidth includes close
to 54ν0=νpar ¼1000 OFC resonances.

Resonant parametric modulation of the SBM. As in the pre-
vious section, we place the input light source in the middle of the
SBM (z0 ¼ 0) so that the excited eigenmodes have even parity.
Then, due to the symmetry of the system, transitions between
eigenmodes of different parity are suppressed and the parametric
modulation frequency has to be νpar ¼ 2ΔνFSR to achieve an
effective resonant excitation of the SBM eigenmodes. In this case,
the SBM has the maximum CFV Δν0 ¼ 5 GHz, the total length
2L ¼ 9:18 mm, and radius r0 ¼ 80 μm. The axial FSR of this
SBM is ΔνFSR ¼ 50 MHz, so the resonant condition takes place
at νpar ¼ 2ΔνFSR ¼ 100 MHz. The input light frequency is set

a
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5Δ
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b
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Uniform modulation ( / )
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Fig. 4 Optical frequency comb (OFC) generated by a uniform adiabatic
modulation with amplitude exciding the bandwidth of the SNAP bottle
microresonator (SBM). a Adiabatic modulation of the parabolic SBM (red
line) with a uniform spatial distribution ξ z=L

� �
(green line). The maximum

amplitude of the modulation is δνpar ¼ 24ν0 ¼ 40 GHz. b The generated
OFC has a bandwidth five times larger than that of the SBM, 4ν0 ¼ 20
GHz. The number of comb lines generated are ~1000.
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to νin ¼ νq0 ¼ 200 THz, where the axial mode number is
q0 ¼ 50. From the scaling relation Δr0 ¼ r0Δν0=νq0 , the ERV of
the SBM considered is Δr0 ¼ 2 nm, as in the adiabatic case. The
attenuation factor and coupling coefficient are set to γ ¼ 2π MHz
and D0 ¼ 0:001 1þ ið Þ μm�1. The corresponding Q-factor of
mode q0 calculated from Eqs. (5) and (6) is Qq0

¼ 3 ´ 107.
The results of our numerical modelling of Eq. (3) are shown in

Fig. 5. As in the adiabatic case, the OFCs are generated by the

Gaussian SDPM determined by ξ z=L
� � ¼ e� z=σLð Þ2 with dimen-

sionless widths σ varying from 0.02 to 10. We consider two
modulation amplitude maxima, δνpar ¼ 0:04Δν0 ¼ 200 MHz and
δνpar ¼ 0:015Δν0 ¼ 75 MHz, which are much smaller than the
maximum CFV of the SBM Δν0. From the scaling relation
δrpar ¼ r0δνpar=νc0, these amplitudes correspond to the ERV
δrpar ¼ 80 pm and δrpar ¼ 30 pm, respectively. Contrary to the

,0
= 0.02

Parabolic 
SBM

Modulation /

= 0.04

= 0.1

= 0.3

= 1

= 10

Distance 
− +

= 0.04Δ = 200 MHz = 0.015Δ = 75 MHz
(20 dB

/div)

Frequency detuning (GHz)
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Fig. 5 Optical frequency combs (OFCs) generated with a Gaussian spatial distribution of the modulations (SDPMs) in the resonant regime. The
parabolic SNAP bottle microresonator (SBM) (red line) is modulated with a Gaussian SDPM ξ z=L

� � ¼ e� z=σLð Þ2 (green line) for two maximum modulation
amplitudes, δνpar ¼ 200 MHz and δνpar ¼ 75 MHz, and for different values of σ. a A strongly localised modulation (σ ¼ 0:02) leads to the formation of a
narrow bandwidth OFC spectrum with a few comb resonances. b, c The bandwidth of the frequency comb spectrum increases with the width σ of the
SDPMs. d The optimal spectrum with largest bandwidth is achieved at σ � 0:3. e The bandwidth of the OFC starts to decrease when the value of σ is
further increased. This case corresponds to a parabolic SDPM since ξ z=L

� � ¼ e� z=σLð Þ2 � z=L
� �2

for σ ¼ 1. f The generation of combs is strongly
suppressed in the case of a uniform SDPM.
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adiabatic case, the OFC spectral bandwidth behaves nonmonotoni-
cally as a function of σ. It is seen from Fig. 5 that, with increasing the
SDPM width from very narrow at σ ¼ 0:02 (Fig. 5a), the OFC
spectral bandwidth first becomes wider (Fig. 5b, c), reaches the
optimum profile at around σ ¼ 0:3 (Fig. 5d), and then shrinks
down (Fig. 5e) and vanishes for the practically uniform SDPM at
σ ¼ 10 (Fig. 5f). Vanishing of the OFC spectral bandwidth for
narrow SDPM (Fig. 5a) is straightforwardly explained by the
reduction of integrated modulation power. The less obvious
suppression of the OFC generation for the SDPM approaching
the uniform distribution (Fig. 5f) can be clarified with the help of the
quantum and semiclassical perturbation theory. Indeed, the
transition between SBM axial modes with different quantum
numbers q caused by the spatially uniform perturbation is strongly
suppressed due to the orthogonality of these modes. For example, in
the first order of the quantum perturbation theory, the transition
from mode φq1

ðzÞexpðiνq1 tÞ to mode φq2
ðzÞexpðiνq2 tÞ under the

perturbation WðzÞsinð2πνpartÞ (see Eq. (2)) is proportional to
hφq1

jWjφq2
i36. For the constant perturbation,W zð Þ ¼ W0, we have

hφq1
jWjφq2

i ¼ W0hφq1
jφq2

i ¼ 0 due to the orthogonality of φq1
and φq2

.
Similar to the previous section, in addition to the cases of

relatively small modulation amplitudes δνpar � 4ν0, it is
interesting to investigate the case when δνpar is comparable to
the full CFV4ν0: As an example, Fig. 6 compares the OFC spectra
generated by the same SBM modulated with maximum amplitude
δνpar ¼ 24ν0 ¼ 10 GHz and Gaussian profile ξðz=LÞ ¼ e�ðz=σ�LÞ2 .
Figure 6a shows the case with σ ¼ 0:3 (optimal for the
relatively weak modulation, see Fig. 5d) and Fig. 6b shows
the case of close to uniform SDPM with σ ¼ 10. It is seen that,
contrary to the case of relatively small modulation amplitude,
the uniform modulation generates an OFC which is, in general,
comparable with that for σ ¼ 0:3. However, the OFC spectrum
for σ ¼ 0:3 is closer to uniform and on average has a greater
power over the larger bandwidth. We suggest that an OFC
profile with better flatness and larger bandwidth can be
achieved with an optimization using a more complex SDPM.
The detailed solution of this problem and the investigation of

effects induced by larger vibrations of SBMs, such as change of
their temperature and other physical characteristics37, is
beyond the scope of this paper.

Conclusion
Parametric modulation of optical microresonators is a promising
approach for the generation of optical frequency combs (OFCs)
which has been demonstrated in spherical15, ring (racetrack)19,20,
and toroidal15,18 microresonators. The repetition rate of the OFC
excited by these resonators is inverse proportional to their peri-
meter so that the OFCs with the characteristic repetition rate
smaller than a gigahertz correspond to resonators with macro-
scopically large dimensions (see Introduction for details). However,
it was proposed in refs. 33,34,38 that a SNAP bottle microresonator
(SBM) with much smaller dimensions can be used to generate
OFCs with repetition rate below a gigahertz.

In this paper, we consider the generation of OFCs in a parabolic
SBM by the modulation of its parameters. The main difference of an
SBM compared to spherical and toroidal microresonators consists in
its strong axial elongation. For this reason, the spatial distribution of
the parametric modulation (SDPM) along the SBM axis becomes of
major importance. Furthermore, the characteristic parametric
modulation of the effective radius variation (ERV), δrpar, can be
comparable or larger than the dramatically small nanometre-scale
ERV 4r0 of the SBMs considered. In our numerical simulations, we
investigate the effect of the SDPM assuming that it has a Gaussian
shape. In the adiabatic case, when the modulation frequency is much
smaller than the axial free spectral range (FSR), νpar � ΔνFSR, we
show that a uniform SDPM produces the OFC with the best flatness
and largest spectral bandwidth (Fig. 3f). An adiabatic SDPM with
uniform amplitude δrpar ≥4r0 generates a relatively flat OFC with
bandwidth proportional to this amplitude (Fig. 4). For resonant
modulation, νpar ¼ 2ΔνFSR, with a relatively small amplitude,
δrpar � 4r0, the OFC disappears both for very narrow and uniform
SDPM as shown in Fig. 5a, f. However, the OFC can achieve an
optimal shape with the best flatness and largest bandwidth at an
intermediate SDPM width, as depicted in Fig. 5d. Our study only
includes symmetric SDPMs. However, the behaviour of asymmetric
SDPMs may differ significantly, particularly in the resonant case, as
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Fig. 6 Optical frequency combs (OFCs) generated by parametric modulations with Gaussian spatial distributions and amplitude exciding the
bandwidth of the SNAP bottle microresonator (SBM). a The parabolic SNAP bottle microresonator (SBM) (red line) is parametrically modulated with a
Gaussian modulation profile ξ z=L

� � ¼ e� z=σLð Þ2 (green line) with σ ¼ 0:3. The amplitude of the modulation exceeds the bandwidth of the SBM,
δνpar ¼ 24ν0 ¼10 GHz. The OFC spectrum generated is several times larger than the SBM bandwidth 4ν0 ¼ 5 GHz. b A close to uniform modulation
(σ ¼ 10) is used to parametrically modulate the parabolic SBM. The bandwidth of the resulting OFC spectrum is several times wider than the SBM
bandwidth. Unlike the case of small modulation amplitudes, the frequency comb spectrum generated is comparable to the case σ ¼ 0:3.
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the spatial coupling of modes would be altered. For instance, a
spatially antisymmetric modulation could couple modes with dif-
ferent symmetry. More complex SDPM profiles may, therefore, lead
to changes in the process of OFC generation that are non-intuitive
and difficult to predict. For larger modulation amplitudes,
δrpar ≥4r0, the resonant modulation with a nonuniform SDPM
results in a flater OFC with a broader bandwidth compared to that
generated by the uniform SDPM (Fig. 6). We suggest that an SDPM
with a more complex dependence on the axial coordinate, which
takes into account the actual axial distribution of the SBM modes,
may lead to a better OFC optimization.

The optimized generation of OFCs by an SBM proposed in this
paper can be realized experimentally by one of the following
approaches. First, modulation of the refractive index and radiation
pressure of an SBM can be induced by the input resonant pump
light harmonically modulated with frequency νpar. To ensure the
resonant enhancement of the pump light, its spectrum should be
localized near an SBM cutoff frequency νcp. While the case when
the pump light induces the OFC directly (i.e., when νcp ¼ νc0, see
Eq. (2)) is of special interest, we assumed in this paper that the
cutoff frequencies νcp and νc0 (as well as the spectrum of the pump
light and the frequency νin of a relatively weak input light) are
separated so that the spectrum of pump light and the spectrum of
the generated OFC do not overlap. The required spatial distribu-
tion of the pump light can be achieved by adjusting its spectrum.
Second, the adiabatic excitation of the OFCs can be performed in a
way similar to that demonstrated by Hu et al.22 by excitation of
acoustic modes of an SBM with a strong pump light. Third,
assuming that the ultraprecise fabrication of an SBM of material
with strong second-order nonlinearities may become possible, the
refractive index modulation can be performed by applying a per-
iodic electric field to the SBM fabricated of such material18. Finally,
an SBM can be fabricated at the surface of a microcapillary filled
with such highly nonlinear or piezoelectric material, which can be
used to mechanically modulate the SBM parameters39.

Overall, complementary to the spherical, ring, and toroidal
microresonators, the elongated SBMs allows us to change the
SDPM and optimise the OFC spectrum. In the case of adiabatic
parametric modulation, it is possible to tune the repetition rate of
the OFC without changing the SBM profile by modifying the
modulation frequency νpar. In the case of the resonant para-
metric modulation, the repetition rate frequency is determined
and fixed by the FSR of the SBM, which can be made much
smaller that the FSR of other microresonators with similar
dimensions. In both cases, for relatively weak modulation
amplitude, the comb bandwidth is limited by the bandwidth of
discrete eigenfrequencies of the SBM considered.

Methods
Generation of OFCs by a spatially uniform parametric modulation. We con-
sider a cutoff frequency that depends on time and position as
νcðz; tÞ ¼ νc0 þ ΔνðzÞ þ δνpar � sinð2πνpartÞ, where jΔνðzÞj � νc0 and
δνpar ¼ const. After the substitution

Ψ z; tð Þ ¼ ψ z; tð Þe
iδνpar
νpar cos 2πνpar t

� �
;

ð9Þ

Equation (3) can be written as

i
1
2π

∂
t
� L̂

� �
ψðz; tÞ ¼ S z; tð Þ ð10aÞ

L̂ ¼ � 1
2
κ∂2z þ νc0 � νin þ Δν zð Þ � iγ

� �� κD0δ z � z0
� � ð10bÞ

S z; tð Þ ¼ νc0Ain z; tð Þe
�i

δνpar
νpar cos 2πνpar t

� �
ð10cÞ

where κ ¼ νc0=β
2
c0. For the parabolic CFV, Δν zð Þ ¼ Δν0½ðzLÞ2 � 1	, we search for

solution of Eq. (10a) in the form

ψ z; t;z0
� � ¼ ∑

q
φq zð Þφ


q z0
� �

aq tð Þ ð11Þ

where aq tð Þ are functions of time to be determined and φq zð Þ are the normalised

eigenfunctions of the operator L̂ with associated eigenfrequencies ςq . For finite
material loss γ and coupling D0 considered, the eigenfrequencies are complex-
valued and equal to ςq ¼ νq � νin � iΓq (see Eqs. (4) and (5)). Nevertheless, due to
the relatively small values of γ and ImðD0Þ assumed, the normalization of φq zð Þ and
their orthogonality can be achieved with the required accuracy.

In order to determine aq tð Þ, we substitute Eq. (11) into Eq. (10a),

∑
q
φq zð Þφ


q z0
� �

i
1
2π

d
dt

aq tð Þ � ςqaq tð Þ
� �

¼ S z; tð Þ; ð12Þ

multiply each side of Eq. (12) by φ

q’ zð Þ and integrate over z. As a result, we arrive at

the following equations for aq tð Þ:

1
2π

d
dt

aq tð Þ þ iςqaq tð Þ ¼ �iνc0A0 1� e�αt
� �

e
�i

δνpar
νpar cos 2πνpar t

� �
ð13Þ

with initial conditions aq t ¼ 0ð Þ ¼ Ain z; 0ð Þ ¼ 0. Solving these equations and
application of the Jacobi-Anger expansion40, results in the following solution of Eq.
(3) at z ¼ z0:

Ψ z0; t
� � ¼ νc0A0 ∑

q
φq z0
� �


 


2 ∑

n
∑
m

�1ð ÞminJn�m

δνpar
νpar

 !

Jm
δνpar
νpar

 !
e
2πinνpar t

νq � νin þmνpar
� �

� iΓq
:

ð14Þ

We assume now that the input frequency νin is situated in a small vicinity of
one of the SBM frequencies νq0 of the order of the resonance width,
jνin � νq0 j � Γq0 , and the excited OFC resonances are well defined so that
Γq0 � νpar. In addition, we assume that none of the SBM frequencies νq , except
for νq0 , are close to the parametrically modulated OFC resonances. Such situation
may occur for adiabatic modulation, when νpar � ΔνFSR. Then, Eq. (14) is
reduced to

Ψ z0; t
� � ¼ ∑

n
Ψne

2πinνpar t ; ð15Þ

where

Ψn ¼ inþ1 νc0
Γq0

A0 φq0
z0
� �


 


2Jn δνpar

νpar

 !
J0

δνpar
νpar

 !
: ð16Þ

In particular, at zero modulation, we have:

Ψ z0; t
� � ¼ Ψ0 ¼ i

νc0
Γq0

A0 φq0
z0
� �


 


2: ð17Þ

Substitution of Eqs. (16), (17) into Eq. (7) yields Eq. (8).

Numerical solution of the Schrödinger equation. The Schrödinger equation is
solved using the Fourier split-step method41, which can be briefly described as
follows. We first rewrite Eq. (3) as ref. 42:

i∂τΨ̂ ¼ � 1
2
∂2xΨ̂þ 1

2
V0 x2 þ δν̂parx

2
c ξ x=xc
� �h i

Ψ̂þ Δν̂Ψ̂� iγ̂Ψ̂

�D̂0δðx � x0ÞΨ̂þ Âinðx; τÞ
ð18Þ

In this equation, we have introduced the dimensionless variables τ ¼ t=T0,
x ¼ z=L0 and Ψ̂ ¼ Ψ=I0, where T0, L0 and I0 are the scaling factors. The
dimensionless parameters in Eq. (18) are defined as V0 ¼ 8π2Δν0νc0n

2
0L

4
0=c

2L2,
δν̂par ¼ δνpar=Δν0, xc ¼ L=L0, Δν̂ ¼ 2πðΔν0 þ νc0 � νparÞT0, γ̂ ¼ 2πγT0, D̂0 ¼
L0D0 and Âinðx; τÞ ¼ 2πνc0T0=L0I0 � Ainðx; τÞ.

We can split the r.h.s. of Eq. (18) into the momentum space component

D̂ ¼ � 1
2
∂2x ð19Þ

and the position space component

N̂ ¼ 1
2
V0 x2 þ δν̂parx

2
cξ x=xc
� �h i

þ Δν̂ � iγ̂� D̂0δðx � x0Þ ð20Þ

and rewrite Eq. (18) in terms of these two operators as:

i∂τΨ̂ ¼ D̂þ N̂
� 	

Ψ̂þ Âinðx; τÞ ð21Þ
For a small time step Δτ, the solution of this equation can be approximated as

Ψ̂ðτ þ ΔτÞ ¼ e�iΔτD̂e�iΔτN̂Ψ̂ðτÞ � iΔτÂinðx; τÞ ð22Þ

with an error of the order of Δτ2. To compute the term associated to the operator
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D̂, we use the spatial fast Fourier transform (FFT) of the field Ψ̂:

D̂Ψ̂ ¼ FFT�1 e�
i
2k

2

FFT Ψ̂
� �n o

ð23Þ
where k represents the coordinate in the reciprocal space. We solve Eq. (22) with a
uniform space grid of N ¼ 2n points defined as xn ¼ nΔx, with
n 2 ½�N=2;N=2� 1	. The points in the reciprocal space are defined as
kn ¼ 2πn=ΔxN.
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