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Non-Abelian topological superconductivity in
maximally twisted double-layer spin-triplet
valley-singlet superconductors
Benjamin T. Zhou 1✉, Shannon Egan1, Dhruv Kush1 & Marcel Franz 1✉

Recent studies point to an exotic spin-triplet valley-singlet (STVS) superconducting phase in

certain two-valley electron liquids, including rhombohedral trilayer graphene, Bernal bilayer

graphene and ZrNCl, which nevertheless admits only trivial topology. Here, we predict that

upon twisting two layers of STVS superconductors, a chiral f ± if 0-wave superconducting

phase emerges near the ‘maximal’ twist angle of 30∘ where the system becomes an extrinsic

quasi-crystal with 12-fold tiling. The resulting composite hosts an odd number of chiral

Majorana edge modes and a single non-Abelian Majorana zero mode (MZM) in the vortex

core. Through detailed symmetry analysis and microscopic modelling, we demonstrate that

the non-Abelian topological superconductivity (TSC) forms robustly near the maximal twist

when the isolated Fermi pockets coalesce into a single connected Fermi surface in the moiré

Brillouin zone. Our results establish the large-twist-angle engineering, with distinct underlying

moiré physics from magic-angle graphene, as a viable route toward non-Abelian TSC.
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Being of fundamental interest and potential use for topolo-
gical qubits, the search for topological superconductors
hosting excitations with non-Abelian exchange statistics

has been one of the central topics in condensed matter physics
over the past two decades1–5. The simplest such particles—
Majorana zero modes (MZMs) – were originally proposed as
vortex core states in chiral p-wave superconductors6–8, but the
lack of intrinsic p-wave superconductivity in nature has moti-
vated worldwide efforts to engineer synthetic platforms that
emulate this behavior using more conventional ingredients9–17.
Whether such effective p-wave superconductors and MZMs have
been realized in recent experiments is still under debate18–20. The
quest for an intrinsic topological superconductor with non-
Abelian excitations, on the other hand, remains an ongoing grand
challenge to the condensed matter community.

Motivated by recent developments in twisted van der Waals
materials21–29, a new route toward topological superconductivity
(TSC) has been proposed recently which takes two monolayers of
high-Tc cuprate superconductor with nodal dx2�y2 pairing sym-
metry, such as Bi2Sr2CaCu2O8+δ, stacked with a relative angular
twist θ30,31. At θ≃ 45∘, the bilayer is predicted to enter a fully-
gapped, topological chiral d ± id0 phase with spontaneously bro-
ken time-reversal symmetry T , which has been tentatively iden-
tified in a recent experimental study32. Despite its promise for
realizing high-Tc TSC, a chiral d ± id

0 superconductor cannot host
truly non-Abelian excitations due to its spin-singlet pairing nat-
ure, which is always associated with an even number of MZMs
that combine to form usual Abelian fermions. Generalizing the
scheme to spin-triplet superconductors with nodal p-wave or f-
wave order parameters one can create chiral SC phases with an
odd number of MZMs in principle33, while once again facing the
scarcity of nodal p-wave and f-wave superconductors in nature.

Recent progress in superconducting two-dimensional materi-
als, however, has uncovered a growing amount of evidence for f-
wave spin-triplet superconductivity, albeit in the disguise of a
fully gapped phase: in a recent experiment, rhombohedral trilayer
graphene (RTG) was found to superconduct in two different gate-
tuned regions, where the peculiar SC2 superconducting phase was
borne out of a spin-polarized, valley-unpolarized normal metal34.
Such an unusual normal-state fermiology strongly hints at its
spin-triplet pairing nature, which is further supported by the
observation of an in-plane critical field that far exceeds the Pauli
paramagnetic limit. Similar results have also been reported in
Bernal bilayer graphene (BBG)35, and both experimental obser-
vations were interpreted theoretically as a signature of spin-triplet
f-wave pairing36,37. More recently, Crépel and Fu proposed that a
‘three-particle’ mechanism involving virtual excitons generically
gives rise to spin-triplet f-wave pairing in a two-valley electron
liquid formed in doped insulators such as ZrNCl38, which pro-
vides a plausible explanation for the puzzling doping dependence
of the gap structure revealed by early specific heat measurements
on Li-doped ZrNCl39.

In the scenarios described above, the parent normal-state
Fermi surface (FS) consists of disconnected pockets enclosing
the+ K and− K corners of the hexagonal Brillouin zone (BZ), as
illustrated in Fig. 1a. Upon pairing electrons of the same spin and
from opposite valleys, fermion exchange statistics require the
order parameter to be odd under exchange of the valleys, which
entails a spin-triplet valley-singlet (STVS) pairing. As shown
schematically in Fig. 1a, such an STVS superconductor has
exactly the f xðx2�3y2Þ-wave symmetry, while the excitation spec-
trum exhibits a full superconducting gap because the nodes of the
f-wave gap function (located along Γ−M lines) never intersect
the disconnected FS. The gapped phase respects a spinless time-
reversal symmetry T 0 and particle-hole symmetry P (such that

T 02 ¼ P2 ¼ þ1) and thus belongs to symmetry class BDI in
Altland–Zirnbauer classification40. In two space dimensions, BDI
class admits only trivial topology implying that the STVS
superconductor is topologically trivial.

Here, we show that stacking two layers of STVS super-
conductor with an angular twist θ close to 30∘ creates an intrinsic
chiral f ± if 0-wave topological superconductor as the dis-
connected FSs around K-valleys in each isolated layer coalesce
into a connected FS in the twisted double-layer under moiré band
folding at large-angle twist. This T 0-broken phase belongs to
symmetry class D and admits nontrivial topology indicated by
integer-valued Chern number C. Our results, based on symmetry
analysis and detailed microscopic modeling, show that for
θ≃ 30∘ ± 0.3∘, the chiral f ± if 0 phase occurs robustly throughout a
wide range of electron density and, at exactly 30∘ twist where the
system has a high 12-fold quasi-crystalline symmetry, extends up
to the native critical temperature of the double-layer super-
conductor. Within the chemical potential range where the dis-
connected K-pockets from the two layers merge into a single FS,
we find C= ± 3, indicating non-Abelian topology manifested
through an odd number of chiral Majorana modes on its edge
and a single MZM in the core of its superconducting vortex
(Fig. 1b). As θ deviates from 30∘, the chiral topological phase
evolves into a nodal topological f xðx2�3y2Þ-wave superconductor,
in which nodes of opposite chiralities in the bulk are connected
by non-dispersive MZMs on one of the system edges, analogous
to flat bands present on zigzag edges of monolayer graphene41,42.
Our results establish the large-twist-angle moiré physics, which is
absent in twisted cuprates and also fundamentally different from
the small-angle moiré physics in magic-angle twisted graphene
(see the comparison in Supplementary Note 1), as a viable route
toward non-Abelian TSC.

Results
Normal-state fermiology. For the sake of concreteness and sim-
plicity, we describe the normal state of a monolayer STVS super-
conductor by a triangular lattice tight-binding model with nearest-
neighbor electron hopping− t (Fig. 2a). Such Hamiltonians are
widely used to model systems with hexagonal symmetry whose FS
consist of disconnected segments around K-points38,43 shown in
Fig. 2b. Motivated by the phenomenology observed in RTG and
BBG systems34,35 and by theoretical ideas introduced in ref. 38, we
focus here on equal-spin pairing between electrons belonging to
opposite valleys and drop the spin index in our discussions.
Moreover, we consider hole doping near K-points by setting t > 0
with band maxima located at ±K given by Emax ¼ 3t in each iso-
lated layer (the case of electron doping can be covered by setting
t < 0 with Emin ¼ 3t). Throughout this work, we follow the con-
vention that k, R, G respectively denote the Bloch momenta, real-
space lattice vectors, and reciprocal lattice vectors in layer 1, while
~k, ~R, ~G stand for their counterparts in layer 2. Given lattice vectors
R(0) and reciprocal lattice vectors G(0) in an unrotated triangular
lattice (open circles in Fig. 2a), we have R= Rz(θ/2)R(0), ~R ¼
Rzð�θ=2ÞRð0Þ and G= Rz(θ/2)G(0), ~G ¼ Rzð�θ=2ÞGð0Þ, with Rz(θ)
being the rotation of θ about the z-axis.

Upon an angular twist θ, the normal-state Hamiltonians of the
two decoupled layers are given by

Hð1Þ
0 ¼ ∑

k
ξ1ðkÞcy1ðkÞc1ðkÞ;

Hð2Þ
0 ¼ ∑

~k
ξ2ð~kÞcy2ð~kÞc2ð~kÞ;

ð1Þ

where ξ1ðkÞ ¼ �2t∑j¼1;3;5 cosðk � RjÞ � μ is the kinetic energy

term in layer 1, and ξ2ð~kÞ ¼ �2t∑j¼1;3;5 cosð~k � ~RjÞ � μ in layer 2,
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μ is the chemical potential. For μ∈ (2t, 3t), the triangular lattice
model produces disconnected Fermi pockets around K and −K
points shown in Fig. 2b.

Studies of twisted 2D materials have established that the
interlayer coupling within a twisted bilayer structure has the
general form21,24,44–46

HT ¼ ∑
k;~k

cy1ðkÞTðk; ~kÞc2ð~kÞ þ h:c:
h i

Tðk; ~kÞ ¼ � ∑
G;~G

t?ðk þ GÞδkþG;~kþ~G;
ð2Þ

where t⊥(q) is the Fourier transform of the inter-layer coupling
t⊥(r) as a function of spatial separation r between two atomic
positions in different layers. It is worth noting that t⊥(q) decays

rapidly as a function of ∣q∣ in general and becomes negligibly
small on the scale of q≃ 2π/a where a denotes the monolayer
lattice constant. To be concrete, we model t⊥(r) by an empirical
exponential formula describing σ-bonds formed by pz-orbitals
from the two layers (see Supplementary Note 2) and extrapolate
an effective interlayer coupling strength of t⊥(K)≃ 0.15t for states
near K-points (inset of Fig. 2c).

In twisted cuprates, superconductivity is borne out of large
Fermi surfaces and Dirac nodes of the d-wave order parameter
are located well inside the Brillouin zone of each layer. The
leading-order inter-layer coupling according to Eq. (2) is simply
the momentum-preserving term with k ¼ ~k and G ¼ ~G ¼ 0.
This allows treating the inter-layer coupling as a constant in the
continuum model in which moiré effects are inessential30. In

Fig. 1 Emergence of chiral f ± if 0-wave superconductivity in maximally twisted double-layer spin-triplet valley-singlet (STVS) superconductors.
a Structure of the fxðx2�3y2Þ-wave order parameter in the spin-triplet valley-singlet (STVS) superconductor. Gap nodes along Γ−M (dashed lines) are
avoided by disconnected Fermi pockets around ± K resulting in a fully-gaped phase. b Schematic of a chiral f ± if 0 phase formed by twisting two layers of
STVS superconductors at θ≃ 30∘. Chiral Majorana edge modes (white arrows) emerge on the edge and a single Majorana zero mode denoted by γ̂ (red
dot) forms at the vortex core threaded by a unit flux Φ0.

Fig. 2 Modeling normal-state fermiology in double-layer two-valley electron liquids with 30∘ twist. a Real-space triangular lattices for two layers of spin-
triplet valley-singlet (STVS) superconductors stacked with angular twist θ. Dots in red (blue) denote lattice sites R (~R) in layer 1 (2) with lattice constant
a= 2.46 Å. Hopping parameter t= 1 eV in all figures. b Fermi surface (FS) contours around ± K points of two decoupled layers at θ= 30∘ for chemical
potential 2.4t < μ < 3t. G2,G3 denote reciprocal lattice vectors in layer 1. (c) Dual-momentum space lattice points km (red dots) and ~pn (blue dots) for a
fixed momentum k0 in units of 2π/a (see subsection “Dual momentum-space tight-binding model" in Methods). Red (blue) hexagons denote Wigner-Seitz
cells in reciprocal lattice of layer 1 (2). Note that the original location of each km in the first Brillouin zone is exactly the location measured from the center
of the red hexagon that contains it. Bloch momenta near ± K and ± ~K in (b) are covered by m, n= 1, 2, . . . , 6 (encircled dots) as k0 varies in momentum-
space. Inset: Fourier transform t⊥(q) of inter-layer coupling, t⊥(K) extrapolated at Ka/π= 4/3. (d) Band structure of H0;eff with topmost bands indexed by
p= 1, 2, 3. Dashed lines indicate chemical potentials of FS contours shown in (e–h). Units of k0,x, k0,y axes are in Å−1. Red (blue) ± symbols indicate signs of
pairing in layer 1 (2).
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contrast, superconductivity in an STVS superconductor emerges
from two disconnected pockets surrounding the+ K and− K
points, and, as indicated in Fig. 2b, the leading-order inter-layer
terms for a Bloch state with momentum k≃ ±K in layer 1 include
three different processes connecting it to states in layer 2 at
~k ¼ ðk; k þ G2; k þ G3Þ. The momentum transfer processes
above are central ingredients in the celebrated Bistrizer-
MacDonald (BM) model of small-angle twisted bilayer
graphene21 and its variants for other twisted materials with two
K-valleys24,46, where the two valleys are modeled separately by
valley-dependent low-energy effective Hamiltonians. However,
the BM-type continuum model designed for the small twist-angle
limit will fail to describe the maximally twisted double-layer
STVS superconductor. This is because for θ≃ 30∘, the three
different momenta ~k in layer 2 are located midway between the
þ~K and �~K points (Fig. 2b), where the low-energy Hamiltonian
defined for a single valley is no longer valid.

To overcome this difficulty we develop our own method based
on the dual momentum-space tight-binding (DMSTB) model (see
Methods section) introduced in a recent theoretical study of
quasi-crystalline electronic bands in 30∘ twisted bilayer
graphene45. This approach was motivated and validated by
experimental work47,48. The authors showed that stacking two
identical layers with honeycomb lattice geometries at an exact 30∘

twist results in an extrinsic quasi-crystal with 12-fold tiling but no
exact crystalline symmetries. They further argued that owing to
the limited number of leading-order inter-layer processes
discussed above, it is possible to construct an effective
momentum-space Hamiltonian of a relatively small size. We
adapted this method to our triangular lattice geometry to
construct an effective Hamiltonian H0;eff based on the dual
momentum-space lattice sites km=0,...,12 and ~pn¼0;:::;12 (see
subsection “Dual momentum-space tight-binding model" in
Methods and Supplementary Note 3 for details) shown in Fig. 2c
and generalized it to arbitrary twist angles close to 30∘. Within
this description moiré bands due to the large angular twist θ≃ 30∘

can be well defined up to the leading-order approximation, with
k0 serving as the momentum in the moiré Brillouin zone.

The moiré bands ofH0;eff at θ= 30∘ are solved by exact numerical
diagonalization (topmost bands labeled by p= 1, 2, 3 shown in
Fig. 2d), and the evolution of the Fermi surface upon increasing the
doping level is presented in Fig. 2e–h. Due to level repulsion caused
by inter-layer coupling, the band maxima at all K-points are shifted
to Emax ’ 3:06t. At light hole doping μ > 3.01t, the Fermi surface
consists of 12 disconnected pockets stemming from the 12 dual
momentum-space sites in Fig. 2c, and resembles the disconnected
Fermi surfaces in the decoupled limit (Fig. 2b). It is important to note
that due to the moiré band-folding effects introduced by large angle
twist, the Fermi surface in the twisted double layer quickly undergoes
a Liftshitz transition as doping level increases and becomes
connected already at μ≃ 3.01t (Fig. 2f), at which point the Fermi
pockets in the decoupled limit would still remain well isolated
(Fig. 2b).

Upon further doping, the Fermi surface undergoes a second
Liftshitz transition at μ≃ 2.96t (Fig. 2g) and the system enters a
regime with a single connected Fermi surface centered at the Γ
point (Fig. 2h). Such FS then remains stable over a wide range of
chemical potentials with higher hole doping (Fig. 2d). Crucially,
as we show in the next section, at doping levels where a single
connected FS exists, the twisted double-layer STVS material at
θ≃ 30∘ becomes an intrinsic chiral f ± if 0 superconductor with
non-Abelian excitations.

Chiral f ± if 0-wave superconductivity at θ≃ 30∘. While micro-
scopic mechanisms leading to STVS superconductivity may vary

across materials such as RTG/BBG36,37 and ZrNCl38, on general
grounds the interaction responsible for STVS pairing boils down
to an effective attraction between electrons in the spin-triplet f-
wave channel. In the momentum-space representation, the
interaction within each isolated layer of STVS superconductor has
the form

Vð1Þ ¼ �U0 ∑
k;k0

f 1ðkÞf 1ðk0ÞcyðkÞcyð�kÞcð�k0Þcðk0Þ;

Vð2Þ ¼ �U0 ∑
~k;~k

0
f 2ð~kÞf 2ð~k

0Þcyð~kÞcyð�~kÞcð�~k
0Þcð~k0Þ; ð3Þ

where U0 denotes the interaction strength, and f1,2 are the
basis functions, f 1ðkÞ ¼ ∑j¼1;3;5 sinðk � RjÞ and f 2ð~kÞ ¼ ∑j¼1;3;5

sinð~k � ~RjÞ, with exact f-wave symmetries shown in Fig. 1a. For
isolated layer 1, one can define the self-consistent mean field
Δ1 ¼ �U0∑k0 f 1ðk0Þ cð�k0Þcðk0Þ� �

, and the corresponding gap
function Δ1(k)= Δ1f1(k). Similarly, Δ2ð~kÞ ¼ Δ2f 2ð~kÞ for isolated
layer 2. Note that Δ1(k) and Δ2ð~kÞ are almost constant near ± K
and ± ~K but exhibit a valley-dependent sign, as

f 1ðk ’ ±KÞ; f 2ð~k ’ ± ~KÞ ’ � 3
ffiffi
3

p
2 .

As the disconnected K-pockets in two layers merge into a single
connected Fermi surface in the twisted double-layer (Fig. 2h), the
piecewise constant gap functions with alternating signs are
transformed into continuous functions along the single circular
Fermi contour in k0-space. Signs of Δ1(k) and Δ2ð~kÞ, indicated by
red and blue “ ± ” symbols in Fig. 2h, are seen to resemble two
orthogonal f-wave components superimposed on top of each other.
As the Fermi surface gets reconnected in k0-space via inter-layer
coupling, it is easy to see that nodes in each of the f-wave
components are recovered – if time-reversal remains unbroken and
hence the order parameters are real. This happens because the
projected pairing on the Fermi surface from each layer must change
continuously and a nodal point is mandated whenever a sign
change in real order parameter occurs. In analogy with twisted d-
wave superconductors30, this suggests that, in order to avoid node
formation and thus lower the overall superconducting free energy,
the twisted STVS double-layer may develop a spontaneous complex
phase difference between the order parameters of the two layers.
This realizes the chiral f ± if 0 phase.

In the following we support this intuitive picture of the chiral
T -broken phase formation with an explicit microscopic calcula-
tion. We note that the self-consistency of Δ1(k) and Δ2ð~kÞ in
isolated layer 1 and layer 2 implicitly rests upon the translational
invariance within each decoupled layer. Upon introducing the
inter-layer coupling, this translational symmetry is strongly
modified. This forces us to reformulate the superconducting
gap equations in terms of wave functions and energy bands
derived from the DMSTB model H0;eff (see subsection “Mean-
field gap equation for twisted double-layer STVS superconduc-
tors" of Methods section), so that effects from inter-layer coupling
are properly incorporated. In the following, we focus on the
topmost three bands indexed by p= 1, 2, 3 (inset of Fig. 2d) that
are accessible by experimentally relevant doping levels.

In terms of fermionic operators aypðk0Þ which create electrons
at k0 in band p, the Bogoliubov-de Gennes (BdG) Hamiltonian
for the superconducting state in the twisted double-layer

HBdG ¼ ∑
p;k0

ξpðk0Þaypðk0Þapðk0Þ

þ ∑
p;k0

Δpðk0Þaypðk0Þaypð�k0Þ þ h:c:
h i

;
ð4Þ

where ξp(k0)= Ep(k0)− μ with Ep(k0) the kinetic energy of band
p, and Δp(k0) the pairing in band p: Δp(k0)= Δ1,pf1,p(k0)+
Δ2,pf2,p(k0), where fl,p(k0) are dimensionless basis functions
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characterizing the projected pairings in the moiré Brillouin zone
for layer l and band p. The relations between fl,p(k0) and
f 1ðkÞ; f 2ð~kÞ in Eq. (3) are explicitly given in subsection “Mean-
field gap equation for twisted double-layer STVS superconduc-
tors" of Methods. Note that mean-fields Δ1,p, Δ2,p serve as the
superconducting order parameters in moiré band p of layer 1 and
layer 2, respectively.

To demonstrate that the projected pairings from layer 1 and 2
form two orthogonal f-wave components at θ= 30∘, we plot the
dimensionless basis functions fl,p(k0) for projected pairing in band
p= 2 along the circular Fermi surface in the moiré Brillouin zone
(Fig. 2d) at μ= 2.9t in Fig. 3a. Clearly, f1,2(k0) and f2,2(k0) have f-
wave symmetries with 6 nodes, and the relative phase shift
between the two is exactly δϕk0 ¼ π=6 as in two orthogonal f-
wave components. Thus, the down-folded pairing interaction in
the moiré bands of the twisted double-layer leads to the
reconstruction of two orthogonal nodal f-wave order parameters
in the moiré BZ, which provides the basis for the T -broken chiral
phase. Next, we solve for Δ1,p and Δ2,p by minimizing the free
energy density

F SC ¼ ∑
l;p

jΔl;pj2
U0

� 1
V ∑
s;k0

1
2β lnð1þ e�βEs;k0 Þ; ð5Þ

where V is the volume of the system, β= 1/kBT (T: temperature),
Es;k0

are the eigenvalues of HBdG (Eq. (4)). Given two identical
layers of STVS superconductors, we have ∣Δ1,p∣= ∣Δ2,p∣, and the
general solution up to an overall phase is given by Δ1,p= Δ0,
Δ2;p ¼ Δ0e

iφp where we take Δ0 to be real. To explore the resulting
phase diagram in a concrete setting we set U0= 0.013t in Eq. (5)
and μ= 2.9t. With t= 1 eV this yields Tc≃ 3K and Δ0≃ 1 meV at
T= 0, almost independent of θ.

The complete superconducting phase diagram in the μ− θ
space is shown in Fig. 3b. For θ in close vicinity of 30∘, the system

develops a spontaneous T -broken phase characterized by
0 < φp < π and becomes an intrinsic chiral f ± if 0-wave super-
conductor. It is noteworthy that the chiral phase persists over
almost the entire chemical potential range that produces a
connected FS, as shown in blue-shaded regions in Fig. 3b. At
θ= 30∘, the free energy F SC is minimized exactly at φp= ± π/2
(red solid line in Fig. 3c) with Δ2,p= ± iΔ1,p, which corresponds to
a perfect f ± if 0-wave symmetry. As θ deviates from 30∘, φp
gradually evolves towards 0 or π for θ ≤ θ�c and θ ≥ θþc ,
respectively (Fig. 3c), and the two layers of STVS superconductors
eventually form a 0(π)-phase junction.

The bulk Bogoliubov excitation energy gaps along the circular
Fermi surface at μ= 2.9t in different superconducting phases are
shown in Fig. 3e–g. We find that for θ < θ�c and θ > θþc , the system
in the T -preserving phase is a nodal f-wave superconductor with
6 nodes along the Fermi surface. While in the T -broken chiral
regime, the system exhibits a full superconducting gap. In the
next section, we demonstrate the nontrivial topological properties
of the chiral f ± if 0 phase as well as the nodal f-wave SC phase by
studying their boundary and vortex core excitations.

Ginzburg–Landau theory. To understand why a robust chiral
f ± if 0 phase emerges at θ≃ 30∘, we construct a phenomenological
Ginzburg–Landau (GL) theory in terms of the reconstructed
ψ1≡ Δ1,p, ψ2≡ Δ2,p in moiré band p. Note that due to the recon-
struction of pairing interactions in the moiré bands, the symmetry
properties of ψ1, ψ2, as summarized in Table 1, do not directly
follow from the f-wave symmetries in each isolated layer, but need
to be derived from the defining equations for the basis functions
f1,2(k0) and f2,2(k0) formulated in the moiré bands (Eq. (16) in the
“Mean-field gap equation for twisted double-layer STVS super-
conductors" in Methods section). For a general twist angle θ, the
double-layer hasD6 point group symmetry, which dictates the form

Fig. 3 Chiral f ± if 0 superconductivity at 30∘ twist. a Basis functions f1,p(k0), f2,p(k0) of the projected pair wavefunctions in band p= 2 along the circular
Fermi surface of twisted-double layer at μ= 2.9t with momentum radius ∣k0∣ ≃ 0.11 Å−1 shown in Fig. 2d. ϕk0 is the polar angle of k0 in the 2D plane. A
relative shift of δϕk0 ¼ π=6 is found between f1,p(k0) and f2,p(k0) due to 30∘-twist. b Phase diagram of a twisted double-layer spin-triplet valley-singlet
(STVS) superconductor in the μ-θ plane. A robust chiral f ± if 0 phase (regions depicted in blue) is found over the entire chemical potential range for θ≃ 30∘.
c Evolution of phase dependence of the superconducting free energy F SCðφÞ as a function of twist angle θ at μ= 2.9t. Unit of y-axis set in eV. d Phase
diagram in the T-θ plane obtained at μ= 2.9t and coupling constant U0= 0.013t, corresponding to critical temperature Tc≃ 3K. e–g Bulk Bogoliubov
excitation gap at (e) θ= 29. 5∘, (f) θ= 30. 0∘, and (g) θ= 30. 5∘, corresponding to dots A, B, and C in (b), respectively. Δ0= 1 meV is used here in line with
values of μ, U0 used in (d).
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of the GL free energy

FGL½ψ1;ψ2� ¼ ∑
l¼1;2

α0jψlj2 þ
β0
2
jψlj4 þ a0jψ1j2jψ2j2

þb0ðψ1ψ
�
2 þ c:c:Þ þ c0ðψ2

1ψ
�2
2 þ c:c:Þ

ð6Þ

where the coefficients b0, c0 characterize the coherent tunneling of
single and double Cooper pairs between the layers, respectively.
Taking ψ≡ ∣ψ1∣= ∣ψ2∣ (see detailed analysis on the validity of this
choice in Supplementary Note 4 and 5), this becomes
FGLðφÞ ¼ F 0 þ 2b0ψ

2 cosðφÞ þ 2c0ψ
4 cosð2φÞ, where φ is the

phase difference between ψ1 and ψ2, and
F 0 ¼ 2α0ψ

2 þ ðβ0 þ a0Þψ4.
At the maximal twist θ= 30∘, the twisted double-layer becomes

a quasi-crystal with 12-fold tiling as discussed in the Normal-state
fermiology subsection. The symmetry of the quasi-crystal is
described by the non-crystallographic D6d point group, which
includes an extra improper rotation S12≡ σh⊗ C12, i.e., a 12-fold
rotation about the z-axis combined with the reflection about the
horizontal mirror plane lying mid-way between the two layers
(see Fig. 2a). We deduce that under S12: ψ1→− ψ2, ψ2→ ψ1. For
the GL free energy in Eq. (6) to be invariant under S12, the single-
pair tunneling term must vanish: b0= 0, and the only φ-
dependent term is proportional to coefficient c0 and exhibits
cosð2φÞ dependence. As argued in the twisted cuprate case, the
coefficient c0 associated with the double-pair tunneling is
generally positive. In Supplementary Note 4 we further verify
that c0 > 0 generally holds in the case of twisted STVS
superconductors by expanding the microscopic free energy Eq.
(5) in terms of Δ1,2 and Δ2,2 using the imaginary-time path
integral formalism. Thus, the quasi-crystalline D6d symmetry
dictates that the free energy is always minimized for φmin ¼
± π=2 implying a state with spontaneously broken T -symmetry.
The distinctive quasi-crystalline D6d point group at θ= 30∘

has important consequences for the temperature dependence of the
chiral f ± if 0 phase. It is worth noting that by construction for
general θ (Fig. 2a-b), the basis functions f1(k0) and f2(k0) are always
symmetric about the k0,y= 0 axis when ϕk0 ¼ 0; π, and anti-
symmetric about k0,x= 0 when ϕk0 ¼ ± π=2 (see Fig. 3a). As such,
the φ= 0 phase is essentially the f xðx2�3y2Þ pair function formed by

the real combination f 1ðk0Þ þ f 2ðk0Þ / kx;0ðk2x;0 � 3k2y;0Þ, which
belongs to the 1D irreducible representation (irep) of D6 labeled B1
in Table 1. On the other hand, the φ= π phase corresponds to the
f yð3x2�y2Þ pair function formed by an orthogonal real linear

combination f 1ðk0Þ � f 2ðk0Þ / ky;0ð3k2x;0 � k2y;0Þ, which belongs
to another 1D irep of D6 labeled B2. Thus, for θ away from 30∘, the
two phases belonging to distinct ireps of D6 have different ground
state energies (see free energy landscapes at T= 0 in Fig. 3c for
θ ≠ 30∘) and correspond to different Tc.

At θ= 30∘, however, the two orthogonal f-wave states with
φ= 0 and φ= π are degenerate (see free energy landscape in
Fig. 3c for θ= 30∘), and form a 2D representation of D6d, labeled
E3 in Table 1, with both components having the same Tc.
Accordingly, as shown in the T− θ phase diagram Fig. 3d,
obtained by minimizing F SC at finite T, the chiral f ± if 0 phase
extends all the way to T= Tc for θ= 30∘ because both orthogonal
f-wave components condense simultaneously when supercon-
ductivity sets in at Tc. For θ away from 30∘, the component with
higher Tc (either φ= 0 or φ= π) sets in first, and one needs to
further lower the temperature to access the other orthogonal
component with lower Tc to form the chiral f ± if 0 phase.

In the zero-temperature limit, the chiral f ± if 0 phase extends
between critical angles θ�c ’ 29:7� � 29:8� and θþc ’ 30:2� �
30:3� (Fig. 3b-d). The overall twist angle range of δθ≃ 0.4− 0.6∘

is well within reach of twist angle engineering precision ~ 0.1∘

now common in the state-of-the-art sample fabrication technique
for twisted materials22,23,25–27. We note that the twist angle range
predicted here is narrower than the chiral d ± id0 phase found in
twisted cuprates which can span several degrees30. As we explain
in Supplementary Note 6, the relatively narrow twist angle
range originates from the nontrivial θ-dependence of the
reciprocal lattice vectors ~Gm;Gn, for m, n ≠ 0 that determine the
interlayer coupling strength, as opposed to the coupling
dominated by ~G0 ¼ G0 ¼ 0 in cuprates which is, to good
approximation, θ-independent.

Nodal topological f-wave phase. As we discussed in previous
sections, for θ < θ�c (θ > θþc ), the twisted double-layer favors the
φ= 0 (φ= π) phase and becomes a nodal f xðx2�3y2Þ-wave
(f yð3x2�y2Þ-wave) superconductor. This nodal phase is topologi-
cally nontrivial in the sense that the f-wave nodes are char-
acterized by chirality numbers49, and, in a geometry with edges,
nodes of opposite chirality are connected by protected non-
dispersive Majorana edge modes.

To understand the nontrivial topological property of the
nodal f-wave phase, we consider the specific case with θ= 29.5∘

and φ= 0 in band p= 2 corresponding to Fig. 3e. In the Nambu

basis ψðk0Þ ¼ a2ðk0Þ; ay2ðk0Þ
� �T

, the bulk BdG Hamiltonian is

written as HBdG ¼ ∑k0
ψyðk0ÞHBdGðk0Þψðk0Þ, where HBdG(k0)=

ξ2(k0)τ3+ Δ2(k0)τ1 with τα=1,2,3 as Pauli matrices acting on
particle-hole space, and Δ2(k0)= Δ0(f1,2(k0)+ f2,2(k0)).

The Hamiltonian HBdG respects a chiral symmetry
CHBdGC�1 ¼ �HBdG where C ¼ τ2. It can be represented in the
eigenbasis of C, by translating τ3↦ τ1, τ1↦ τ2. Then, in the
vicinity of a nodal point k0,N, the excitations can be described as
2D massless Dirac fermions

hNðp0Þ ’ v1p0;1τ1 þ v2p0;2τ2; ð7Þ

where p0,1 and p0,2 denote the normal and tangential components
along the Fermi surface of a momentum p0= k0− k0,N. Dirac
velocities v1 � ∇k0

ξ2ðk0Þ � n̂1 and v2 � ∇k0
Δ2ðk0Þ � n̂2 are eval-

uated at k0= k0,N. The chirality at k0,N can then be defined as
Cðk0;NÞ ¼ sgnðv1v2Þẑ � ðn̂1 ´ n̂2Þ.

The chiralities C(k0,N) of the 6 nodes in the φ= 0 phase are
calculated from HBdG(k0) and indicated in Fig. 4a. Clearly,
nodes with opposite chiralities come in three pairs, reflecting
the underlying f xðx2�3y2Þ-symmetry. It is worth noting that by
projecting the bulk spectrum onto the edges oriented along
certain high-symmetry directions, e.g. the y-direction, nodes
with opposite chiralities do not cancel out. In this situation we
expect protected non-dispersive edge modes to appear in

Table 1 Irreducible representations (ireps) of point group
D6 (θ≠ 30∘) and D6d (θ= 30∘).

Group IR cubic functions SC order parameters

D6 A1 — ψ1ψ
�
2 þ ψ�

1 ψ2,
ψ2
1 ψ

�2
2 þ ψ�2

1 ψ2
2

B1 x3− 3xy2 ψ1+ ψ2
B2 3x2y− y3 ψ1− ψ2

D6d A1 — ψ2
1 ψ

�2
2 þ ψ�2

1 ψ2
2

E3 {x3− 3xy2, 3x2y− y3} {ψ1+ ψ2, ψ1− ψ2}

Basis functions include cubic functions and reconstructed f-wave superconducting (SC) order
parameters ψ1, ψ2 in the moiré bands in twisted double-layer. Symmetry properties of ψ1, ψ2 are
derived from Eq. (16). A1 is the trivial irep in both cases.
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analogy with the flat bands on zigzag edges of monolayer
graphene42.

To demonstrate the existence of edge states in the nodal f-
wave phase, we now introduce a simplified triangular lattice
model with lattice constant a0 (shown schematically in Fig. 5a)
for band p= 2 derived from the DMSTB model above (Fig. 2d).
The lattice model captures both the parabolic dispersion near Γ

and the f-wave pairing symmetry, thus facilitating explicit
calculcations of edge states as well as vortex excitations of the
chiral superconductor presented below. The lattice model is
defined by

HLAT ¼ ∑
q

ξqc
y
qcq þ ðΔqc

y
qc

y
�q þ h:c:Þ

h i
; ð8Þ

Fig. 4 Nontrivial topology of the nodal f-wave phase. a Locations of f-wave nodes in the momentum space of k0= (k0,x, k0,y). Chiralities of nodes
indicated by “ ± " signs in the φ= 0 phase with fxðx2�3y2Þ-wave pairing symmetry. b Edge spectrum of the Bogoliubov-de-Gennes (BdG) Hamiltonian HBdG

with phase difference φ= 0 in a strip geometry as a function of ky,0 along edges oriented in the y-direction, calculated using the lattice model in Eq. (8)–(9)
with ΔNN= 0 such that only the fxðx2�3y2Þ-wave component is present. Inset: Nontrivial topology of nodal f-wave phase is characterized by the BDI invariant
NBDI as a function of ky,0 (see Supplementary Note 7). The regions with NBDI=+ 1(− 1) correspond to regions with Majorana zero modes (MZMs)
highlighted in red (blue) in (b). k0,x, k0,y are given in units of Å−1.

Fig. 5 Exact diagonalization results for edge and vortex core Majorana modes. a Pairing amplitudes for the f-wave order parameter on the simplified
triangular lattice model with lattice constant a0. ΔN and ΔNN denote the nearest-neighbor and second-nearest-neighbor pairing amplitudes, respectively.
b Spectral function A(qx,ω) evaluated at the edges and in the bulk of an infinite strip with width of L= 200 sites. ω is shown in units of t0. c Local density of
states ρ(ω, r) computed on a hexagon-shaped sample with N= 3169 sites and a vortex located at its center. d Real-space probability distribution of zero-
energy eigenstates Ψ±

0 ¼ ðΨ0 ±Ψ
0
0Þ=

ffiffiffi
2

p
. The color bar indicates the normalized value of probability distribution to the maximum site amplitude for each

state. In all panels parameters ðμ0;ΔN;ΔNNÞ ¼ ð0:8t0;0:5t0;ΔN=3
ffiffiffi
3

p
Þ with t0=− 0.01 eV were used.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01165-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2023) 6:47 | https://doi.org/10.1038/s42005-023-01165-5 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


where ξq ¼ �2t0 ∑j¼1;3;5 cosðq � δjÞ � μ0 denotes the band
energy from effective electron hopping− t0, where we set
t0 ≃ 0.01t by fitting the parabolic dispersion at Γ in Fig. 2d. The
gap function is given by

Δq ¼ 2 ∑
j¼1;3;5

ΔN sinðq � δjÞ þ iΔNN sinðq � δ0jÞ
h i

ð9Þ

with ΔN (ΔNN) denoting the first (second) nearest-neighbor
pairing amplitudes as shown in Fig. 5a, while δj and δ0j are the
corresponding bond vectors indicated by red and purple lines,
respectively. It is straightforward to check that in the small q
expansion, the two pairing terms produce two orthogonal
f xðx2�3y2Þ- and f yð3x2�y2Þ-wave components, respectively.

We use the lattice model in Eq. (8) with ΔNN= 0 to calculate the
edge spectrum of the nodal f xðx2�3y2Þ-wave superconductor as a
function of k0,y (Fig. 4b), where we identify k0,y as qy in Eq. (8)–(9).
As anticipated the bulk nodes with opposite chiralities are
connected by non-dispersive zero energy modes on the edge
(highlighted by red and blue lines in Fig. 4b). As we explain in
Supplementary Note 7, for each fixed k0,y, HBdG(k0,x) describes a
one-dimensional BDI class topological superconductor oriented in
the x-direction, with its topological property characterized by a
winding number NBDI

40,50,51 (inset of Fig. 4b). The bulk-edge
correspondence between NBDI and the number of zero energy
modes allows us to establish the edge state associated with each ky,0
as a MZM. We note that as long as the chiral symmetry C is
respected, chiralities of nodes are well defined and act as topological
charges that only annihiliate when opposite charges merge in the
bulk. Therefore, the large number of non-dispersive MZMs on the
edge are protected by the nontrivial bulk topology against
C-preserving perturbations such as charge disorder52–55.

Majorana modes in chiral f ± if 0 phase. In the T -broken f ± if 0

phase, that we shall model by the lattice Hamiltonian Eq. (8) with
ΔNN ≠ 0, the 6 Dirac nodes are gapped out by alternating mass
terms produced by the imaginary f yð3x2�y2Þ-wave component of
the order parameter. This gapped phase belongs to symmetry
class D in Altland-Zirnbauer classification40,50,51 and its topology
is therefore characterized by the Chern number C. In analogy
with the d þ id0 phase in cuprates we expect each gapped Dirac
point to contribute 1

2 sgnðΔNNÞ to the total Chern number, sug-
gesting that the system will have C= ± 3 in the gapped chiral
phase. Because the BdG representation of the spinless super-
conductor is redundant, the Chern number here determines the
number of chiral Majorana edge modes with central charge 1/2
(as opposed to complex fermion modes whose central charge
would be 1).

We can now confirm the existence of edge states by placing
HLAT on a strip geometry with periodic boundary conditions in
the x-direction, and L rows of atoms in the y-direction. The
spectral function in 1D momentum space, plotted in Fig. 5b,
allows us to visualize the excitations present in each row of the
strip. It is defined as

Aðqx;ωÞ ¼ Im½ðωþ iηÞ �HLATðqxÞ��1 ð10Þ
where η is a positive infinitesimal, and HLATðqxÞ is the L × L
Hamiltonian on the strip with qx the lattice momentum along x.
The spectral function reveals a fully gapped bulk and three
distinct edge modes traversing the bulk gap, propagating in
opposite directions at each edge. This confirms the Chern
number C= 3 deduced above from general considerations.

In addition to gapless edge modes, chiral p-wave super-
conductors threaded with unit magnetic flux are predicted to host
unpaired MZMs obeying non-Abelian exchange statistics, which
are localized at vortex cores7,8. To model the effect of an

Abrikosov vortex in the f þ if 0 superconductor, we adopt a
real-space representation of the lattice model in Eq. (8). We
consider a hexagonal domain with open boundary conditions,
and place a vortex at the origin. This induces a phase winding on
the order parameter for each bond

Δr;δj
¼ ð�1Þj�1ΔN expð�inθr;δj Þ

Δr;δ0j
¼ ð�1Þj�1ΔNN expð�inθr;δ0j Þ

ð11Þ

where r denote lattice sites in real-space; n is the vorticity; and
θr;δj is the angle subtended by the midpoint of the bond (rþ 1

2 δj),

the origin, and the x-axis. We then numerically diagonalize the
2N × 2N matrix representing HLAT, where N is the number of
lattice sites.

For a single-quantum vortex solution with n= 1, we indeed
find a single zero-energy mode, which manifests as a zero-bias
peak in the local density of states (LDOS) at the vortex core. Its
partner lives at the sample edge, as shown in Fig. 5c. The LDOS is
given by

ρðω; rÞ ¼ ∑
En>0

junðrÞj2δðω� EnÞ þ jvnðrÞj2δðωþ EnÞ
� �

ð12Þ

where En are eigenvalues of HLAT with eigenstates
ΨnðrÞ ¼ ðunðrÞ; vnðrÞÞT . To confirm the nature of the two zero-
energy states, denoted Ψ0 and Ψ0

0, we plot their real-space
wavefunctions in Fig. 5d. The symmetric and anti-symmetric
linear combination of these states are self-conjugate eigenstates of
the charge conjugation operator, and represent Majorana zero
modes localized at the sample edge and vortex core, respectively.

Discussion
Here we discuss how the exotic non-Abelian TSC phase can be
realized in twisted double layers formed by the promising can-
didate materials, rhombohedral graphene34,35 and ZrNCl38,
which are thought to be STVS superconductors. It is worth noting
that the spinless-fermion triangular lattice model used for our
theoretical considerations captures most of the essential features
of the spin-triplet SC2 phase in rhobohedral trilayer graphene
(RTG): (i) the SC2 phase emerges under strong displacement
fields which polarize the layer and sublattice degrees of freedom,
such that electrons involved in superconducting pairing actually
live on an effective triangular lattice formed by the A (or B)
sublattice35; (ii) the Fermi surface of the parent spin-polarized
valley-unpolarized normal state underlying the SC2 phase is well
reproduced by our model (Fig. 2).

To realize the topological phase with non-Abelian excitations,
it is crucial that the isolated K-pockets from each layer coalesce
into a single connected Fermi surface in the moiré Brillouin zone.
Our results based on the DMSTB model suggest that a minimal
Fermi momentum kFa ~ 0.2 (a= 2.46 Å for graphene) measured
from ±Kð~KÞ is required for a single connected Fermi surface to
emerge (see Fig. 2f). The typical value of Fermi momentum in
RTG, corresponding to a low doping level with carrier density
n2D ≈ 0.5 × 1012 cm−2, was found to be of order kFa ~ 0.134,
which is almost on par with the minimal requirement according
to our theory. We note that higher doping levels, up to
n2D ~ 1 × 1012 cm−2, are indeed accessible through electrostatic
gating34,35, and the non-Abelian topological superconductivity
could thus be achieved by further raising the doping level in
maximally twisted double-layer RTG.

The triangular lattice model also captures the parabolic dis-
persion near ± K of the doped band insulator ZrNCl56,57 and was
in fact used to study the STVS pairing38. In particular, ZrNCl
superconducts within a wide range of electron doping
x ~ 0.01− 0.358–60 (x: number of electrons per unit cell). The
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simple parabolic dispersion near ± K allows us to extract a Fermi
momentum kFa ¼ ffiffiffiffiffiffi

xπ
p ’ 0:2� 1:0 with lattice constant

a= 3.663 Å for ZrNCl, which suggests that the condition for a
single connected FS in maximally twisted double-layer is readily
fulfilled.

The f-wave pairing interaction in the non-magnetic ZrNCl may
generally involve all three triplet channels given its spin-
degenerate band structure, with the spinor part of the pair
function characterized by a three-component d-vector Δ̂t ¼
ðd � σÞiσy (σα=x,y,z: Pauli matrices for spins). Given the D6-point
group of the twisted double-layer, however, the doublet formed
by equal-spin states f ""

		 �
; ##
		 �g and the anti-parallel state

"#
		 �þ #"

		 �
will in general be distinct in energies as they belong

to different E1 and A2 ireps of D6, respectively. In the E1 phase
with a two-component order parameter d= (dx, dy, 0), the total
BdG Hamiltonian is decomposed into two independent spin
sectors, each one described by the spinless model discussed in this
work. Thus, our analysis directly applies and the system near the
maximal twist becomes a spinful chiral f ± if 0 superconductor. As
degrees of freedom are doubled, there would be two species of
chiral Majorana modes on the edge corresponding to three
complex fermions; as well as two MZMs, one from each spin
sector, localized at the single-vortex core. It is worth noting,
however, as the two-component d-vector can rotate around the
vortex core, the spinful chiral f ± if 0 state admits half-quantum
vortex (HQV) solutions trapping a π-flux. Following the analysis
developed for spinful chiral p-wave superconductors in the con-
text of Sr2RuO4 and 3He-A phase7,61, the HQV is equivalent to a
single-quantum vortex in one of the effective spin sectors and
thus hosts a non-Abelian MZM.

In obtaining the phase diagrams in Fig. 3, we considered a
relatively strong pairing interaction which yields a native Tc≃ 3K
and sizable pairing amplitude Δ0≃ 1 meV for the twisted double-
layer. While such temperature and energy scales are directly rele-
vant to ZrNCl60, the spin-triplet superconductivity in RTG and
BBG is found with a much lower Tc≃ 50 mK34,35. It is important to
note, however, that the emergence of the chiral f ± if 0 phase follows
from general symmetry principles as illustrated in our Ginzburg-
Landau analysis. The proposed mechanism should therefore be
largely insensitive to microscopic details and remains applicable to
RTG and BBG. We further note that phase diagrams in Fig. 3 do
not change qualitatively when the inter-layer coupling strength is
varied, as long as it remains on the scale of t⊥(K) ~ 0.1t. For weaker
interlayer coupling, t⊥(K)≲ 0.01t, the energy bands become dense
in energy space and the parameter regime with a single connected
Fermi surface in Fig. 3b is reduced.

To detect the T -broken chiral f ± if 0 phase a suite of spectroscopic
and transport experiments proposed for the chiral pþ ip0 and d þ
id0 phases in Sr2RuO4 and twisted cuprates can be applied. The
nonzero orbital angular momentum Lz= ± 3 in the chiral f ± if 0

phase can be probed by polar Kerr effect measurements62,63, and the
two-minimum free energy landscape near θ= 30∘ shown in Fig. 3c
will give rise to anomalous π-periodic inter-layer Josephson current-
phase relation IJ ¼ ð2e=_Þ∂F SC=∂φ / sinð2φÞ30. Upon tuning θ
and T, the transition from fully gapped chiral phase to nodal f-wave
phase (Fig. 3d–h) can be detected by a change from U-shaped to V-
shaped spectra in the bulk LDOS, which can be probed by scanning
tunneling microscopy (STM) measurements64. Moreover, STM can
be used to detect and resolve the spatial profile of the zero bias peaks
induced by the MZM localized at the vortex core16,17, as well as the
non-dispersive edge MZMs in the nodal f-wave phase.

Conclusions
We established an avenue through twist-angle engineering toward
intrinsic chiral f ± if 0 TSC with non-Abelian excitations. In

particular, the emergence of non-Abelian TSC in maximally
twisted STVS superconductors relies on a special type of large-
angle moiré physics which is absent in twisted cuprates and is
fundamentally different from the moiré physics in small-angle
twisted graphene (see detailed comparison between these systems
in Supplementary Note 1). Our Ginzburg-Landau analysis reveals
that the energetics leading to the exotic chiral f ± if 0 phase are
governed by a non-crystallographic D6d symmetry, which emer-
ges generically in the 12-fold quasi-crystalline structure formed at
30∘ twist. By virtue of adiabatic continuity we expect the gapped
topological phase to persist in a finite range δθ of twist angles
around 30∘ and our microscopic model indeed indicates stability
for δθ≃ 0. 4∘− 0. 6∘, well within the capability of current sample
fabrication techniques. We note that the possibility of chiral
f ± if 0 pairing was also suggested in a recent work on high-
angular momentum-superconductivity in large-angle-twisted
homobilayer systems65.

The proposed mechanism applies in general to any two-valley
material with hexagonal symmetry that exhibits gapped f-wave
superconductivity in its monolayer form. The formation of a
single connected FS in the twisted double-layer - an important
prerequisite for non-Abelian excitations - requires states from the
two different valleys ±Kð± ~KÞ to hybridize (Fig. 2c–h). There-
fore, the large-angle moiré physics necessarily violates the fun-
damental valley conservation symmetry Uv(1) that underpins the
well-established moiré physics in small-angle-twisted graphene
and transition-metal dichalcogenides. This provides an alternative
symmetry perspective on why the BM-type continuum models
applicable in the small-angle limit, in which the Uv(1) is built-in
by construction, fail to describe the moiré physics at maximal
twist. As we discuss in detail in Supplementary Note 1, the Uv(1)-
violation in maximally twisted double-layer is crucial for non-
Abelian TSC because any description respecting the Uv(1) sym-
metry cannot support a single unpaired non-Abelian Majorana
mode in a zero-momentum-paired superconductor, regardless of
its pairing symmetry. This Uv(1)-based criterion reveals a pro-
found connection between the large-angle moiré physics estab-
lished in this work and T -broken non-Abelian TSC.

While our assumption of a dominant pairing interaction in the
f-wave channel for spin-triplet SC2 phase of RTG/BBG is sup-
ported by proposals based on acoustic phonons36,37 and renor-
malization group analysis66, some recent works suggest an
alternative possibility of chiral p± ip0 pairing symmetry67–69,
which is also compatible with the phenomenology of the SC2
phase. In Supplementary Note 8 we present a detailed analysis of
pairing instabilities in all possible pairing channels in maximally
twisted double-layer RTG/BBG. Our microscopic calculations
reveal that the chiral f-wave phase takes up the vast majority of
the superconducting phase diagram, which lends strong support
to the central idea developed in this work. In particular, we find
that the chiral p-wave phase is favored only when the p-wave
coupling constant is overwhelmingly larger than the coupling
constant in the f-wave channel.

Our detailed calculations in addition show that under a
dominant chiral p-wave interaction, the superconducting free
energy and inter-layer Josephson current at θ= 30∘ exhibits a 2π-
periodicity in its φ-dependence, as opposed to the anomalous π-
periodic dependence in the case of f-wave pairing (see Fig. 3c and
Fig. S5 in Supplementary Note 8). These two contrasting beha-
viors can serve as experimental signatures discriminating between
f-wave and chiral p-wave order parameters proposed for the SC2
phase in RTG. These results suggest potential applications of
large-twist-angle engineering in probing the pairing symmetries
of unconventional superconductors.

While the exact nature of the pairing symmetry of the SC2
spin-triplet phase remains to be settled by future experiments, it is
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important to note that even under the topological chiral p± ip0

pairing symmetry, an isolated monolayer still cannot support
non-Abelian excitations due to the disconnected nature of its
Fermi surface. On the other hand, maximally twisted double layer
favors a configuration with the same p-wave chiralities in both
layers. The resulting composite system then becomes a standard
spinless chiral p± ip0 superconductor hosting non-Abelian MZMs
when the disconnected FS in each layer coalesce into a single FS –
a detailed discussion of this is given in Supplementary Note 8.
Thus, the alternative assumption of chiral p-wave pairing does
not alter our conclusion that a maximal twist is required to turn
the system into a non-Abelian topological phase, which further
fortifies the connection between the relatively unexplored large-
angle moiré physics and non-Abelian topological
superconductivity.

Methods
Dual momentum-space tight-binding (DMSTB) model. Here we briefly outline
the basic idea behind our generalized DMSTB model and present a detailed
derivation in Supplementary Note 3.

The DMSTB model is rooted in the observation that for any given momentum
k0, the sets of Bloch states involved in the inter-layer coupling Hamiltonian Eq. (2)
are S1ðk0Þ ¼ f k0 þ ~G; 1

		 �
;8~Gg in layer 1, and S2ðk0Þ ¼ f k0 þ G; 2

		 �
;8Gg in layer

2. By viewing the Bloch states km ¼ k0 þ ~Gm; 1
		 � 2 S1ðk0Þ and ~kn ¼ k0 þ Gn; 2

		 �
2 S2ðk0Þ as “Wannier orbitals" localized at the dual momentum-space lattice sites
km and ~pn � k0 � ~kn � �Gn, the inter-layer coupling in Eq. (2) can be regarded
as ‘inter-site hopping’ between km and ~pn with ‘hopping strength’ t?;mnðk0Þ ¼ t?
ðkm � ~pnÞ determined precisely by the geometric distance jkm � ~pnj (see
Supplementary Note 3). The rapidly decaying character of t⊥(q) implies weak
hybridization among Wannier orbitals (Bloch states) at km and ~pn , and states in
the twisted double-layer live predominantly only on a small number of km and ~pn
points. Thus, there exists an approximately closed finite subspace over which
an effective HamiltonianH0;eff can be constructed and the mapping from k0 to the
set of eigenvalues Ep(k0) (p: band index) of H0;eff ðk0Þ then defines the band
structure and the Fermi surface reformulated in the k0-space.

For θ≃ 30∘, states near ± Kð~KÞ in layer 1 (2) (Fig. 2b) are well covered by the 12
dual momentum-space lattice points km,m= 1, 2, . . . , 6 and ~pn; n ¼ 1; 2; :::; 6
indicated in Fig. 2c. This motivates us to consider H0;eff ðk0Þ which includes these
12 sites together with leading-order corrections from their nearest-neighboring
points km; ~pn with m, n= 0, 7, . . . , 12 as illustrated in Fig. 2c. As further justified in
Supplementary Note 3, the leading nearest-neighbor hopping terms between km; ~pn
in such approximation scheme accounts exactly for the leading-order inter-layer
terms depicted in Fig. 2b. The effective normal-state Hamiltonian of a near-30∘-
twisted double-layer then reads H0;eff ¼ ∑k0

H0ðk0Þ with

H0ðk0Þ ¼ ∑
12

m¼0
ξ1ðkmÞcy1ðkmÞc1ðkmÞ

þ ∑
12

n¼0
ξ2ð~knÞcy2ð~knÞc2ð~knÞ

� ∑
12

m;n¼0
t?ðkm � ~pnÞcy1ðkmÞc2ð~knÞ þ h:c:
h i

:

ð13Þ

To verify that H0;eff in Eq. (13) provides an accurate description of the normal-
state fermiology near the maximal twist, we note that the approach above applies to
any twist angle close to 30∘, including commensurate twist angles where the bilayer
forms a periodic moiré superlattice and the band structure can be computed exactly
via a real-space lattice model. As a convenient test case we consider commensurate
angle θc ¼ 2sin�1ð ffiffiffi

3
p

=ð2 ffiffiffiffiffi
13

p ÞÞ 	 27:8� which gives rise to a moiré unit cell with
26 sites. As we demonstrate in Supplementary Note 3, k0 becomes exactly the
crystal momentum at θc, and H0;eff reproduces the electronic bands of the moiré
lattice model with excellent accuracy. We further note that the summation over k0
in Eq. (13) should be restricted to within an area the size of the moiré Brillouin
zone at θ= θc to avoid over-counting of the degrees of freedom.

We further note that inter-layer spatial displacements between two layers due to
angular twist can generally introduce nonzero phases in the inter-layer tunneling
term in Eq. (13)24,46. As we explain in Supplementary Note 9, such phases cancel
out in the total phase of Cooper pairs due to the spinless time-reversal symmetry
T 0 and thus do not affect our analysis on the superconducting phase.

Mean-field gap equation for twisted double-layer STVS superconductors. To
derive the mean-field gap equations for the twisted double-layer, we first rewrite
the total interaction V tot ¼ Vð1Þ þ Vð2Þ in the band basis. Note that the fermionic

operator creating an electron at k0 in band p is given by

aypðk0Þ ¼ ∑
m
upmðk0ÞcyðkmÞ þ∑

n
upnðk0Þcyð~knÞ; ð14Þ

where the coefficients upm(k0), upn(k0) can be found by exact numerical diag-
onalization of H0;eff in Eq. (13). Fermionic operators in Vð1Þ and Vð2Þ can be

rewritten as cyðkmÞ ¼ ∑pu
�
mpðk0Þaypðk0Þ, cyð~knÞ ¼ ∑pu

�
npðk0Þaypðk0Þ. Using the one-

to-one correspondence km � k0 þ ~Gm and ~kn � k0 þ Gn, the pairing interaction
in the band basis becomes

Veff ¼ �U0ðFy
1F1 þ Fy

2F2Þ; ð15Þ
where Fy

l � ∑k0 ;p
f l;pðk0Þaypðk0Þaypð�k0Þ is the pair creation operator in layer

l= 1, 2, with

f 1;pðk0Þ ¼ ∑
m
Λm;pðk0Þf 1ðk0 þ ~GmÞ;

f 2;pðk0Þ ¼ ∑
n
Λn;pðk0Þf 2ðk0 þ GnÞ:

ð16Þ

Here, Λm;pðk0Þ � u�m;pðk0Þu��m;pð�k0Þ and Λn;pðk0Þ � u�n;pðk0Þu��n;pð�k0Þ
denote the form factors arising generally from projecting the interaction onto the
band basis, and we introduced the shorthand notation u��m;pð�k0Þ to denote the

coefficient associated with c†(− km) and aypð�k0Þ. The standard mean-field

reduction for Eq. (15) leads to the gap equation Δl;p � �U0 Fl;p

D E
for the pairing

Δl,p in the BdG Hamiltonian in Eq. (4) for the superconducting state in the twisted
double-layer, and Δl,p are obtained by minimizing F SC in Eq. (5).
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