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Tunning the tilt of the Dirac cone by atomic
manipulations in 8Pmmn borophene
Yasin Yekta1, Hanif Hadipour2 & Seyed Akbar Jafari 1,3✉

Two dimensional quantum materials possessing Dirac cones in their spectrum are fascinating

due to their emergent low-energy Dirac fermions. In 8Pmmn borophene the Dirac cone is

furthermore tilted, which is a proxy for spacetime geometry, since the future light-cone

depends on the underlying metric. Therefore it is important to understand the microscopic

origin of the tilt. Here, based on ab-initio calculations, we decipher the atomistic mechanism

of the formation of tilt. First, nearest-neighbor hopping on a buckled honeycomb lattice forms

an upright Dirac cone. Then, the difference in the renormalized anisotropic second-neighbor

hopping, formed by virtual hoppings on one-dimensional chains of atoms, tilts the Dirac cone.

We construct an accurate tight-binding model on honeycomb graph for analytical investi-

gation, and we find that substitution of certain boron atoms by carbon provides a way to

change the tilt of the cone.
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Themarriage between the mathematical concept of “topology”
and quantum materials lead to the birth of “topological
materials” and developments that followed afterwards. Can

the (local) “geometry” play a similar role in combination with
quantum materials? In the same way that the appearance of Dirac
fermions in graphene and other Dirac materials can be attributed to
an emergent Minkowski spacetime structure at distances much
larger than the atomic distances, quantum materials with “tilted
Dirac cone” can be naturally associated with an emergent spacetime
(not merely the space) metric. In these class of materials the tilt is a
proxy to spacetime geometry. We use Geometric QuantumMaterial
(GQM) to refer to them.

Every periodic structure in quantum condensed matter is
mounted on a mathematical object called lattice. Irrespective of
which atoms one wishes to place on the sites of a given lattice,
they come in 230 possible structures1. The presence of lattice
breaks translation and rotation, and some times parity and/or
time reversal invariance of the vacuum2. The lattice therefore
breaks the Poincaré group3 thereby the connection between spin
and statistics of the particles is lost and therefore one may have
fermions with integer spin that is enforced by the irreducible
representations of its space group (SG)4.

Is there any other interesting consequence that can be asso-
ciated with the underlying SG? To set the stage for answering this
question, let us start by a simple, but profound observation2:
Consider a simple quantum mechanical hopping process on a
lattice and think about the wave equation in the continuum limit.
On the square lattice the Hamiltonian becomes− ℏ2∇2/(2m*),
while on the honeycomb lattice it becomes iℏvFσ.∇ , namely the
massless Dirac Hamiltonian5. Therefore despite that in the con-
tinuum limit, the lattice spacing is immaterial, but still remnants
of the microscopic symmetries of the pertinent SG are manifested
in the long-distance behavior and decide whether the structure of
the ensuing spacetime is Galilean or Minkowskian. This can be
regarded as an example of metamorphosis of atomic scale sym-
metry to a long-distance geometrical structure. The duality
between atomic scale SG symmetry and long distance geometry is
central to understand the geometric structure in GQMs.

What is the microscopic mechanism of such a duality between
the microscopic structure and the long-distance (low-energy)
characteristics in more complicated lattice structures? The long-
distance behavior of interest for us is the tilted Dirac cone band
whose Hamiltonian is∝ (σ.∇ )+ σ0ζ.∇ 6–11 where σ0 is the 2 × 2
unit matrix. A vector-looking quantity ζ here determines the
tilt of the Dirac cone. But at a much deeper level, it can be
encoded into an emergent spacetime metric ds2 ¼ �ðvFdtÞ2þ
ðdx � ζvFdtÞ29,10,12–17, where vF is the Fermi velocity. Therefore
the tilt of a Dirac cone is actually a proxy for an emergent solid-
state spacetime structure. Since the density of states is enhanced
by a 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2

p
, the tilted Dirac cone materials can generically

give stronger responses to external stimuli. This enhancements
nicely fits into spacetime description as a “redshift” factor18.
Therefore it is crucial to understand the atomistic mechanism of
the formation of the tilt in order to utilize it.

In this work we decipher the microscopic mechanism that
determines the tilt parameter ζ. For this purpose we focus on
the SG number 59 that describes the 8Pmmn structure of
borophene9,19,20. The tilted Dirac cone has been experimentally
observed in the so called χ3 structure of borophene21. The logic
employed here is generic and is applicable to other SGs, and can
even be used to discover further examples of GQM. We show that
in this structure, the low-energy and high-energy degrees of
freedom are nicely separated into two sublattices denoted by gray
and teal circles in Fig. 1a, respectively. When the high energy sites
available in this particular SG are integrated out, the underlying

honeycomb lattice will be promoted to a “honeycomb graph”.
Therefore the molecular orbitals play significant role in attaching
new “graph edges” to the simple underlying honeycomb lattice.
As we will see, this graph has the ability to lead to a controlable
tilt and hence a tunable spacetime structure in the long distance.
On such a graph, even if instead of fermions one places cir-
cuit elements, again a tilted Dirac cone can be obtained22.
Therefore in addition to GQMs, the circuits can also emulate
interesting spacetime structures with a larger degree of tunability.

Results
Protection of the Dirac node. The relevant orbitals in the boron
(as well as C) atom are 2p orbitals. The possibility of formation of
sp2 and sp3 hybridization establishes the honeycomb lattice23, and
structures such as 8Pmmn that involve buckled honeycomb
networks as natural lattices for these atoms. As can be seen in
Fig. 1a, there is a backbone (buckled) honeycomb sub-lattice
denoted with gray circles that are called inner (I) sites. The rest of
the lattice sites are called ridge (R) sites and are denoted by teal
circles. First principle calculations indicate that the resulting
Dirac cone is tilted24,25 which is shown as red (low-energy) band
in Fig. 1b and the three dimensional reconstruction of the band
structure is shown in panel (c). The first thing that the 8Pmmn
SG implies about the tilted Dirac cone is that on the MX and MY
lines in the border of the Brillouin zone (BZ) of Fig. 1d, two bands
“stick together” (as Kittel puts it26) where the two-dimensional
irreducible representations are protected by non-symmorphic
elements26. Then the compatibility relations gives the qualitative
band picture of cat’s cradle shape27 shown in panel (d). For
pedagogical details of the derivation of this figure with group
theory methods see the Supplementary Note 1, or more extended
version of this paper28.

Of course the protection of the tilted Dirac cone by the
underlying SG is interesting, but it is not essential for the main
purpose of this paper, namely the “tilt” of the Dirac cone. The
symmetry considerations do not explain why and how the tilt
parameter ζ is formed. In order to “manipulate” the tilt of the
Dirac cone at will, one needs a microscopically detailed under-
standing of the root cause of formation of tilt in the Dirac cone.
To achieve this, we need to identify the low-energy degrees of
freedom that give rise to the tilted Dirac cone dispersion. For
this purpose in Fig. 1e we have plotted an orbital projected
representation of the band structure that resolves the contribution
of atoms 2 (I) and 5 (R). As can be seen, the dominant
contributions to the tilted Dirac dispersion comes from the pz
orbitals of the I atoms (top left plot in panel (e)). The R atoms
also contribute via their pz and px orbitals (bottom left and
center). The remaining two boxes on the top row indicate little
contributions from the px and py orbitals of the I atoms that arises
from the buckling of the honeycomb sublattice.

In Fig. 2a we have labeled atomic hoppings paths with green
and red dashed lines that connect I sites by virtual hoppings
through R sites. There is only first neighbor direct hopping
between the I sites denoted by black arrows. The appropriate
atomic orbitals involved in forming the above microscopic tij
hoppings can be extracted from the density functional theory
(DFT) calculation. Working in a gauge that all tij’s are real, the
hermiticity implies tij= tji. Fig. 2b depicts the BZ of original
8Pmmn lattice. The insight from the projected bands in the left
and center columns in the second row of Fig. 1e is that both px
and pz orbitals of the R atoms are of comparable importance and
must be incorporated into the atomic scale computation of the t65
(dark green) and t87 (light green). Similarly the first column of
Fig. 1e suggests that the pz orbitals of R and I atoms dominate in
t36= t35 hopping process. Table 1 shows the calculated values
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of these hopping parameters for pristine borophene (B8) and
C-doped borophene B6C2 using Wannier function29,30. The
purpose of substituting C for B is to study its effect in the tilt of
the Dirac cone. The substituted carbon dimers are placed in R
and I positions, respectively. Using these parameters one can re-
construct the ab initio bands with four pz orbitals of four
inner sites, and eight px and pz orbitals of ridge sites. The nice
coincidence of the original DFT bands with Wannier-interpolated
bands in Supplementary Fig. 9 shows that the obtained tij values
are reliable and the used atomic orbitals are adequate.

Although such an atomic picture might be satisfactory if one
wishes to focus on the low-energy features of the tilted Dirac cone
around the Fermi surface, but still working with a 12-band
Hamiltonian is neither convenient, nor the essential long-range
physics depends on so many short-distance details. To achieve an
effective two-band model (for more details see Supplementary
Note 2), we need to decimate the 8Pmmn lattice into an effective
honeycomb graph shown in Fig. 2c where two possible ways of
representing its BZ are depicted in Fig. 2d. On such a coarse-
grained lattice, the virtual atomic hopping paths will be replaced by
effective hoppings of the same color in panel (c). The connection

between these effective hoppings and atomic hoppings tij is a nice
example of renormalization that will be discussed now.

Renormalization via molecular orbitals. Anderson in his book
maintains that renormalization is one of the pillars of condensed
matter physics31. In this section we will show that the same
concept is encoded into a local quantum chemistry of the 8Pmmn
borophene. Since we are not interested in higher energy features
that take place away from the tilted Dirac node, we build an
effective picture based on Fig. 2c where the “effective” hoppings
must be evaluated from the atomic scale data in the upper part of
Table 1. The low-energy degrees of freedom are dominated by the
pz orbitals of the I sites. So we decimate the 8Pmmn lattice by
elimination of the R sites. In doing so, the effective coarse-grained
system becomes the honeycomb graph in Fig. 2c. The nearest
neighbor hoppings denoted by black arrows take place within the
low-energy subspace and are responsible for the formation of a
parent Dirac cone from the pz orbitals of the I sites. Slight ani-
sotropy in the black arrows is known to shift the location of the
Dirac cone32,33 within the rhombus BZ of panel (d) that we

Fig. 1 Electronic structure of pure 8 Pmmn borophene. a Top and side view of crystal structure of 8 Pmmn borophene. The gray and faint teal circles
denote inner (I) and ridge (R) boron atoms, respectively. b Density functional theory with Perdew-Burke-Ernzerhof parameterization (DFT-PBE) band
structure of pristine 8 Pmmn borophene and (c) its three dimensional reconstruction. d First Brillouin zone and decomposition of elementary band
representation the 8 Pmmn group. The ± are the eigenvalues of ~C2x, and ~C2y operations at high-symmetry points. e The orbital-projected band structures
for two atoms of 8 Pmmn borophene based on DFT-PBE. The Fermi energy (EF) is set to the zero energy.
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ignore here. Green/red hopping processes are associated with the
second/third neighbors of the honeycomb backbone that origi-
nate from the corresponding atomic process tij of panel (a) via the
renormalization.

Let us see how the atomic processes tij in Fig. 2a are related to
the effective hopping processes in Fig. 2c34. For example consider

the simplest third neighbor R sites 2 and 3 of adjacent unit cells in
Fig. 2a that becomes possible via atomic hoppings t27 and t37 of
Fig. 2a. The hopping process via the R site 7 is depicted in Fig. 3a.
Assuming an on-site energy offset 2Δ for the R sites with respect
to I site, an electron starting at the site 2 virtually hops to R site 7
and then returns to low-energy sector at site 3. Through this

Fig. 2 Coarse graining of 8Pmmn lattice into honeycomb graph. a The lattice structure, unit cell, and hopping processes in the 8 Pmmn lattice. Inner sites
(I) are denoted by teal circles while the ridge (R) sites are denoted by gray circles. b The Brillouin zone of 8 Pmmn lattice with two tilted Dirac cones. c The
“effective” honeycomb graph of I atoms (low-energy degrees of freedom) obtained by elimination of R sites from the 8 Pmmn lattice. d two representations
(rhombus and hexagonal) of the Brillouin zone of the effective honeycomb structure. The effective second/third neighbor hoppings (green/red) in (c) arise
from the corresponding hopping path in (a) via the process of renormalization (see the section on Renormalization via molecular orbitals). As indicated in
(d), the red (third neighbor) hopping shifts the Dirac cone, while the green (second neighbor) hoppings tilt the cone.

Table 1 Atomic and renormalized hoppings (in eV) for borophene and carbon-substituted borophene.

(atomic) t36 t65 t53 t81 t38 t37 t72 t78
pure borophene B8 2.09 −2.66 2.09 2.09 −1.87 −1.87 −1.87 −2.54
B6C2-I-[C2&C3] 1.93 −2.52 1.96 1.92 −1.52 −1.52 −1.55 −2.34
B6C2-R-[C5&C6] 2.14 −2.33 2.12 2.15 −2.23 −2.21 −2.20 −2.43

(renormalized) t tp tx ~t
--
t ζy kD/kY ζDFTy

pure borophene B8 −2.21 −2.36 −1.07 −1.99 −2.51 0.46 0.48 0.49
B6C2-[C2&C3] −2.37 −1.75 −0.95 −1.62 −2.05 0.36 0.66 0.47
B6C2-R-[C5&C6] −2.05 −2.49 −1.09 −2.24 −2.85 0.59 0.32 0.66

(top) ab initio hopping matrix elements (in eV) for borophene and C-doped borophene obtained from Wannier functions. Conventions for labeling of the hopping matrix elements are given in Fig. 2a.
(bottom) Renormalized parameters of Fig. 2c. ζy is the tilt parameter and kD/kY quantifies the location of Dirac node.
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process it gains the following energy (see Fig. 3b)

tp ¼ Δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t227 þ Δ2

q
< 0; ð1Þ

even in the limit of Δ→ 0 this gives an energy lowering � ffiffiffi
2

p jt27j
that can be regarded as effective hopping between the third
neighbor sites 2 and 3 of the I sublattice. To intuitively
understand this formula, note that in the absence of the I site,
t27= t37= 0, and hence both even and odd combinations of third
neighbor atomic orbitals 2j i± 3j i remain inert. But once the inner
site is present, the atomic hopping t27 causes a coupling of 7j i
with the even-parity state 2j i þ 3j i, leaving the odd parity state
2j i � 3j i decoupled at zero energy. The coupling with the even
parity combination provides a channel to lower the energy given
by the effective hopping in Eq. (1). Furthermore, in the limit of
Δ≫ ∣t27∣ the above formula reduces to the perturbatively
appealing form �2t227=Δ. For pedagogical details of the above
computation, please refer to Supplementary Note 3.

As a second example, consider the I site 3 in Fig. 2a and the same
site in the unit cell above it (that we denote by 30). These sites will
be second neighbor on the coarse grained lattice and there are two
hopping pathways 3 ! 6 ! 5 ! 30 and 3 ! 8 ! 7 ! 30 con-
necting them that are denoted by light and dark green dashed lines
in Fig. 2a. The process of the calculation of the effective hopping
amplitude 3 ! 30 is similar for the above two paths. So we focus on
the first one. In principle one must consider the energy gained by
the lowest molecular orbitals formed by the above chain of sites.
This has been done in Supplementary Note 3. The end result allows
for a nice and intuitive interpretation depicted in Fig. 4(a–c): First,

due to hopping t65, the R sites 5 and 6 form bonding and anti-
bonding molecular orbitals denoted by ϕ1

�� �
and ϕ3

�� �
in Fig. 4a.

Then as depicted in panel (b), an electron gains energy by virtually
hopping via the anti-bonding orbital ϕ3

�� �
whose energy is now

offset by t65+ 2Δ. The hoppings connecting site 3 and 30 to ϕ3
�� �

are
t65=

ffiffiffi
2

p
where the

ffiffiffi
2

p
factor comes from the normalization

ϕ3
�� � ¼ ð ϕ5

�� �� ϕ6
�Þ= ffiffiffi

2
p

. In the final step as shown in Fig. 4c, the
even-parity combination of 3j i and 30j i is mixed with ϕ3

�� �
to

give an energy gain Eeven
� ¼ ðt56=2þ ΔÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt56=2þ ΔÞ2 þ t263

q
.

A similar contribution arises from the second path. Adding the
two contributions we obtain the total renormalized hopping ~t of
Fig. 2c as

~t ¼ t56 þ t87 þ 4Δ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t56
2
þ Δ

� �2

þ t263

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t87
2
þ Δ

� �2

þ t273

r ð2Þ

in the above formula, the hopping parameters t65 and t87 are
dominantly contributed by the px and pz orbitals as the intensities
of the px, pz orbitals in the second row of Fig. 1e are dominant,
while py orbital is faint. Similarly the two other renormalized
hopping parameters tx and �t can be computed. For details please
refer to Supplementary Information (SI). where we have shown
that the elimination of higher energy states actually corresponds to
the above simple molecular orbital analysis.

Fig. 3 Effective 3rd neighbor hopping tp via the “stepping stone” sites. a Virtual hopping via the ridge site 7 generates an effective hopping tp between 2
and its third neighbor site 3—i.e. site 3 in the adjacent unit cell in Fig. 2(a). b The odd parity combination of 2 and 3 remains decoupled, but the even parity
combination hybridizes with ridge site to gain energy. 2Δ is difference of atomic on-site energy.

(a) 

0 

(c) 

Inner 

ridge 

(b) 

Fig. 4 Effective 2nd neighbor hopping ~t via “stepping stone” sites. a Formation of bonding ϕ1
�� �

and anti-bonding ϕ2
�� �

orbitals between the ridge atoms 5
and 6. b Effective hopping ~t between second neighbor inner sites 3 and 30 can be formed by virtual hopping via the anti-bonding orbital ϕ3

�� �
of two ridge

atoms. 2Δ is difference of atomic on-site energy. E0 is atomic on-site energy of 3j i and 30
�� �

and it is set to zero. c Energy diagram after the formation of
molecular states which connect B3 to one of its successive third nearest neighbors through antibonding orbitals.
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This is how the renormalized parameters of the coarse grained
honeycomb graph model in the bottom part of Table 1 are
computed from the ab initio data of the top part of the table. Note
that if instead of 8Pmmn structure, we had a simple honeycomb
lattice (such as in graphene), such a large values of second or third
neighbor hopping given in Table 1 would be unthinkable as
hopping between the atomic orbitals exponentially decays with
distance. Therefore the virtual hopping via the ridge sites attaches a
great importance to them as providers of channels for energy gain
and ultimate formation of renormalized hoppings on a coarse
grained lattice of inner sites. Furthermore, this is an example of
how the molecular orbital play a significant role in the formation of
longer range hoppings on the decimated 8 Pmmn lattice.

Effective coarse-grained model. Now that we have identified the
pz orbitals residing at the inner sites as the low-energy degrees of
freedom, and have computed various renormalized hoppings
between second and third neighbors, we are ready to write down
a physically clear low-energy effective model that will straight-
forwardly demonstrate how the renormalized parameters tp; tx;~t
and �t can provide information about the position and the amount
of the tilt.

The first neighbor hoppings denoted by black arrows in Fig. 2c
are present even when there are no R sites. In the two-
dimensional Hilbert space of A and B sublattice of such a
honeycomb lattice, these hoppings contribute the usual off-
diagonal term F0ðkÞ ¼ �∑α¼1;2;3e

ik:δα to the Bloch Hamiltonian,
where the sum over α runs over three first neighbors in Fig. 2c.
This is responsible for the formation of a pair of upright Dirac
cones similar to graphene. Slight anisotropy of the honeycomb

lattice of R sites will amount to a shift in the location of the Dirac
cone32 which is irrelevant for our purposes. For concrete
calculations, we assume a regular effective honeycomb lattice of
bond length a for which the Dirac nodes in the rhombus BZ are
at K ±

b ¼ 2π
3a ð̂i± 1ffiffi

3
p ĵÞ23.

Next let us consider the third neighbor hoppings denoted by
red arrows in Fig. 2c labeled by tp (superscript “p” for pseudo, as
they give rise to pseudogauge fields that shift the location of the
Dirac node in opposite directions) and tx (superscript “x” to
emphasize the role of px orbitals of R sites). They contribute
another off-diagonal term given by ¼ FxpðkÞ ¼ tpe2iakx þ
2txe�iakx cosð ffiffiffi

3
p

akyÞ to the Bloch Hamiltonian. Expanding this
form factor around the Dirac nodes K ±

b above, gives rise to (i) a
shift ΔkD= 2(tp− tx)/(∓ 3at ± atx) of the Dirac node, where t is
the nearest neighbor hopping (assumed to be 1) and (ii)
anisotropy in the Fermi velocity given by vFx ! vFx 1þ 4tpþ2tx

3t

� �
and vFy ! vFy 1� 6tx

3t

� �
. Therefore the first and third neighbor

hoppings establish the location of the (still upright) Dirac cone
and determine its Fermi anisotropic velocities.

Now let us focus on the second neighbors (green arrows) in
Fig. 2c that are the root cause of the tilt formation7. Since these
hoppings are driven via virtual hopping through different
arrangements of molecular orbitals, there are two types of them
denoted by solid (�t) and dashed (~t) green lines. These hoppings
being second neighbor, connect two atoms on the same sublattice,
and therefore contribute to the diagonal terms, namely AA and
BB components of the effective 2 × 2 Hamiltonian matrix. Among
the matrices σμ with μ= 0…3, only σ0 and σz can contribute
diagonal terms. So now one has to decide whether these diagonal
terms come with the same sign (σ0 term→ tilt) or opposite signs

Fig. 5 Manipulation of the tilt of Dirac cone by carbon substitution in 8 Pmmn borophene. a Top view of crystal structure of B6C2-R-[C5&C6] and b its
Brillouin zone. The red circles denote carbon atoms. c Density functional theory with Perdew-Burke-Ernzerhof (DFT-PBE) band structure of B6C2-R-
[C5&C6], d its orbital-projected band structures for two atoms and (e) its three dimensional reconstruction. f–j The same as (a–e) for B6C2-I-[C2&C3].
The horizontal arrows in panels c and h indicate the direction of the displacement of the Dirac node with respect to the parent B8. The vertical arrows in
a and f show the direction of movement of the lattice sites upon carbon substitution.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01161-9

6 COMMUNICATIONS PHYSICS |            (2023) 6:46 | https://doi.org/10.1038/s42005-023-01161-9 | www.nature.com/commsphys

www.nature.com/commsphys


(σz term→ gap). There are two ways to see that this term must be
proportional to the σ0: (i) Analysis of the irreducible representa-
tions and compatibility relations of the original 8Pmmn structure
in Fig. 1d shows that the crossing of the red bands is protected by
the glide elements of the 8 Pmmn lattice (see Supplementary
Note 1 for details). Since the effective theory has to obey this
protection against gap opening, the σz term is ruled out. (ii)
Consider the renormalized lattice itself and focus on the solid
green line in Fig. 2c. If the hopping between 1 and 3 in Fig. 1a
contributes to AA term, the hopping between 2 and 4 contribute
to BB term. Both these contributions arise from the pz orbitals of
these atoms via intermediate hopping through pz orbital of atom
5. Apparently for pz orbitals the “northwest” (1→ 5→ 3) and
“northeast" (4→ 5→ 2) hoppings are identical. Similar argu-
ments holds for the dashed green line in Fig. 2c. In this case AA
(BB) term is generated by 3→ 6→ 5→ 3 (2→ 6→ 5→ 2) path.
Again the px orbitals of the 5, 6 atoms symmetrically connect
3 ! 30 and 2 ! 20 (remember 30 is the same as 3 but in adjacent
unit cell. Similarly for 20.), thereby giving identical AA and BB
terms in the effective Hamiltonian.

Therefore the effective Hamiltonian becomes (for more details
see Supplementary Note 2)

Heff ðkÞ ¼
f tiltðkÞ f ðkÞ
f �ðkÞ f tiltðkÞ

	 

; f ðkÞ ¼ FxpðkÞ þ F0ðkÞ;

f tiltðkÞ ¼ 2~t cosð ffiffiffi
3

p
akyÞ þ 4�t cosð3akx=2Þ cosð

ffiffiffi
3

p
aky=2Þ:

ð3Þ

Taylor expanding the diagonal ftilt term around the Dirac node
formed by off-diagonal terms gives,

ζx ¼ 0; ζy ¼ ± 2
~t ��t
t

; ð4Þ

where ± corresponds to the valley around which the expansion is
performed.

The above equation indicates that the tilt arises from the
difference of the second neighbor hoppings ~t and �t that in turn
are generated via the px and pz orbitals of the R atoms. An
immediate suggestion of the above model is to (partially)
replace the R-site boron atoms by carbon atoms to see whether
the tilt is changed or not. In Fig. 5(a–j) we have replaced two of
the boron atoms with C atoms. For this purpose there are two
choices: (i) To place a carbon dimer on the R sites as in the
panel (a) or (ii) to place the carbon atoms in the I sites as in
panel (f). The results are summarized in Table 1. For case (i),
the location of the Dirac node is shifted towards the Γ point and
its tilt increases. Placing carbon atoms in the R sites shifts the 5
and 6 sites to higher energies, thereby generating larger ~t and �t
(see Table 1) that ultimately increases the tilt from the ζy= 0.46
of the pristine borophene to ζy= 0.59 in B6C2-R-[C5&C6]. Our
picture provides also a way to decrease the tilt parameter. In
this case, the hybridization of the pz orbitals of sites 2, 3 with the
R sites (5, 6) reduces as in Table 1 and hence the resulting �t and
likewise ~t are scaled down, thereby reducing the tilt to 0.36
in B6C2-I-[C2&C3]. The above values of the tilt ζy are
calculated based on Eq. (4) and as detailed in Supplementary
Note 4, are in good agreement with the corresponding values
directly extracted from DFT bands.

As shown in Supplementary Fig. 6 of Supplementary Note 4,
for doping of two carbon atoms into the structural unit of B8, the
R-site configurations (c) and (k) have the lower energy than all
other configurations, with staggered configuration (k) having
slightly lower energy than (c). For a perfect (translationally
invariant) doping of two C into the 8 Pmmn borophene structure,
the changes in the tilt are discrete. However, the concentration of
C atoms can be continuously varied. Statistical averaging for a
concentration x that continuously varies between 0 and 2/8 is

expected to generate a continuously varying tilt. The dominant
configurations will be the R-site dimers and staggered R-site
configurations of panel (c) and (k) of Supplementary Fig. 6. The
lack of perfect backscattering of Dirac electrons is expected to
protect the Dirac cone against the Anderson localization.

Conclusions
Based on our ab initio calculations, we have identified the pz
orbitals of the I sites as real space sublattice on which the low-
energy degrees of freedom in 8 Pmmn lattice reside. The effective
hoppings between these sites are obtained via renormalization
that encodes the virtual hopping via R-sites (Supplementary
Note 5). This gives a physically clear picture of the formation of
the tilt in two-dimensional Dirac cone of 8 Pmmn borophene. In
our picture, tilt arises from a competition between two renor-
malized hoppings ~t and �t between the second neighbor I-sites.
The former involves virtual hopping via two R sites (and 2px
orbitals of the R sites), while the latter involves one R site. This
builds in a natural difference between �t and ~t. That is why the
pristine borophene has a substantial tilting. Within this picture it
is natural to expect that replacing the ridge (inner) atoms by C
increase (decreases) the tilt. The rest of the effective hoppings
determine the location of the (protected) Dirac node and the
anisotropy in the Fermi velocity.

The logic of our work can be applied to other SGs to discover
more GQM within a class of 2D materials that afford to provide a
“parent” upright Dirac cone: Molecular orbitals in certain SGs
can mediate longer range hoppings on a backbone lattice of Dirac
fermions by promoting it to appropriate graph. The resulting
graph in turn deforms the Minkowski spacetime of the Dirac
fermions into a metric involving spatio-temporal elements. The
ability to tune the tilt parameter is tantamount to controllability
of the ensuing solid-state spacetime structure that emerges at long
distances. Dirac materials subject to “gravitational” (i.e. geo-
metric) disorder35,36 find their salient materialization in the
present context when the carbon is randomly substituted for
boron. Assuming a doping fraction x of carbon atoms that can be
continuously tuned, the most favorable configurations for the C
atoms are R-site dimers and staggered R-site (Supplementary
Fig. 6c, and k, respectively). Random substitutions of this form
are expected to lead to continuous variation of tilt as a function of
x. The absence of backscattering for Dirac fermions protects it
against Anderson localization37.

The relation between certain graphs and their continuum limit
as space geometries is well known38–40. In the present context,
each edge of the graph is associated with a hopping energy
(frequency) scale. This is how space and time are mingled and a
spacetime geometry (rathern than space geometry) emerges at
long distances. This is how a solid-state platform can promote a
simple lattice that supports Dirac fermions into a rich graph
where vierbeins can be attached to the Dirac fermions41,42. This
enriches the physics of Dirac materials and promotes them to
GQMs where a variety of spacetime geometries can be fabricated
that might not even have any analogue in the cosmos. On the 2D
materials side, there will be a plenty of room to explore the effects
of “geometric” forces or even synthesise non-Abelian gauge
fields43 that are likely to lead to better control in electronic/optical
devices, as the effects of spacetime curvature44,45 can be much
stronger GQMs. Furthermore, the geometry of our emergent
spacetime in GQMs roots in the Coulomb forces that are much
stronger than the gravitational forces and unlike the gravity, the
Coulomb forces can be both attractive and repulsive. Therefore
the geometric structure of GQMs seems to be much richer than
the Einsten’s gravity. In three dimensional tilted Dirac/Weyl
fermions the resulting geometric theory can be even more
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interesting: The fermions in such materials are chiral and hence a
chiral geometric theory can be relevant to GQM. The develop-
ments in GQMs will allow us to emulate aspects of spacetime
geometry that is not easily accessible in the cosmos. GQMs have a
potential to equip Dirac fermions with types of vielbeins41 that
are beyond the spatial veilbeins of the strain/dislocation
paradigm42.

Methods
For DFT calculation we have used pseudopotential Quantum Espresso code
based on plane wave basis set within the generalized gradient approximation in
the Perdew-Burke-Ernzerhof (PBE) parameterization46. Simulation of bor-
ophene rectangular unit cells is based on the slab model having a 25 Å vacuum
separating slabs. We also consider monolayer of 8Pmmn structure, where some
of the B atoms are substituted by C atoms in the form of B8−xCx (x= 0, 1, 2).
The obtained structural properties after the ionic relaxations such as lattice
parameters, x, y, and z component of the B and C atoms in crystal coordinates
are shown in Supplementary Table II of SI for pure borophene (B8) and C-doped
systems B8−xCx. The uniform k-point grids of 24 × 24 × 1 are used for the self-
consistent field calculations of all systems. The Kinetic energy cut-offs for the
wavefunctions and the charge density are 850 and 8500 eV, respectively. For
each systems, the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm
is used to relax the internal coordinates of the B and C atoms and possible
distortions with convergence threshold on forces for ionic minimization as small
as 10−4 eVÅ−1. Also the generation of new edges on the honeycomb graph is
based on the standard molecular orbital theory that can also be formulated in
the language of the renormalization. The protection of the Dirac node can be
directly seen by looking into irreducible representation of the little groups. The
full pedagogical details of the above procedure is presented in Supplementary
Notes 4 and 5 of the SI.

Data availability
The details of calculations that support the findings of this study are available in the
supplementary information (SI). Any other details if required, are available from the
corresponding authors upon request.
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