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Fundamental decoherence from quantum
spacetime
Michele Arzano 1,2, Vittorio D’Esposito 1,2 & Giulia Gubitosi 1,2✉

Understanding whether quantum gravitational effects can lead to a fundamental deco-

herence, affecting all systems regardless of their environment, is a long standing open

challenge. Here we provide a rigorous derivation of decoherence within a full-fledged model

of quantum spacetime, encoded by noncommutativity at the Planck scale. Specifically, we

obtain a generalized time evolution of quantum systems in which pure states can evolve into

mixed states. This takes the form of a Lindblad-like time evolution for the density operator

when the action of time translations generator is deformed by the effects of spacetime

noncommutativity. The decoherence time for the evolution of a free particle is used to show

that the Planck mass is the maximum allowed mass for elementary quantum systems.
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The emergence of the classical macroscopic world from the
microscopic quantum realm is a long-standing open pro-
blem, still heavily debated in the physics community and

subject to theoretical and experimental research1,2. Several dif-
ferent mechanisms causing decoherence of quantum systems
have been considered. They are not mutually exclusive, and their
relative relevance might vary depending on the specific physical
setup. The most studied and best understood possibility relies on
the interaction of quantum systems with an environment1,2. The
resulting entanglement between the respective degrees of freedom
leads to the emergence of classical properties for the quantum
system. Growing theoretical evidence3 indicates that gravity
might contribute to environmental decoherence, if one accounts
for the entanglement between the gravitational degrees of free-
dom (either classical or quantum) and those of the quantum
system4–9. Gravity might also induce decoherence via different
mechanisms. In fact, an enticing possibility is that classical or
quantum gravity effects might cause departures from standard
quantum theory, as proposed in the pioneering works10,11. This
type of decoherence is called fundamental, since it would affect
the quantum system independently of its environment. As
opposed to environmental decoherence, where information on
quantum coherence is delocalized in the environment, in the case
of fundamental decoherence such information is lost, since there
is no environment to which it could have been transferred.

Fundamental decoherence may allow us to gain experimental
access to quantum gravity in a regime much below the Planck
scale, for example through nonrelativistic quantum systems and
table-top experiments12–14. This might provide a turning point in
the pursuit for a solid understanding of the interplay between the
quantum realm and gravity.

The possibility that the interplay between quantum and grav-
itational effects can generate decoherence of quantum systems
emerged already in the earliest investigations on quantum gravity.
The original motivation was provided by Hawking’s proposal15

that the evaporation of a black hole evolves pure states into mixed
states. This is at the basis of the so-called black hole information
paradox, which is still nowadays at the center of a heated debate
aimed at establishing whether the evolution of the quantum states
of a black hole and the emitted radiation is unitary16–22. Further
motivation comes from the need to explain the evolution of
quantum vacuum fluctuations generated in the primordial uni-
verse so that they turn into the classical large-scale structures
observed today. How this quantum-to-classical transition can
occur is one of the most pressing open problems in cosmology
and has been the subject of many studies23–28. It is then clear that
establishing the role of gravity in the generation of decoherence
would have far-fetching implications for a number of issues that
lie at the foundations of several areas of physics research.

Several quantum gravity-induced decoherence mechanisms
proposed in the literature relied on heuristic analyses. In parti-
cular, putative properties of spacetime induced by quantum
gravity effects were introduced ad-hoc, based on general ideas
about possible Planck-scale properties of gravity, such as
discretization29, foaminess8,9, stochasticity11,30,31, and funda-
mental uncertainties in length measurements32,33.

In this work, we provide a rigorous derivation of decoherence
within a full-fledged model of quantum spacetime, namely
spacetime noncommutativity34,35. Quantum spacetime refers to a
spacetime whose properties are modified because of quantum-
gravitational effects, see e.g. the review36. While in some models
this might be seen as an abuse of notation, the case of non-
commutative spacetime is perhaps the one where the terminology
is the most accurate, since noncommuting spacetime coordinates
can be described using the theory of operators on a Hilbert space,
see e.g. (refs. 37,38). Spacetime noncommutativity was proposed

already in the early days of quantum mechanics, most notably by
Heisenberg39 and Snyder40, as a means to introduce an effective
ultraviolet cutoff and control the divergences in quantum field
theory without breaking Lorentz symmetries. The idea was later
revived in the 90’s, when it was realized that it provides a fra-
mework to describe the fundamental limitations emerging when
trying to localize an event with a spatial accuracy comparable
with the Planck length, due to the interplay of quantum and
gravitational effects37,41. Over the past twenty years, the relevance
of spacetime noncommutativity for quantum gravity research has
been established on solid grounds: on the one hand it emerges as
an effective description of spacetime in some regimes of string
theory42–44 and loop quantum gravity45–47, and on the other
hand it provides a source of rich phenomenology36,48.

One of the most studied classes of non-commutative spacetime
models is the so-called κ-Minkowski spacetime49, characterized
by noncommutativity between the time and spatial coordinates:

x0; xi
� � ¼ i

κ
xi ; xi; xj

� � ¼ 0 : ð1Þ

Here, κ−1 is a length scale, usually identified with the Planck
length ℓP (unless otherwise stated, we use units such that
c= ℏ= 1). In the following we will take κ > 0. Notice that taking
the opposite sign for κ amounts to considering a different phy-
sical model, which would lead to different implications con-
cerning decoherence.

For our purposes, the most relevant feature of ref. (1) is the fact
that its relativistic symmetries are described by a quantum
deformation of the Poincaré symmetries, encoded by the κ-
Poincaré Hopf algebra50,51. In particular, the time evolution
operator turns out to have a deformed action on the density
operator. This allows us to define a Linblad-like equation52

describing the time evolution of the density operator of a generic
quantum system. We show that this time evolution generally
implies an increase of the linear entropy, signalling decoherence.
Ultimately, decoherence emerges because the time evolution of
quantum systems must not spoil the relativistic invariance of the
non-commutative spacetime. Therefore, the decoherence we
derive within this model is fundamental, in the sense described
above: there is no actual environment or interaction inducing
decoherence; rather, this is due to the properties of spacetime
itself and as such no quantum system can avoid it.

Specializing to the case of a free particle, we obtain the deco-
herence time for a quantum system in the momentum basis. The
decoherence rate is suppressed by the quantum deformation scale
κ and is amplified by increasing values of momenta: the efficiency
of the decoherence process grows with the characteristic energy of
the quantum system. The quadratic momentum dependence of
the decoherence time allows us to obtain intrinsic fundamental
constraints on the mass of elementary quantum systems, which
cannot exceed the quantum deformation scale κ. This shows that
fundamental decoherence limits the size of physical systems for
which quantum properties can be observed. Had the momentum
dependence been different, we would not have been able to derive
such absolute bound. This bound is thus a genuine implication of
quantum spacetime properties.

Results
Deformations of spacetime symmetries. In standard quantum
mechanics, for a quantum system with symmetry under transla-
tions we can define a basis of momentum eigenstates on the
Hilbert space of the system H,

Pi kj i ¼ ki kj i : ð2Þ
For a free particle, these eigenstates can be represented as plane
waves, hxjki ¼ eikμx

μ

. This representation can be extended to the
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dual space H� spanned by bras:

Pi kh j ¼ �ki kh j : ð3Þ
The representation Eq. (3) can be written in terms of the antipode
map S(Pi) connecting the left and right action of Pi on dual states:

Pi kh j ¼ �ki kh j ¼ kh jð�kiÞ � kh jSðPiÞ ; ð4Þ
where

SðPiÞ ¼ �Pi : ð5Þ
Multi-particle states are given by tensor products of the Hilbert
space H. The representation of Pi on a two-particle state is given
by the familiar Leibniz rule, which can be written in terms of a
coproduct map

ΔPi ¼ Pi � 1þ 1� Pi ; ð6Þ
such that

ΔPiðjgi � hj iÞ ¼ ðPijgiÞ � hj i þ jgi � ðPi hj iÞ
¼ ðgi þ hiÞðjgi � hj iÞ : ð7Þ

For a non-commutative spacetime defined by commutators
like Eq. (1) which close a Lie algebra, plane waves are generalized
to non-commutative ordered exponentials : eikμx

μ

:53. The para-
meters appearing in these exponentials are coordinates of a non-
abelian Lie group rather than an ordinary vector space54,55.
Quantum states in the momentum representation are then
labelled by coordinates on the group jkðgÞi, such that the action
of translation generators is given by

PijkðgÞi ¼ kiðgÞjkðgÞi : ð8Þ
The homomorphism property of coordinate functions tells us that
momentum eigenvalues ki(g) obey a deformed, non-abelian,
composition law,

kiðgÞ � kiðhÞ � kiðghÞ≠ kiðhÞ � kiðgÞ � kiðhgÞ ; ð9Þ
and this can be used to define the inverse group element ki(g−1),
such that

kiðgÞ � kiðg�1Þ ¼ 0 : ð10Þ
As a consequence, the antipode and coproduct maps defined
above are deformed, thus encoding a deformation of translational
symmetries. For the analogue of the dual representation Eqs. (3)
and (4) the antipode gives the coordinates of the inverse
momentum group element,

PihkðgÞj ¼ kiðg�1ÞhkðgÞj ¼ hkðgÞj SðPiÞ ; ð11Þ
while the coproduct allows us to establish the total momentum
carried by a two-particle state,

ΔPiðjgi � jhiÞ ¼ kiðghÞðjgi � jhiÞ : ð12Þ
For the specific model we are considering, in which spacetime
noncommutativity is determined by the commutators Eq. (1), the
coproduct and antipodes for translation generators read

ΔP0 ¼ P0 �Π0 þ Π�1
0 � P0 þ

1
κ
PiΠ

�1
0 � Pi ;

ΔPi ¼ Pi � 1þ 1� Pi ;

SðP0Þ ¼ �P0 þ
1
κ
P2 Π�1

0 ; SðPiÞ ¼ �Pi Π
�1
0 ;

ð13Þ

where

Π0 ¼
1
κ
P0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

κ2
PμPμ

r
;

Π�1
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

κ2 P
μPμ

q
� 1

κ P0

1� 1
κ2 P

2 ;

PμPμ ¼ �P2
0 þ P2 ¼ �P2

0 þ PiP
i :

ð14Þ

This particular realization of the deformed generators of
relativistic translations is the translation sector of the so-called
classical basis56 of the κ-Poincaré algebra. In such model only
coproducts and antipodes are deformed, while the commutators
between the generators of space and time translation, boosts and
rotations, i.e. the Poincaré Lie algebra, remain undeformed.

Since the symmetry group relevant for nonrelativistic quantum
mechanics is the Galilei group rather than the Poincaré group, we
consider a nonrelativistic limit of the κ-Poincaré algebra, namely,
the κ-Galilei algebra. This limit is obtained by means of a
standard Hopf-algebra contraction procedure57,58. The speed of
light c is used to rescale both the relevant generators, namely,
space translations Pi and boosts Ni, and the quantum deformation
parameter,

Pi 7!c�1Pi ; Ni 7!c�1Ni ; κ 7!c�2κ : ð15Þ
After taking the limit c→∞, the commutation relations of the
Poincaré Lie algebra give the standard Galilei algebra, while the
following nontrivial structures in the coalgebra sector are
obtained:

ΔP0 ¼ P0 � 1þ 1� P0 þ
1
κ
Pi � Pi ;

SðP0Þ ¼ �P0 þ
1
κ
P2 :

ð16Þ

In order to study the evolution of quantum systems, we use the
familiar G↦− i G procedure to map the abstract elements G of
the κ-Galilei algebra into Hermitian operators that can be
represented on the algebra of operators of a quantum system. We
thus obtain the following coalgebra relations:

ΔP0 ¼ P0 � 1þ 1� P0 �
i
κ
Pi � Pi ; SðP0Þ ¼ �P0 �

i
κ
P2 :

ð17Þ
Notice how under the same G↦− i G transformation the

nontrivial coproducts and antipodes for the translation generators
of the κ-Poincaré algebra become

ΔP0 ¼ P0 � 1þ 1� P0 �
i
κ
Pi � Pi ;

SðP0Þ; ¼ �P0 �
i
κ
P2 ;

ΔPi ¼ Pi � 1þ 1� Pi �
i
κ
Pi � P0 ;

SðPiÞ ¼ �Pi �
i
κ
PiP0 ;

ð18Þ

at first order in κ−1. In particular, we notice that the coalgebra
properties of the time translation generator P0 are the same as
those found for the time generator of the κ-Galilei algebra Eq.
(17). As we will see in the following section, this correspondence
guarantees that the same decoherence produced by the κ-
deformation of the Galilei algebra is also produced by the κ-
deformation of the Poincaré algebra to the first order in κ−1.

Generalized quantum evolution from deformed symmetries.
The deformation of relativistic symmetries described in the
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previous section affects the evolution of quantum systems and
induces decoherence. This can be shown by considering the
action of the generators of translations on the algebra of operators
of a quantum system AH, with H being the Hilbert space of the
quantum system itself.

Usually such action is given in terms of the standard
commutator �; �½ �, namely, via the adjoint action of the algebra
of symmetry generators on AH. When the Lie algebra of
symmetry generators is generalized to a nontrivial Hopf algebra,
the deformed coproducts and antipodes lead to a generalization
of this action given by the quantum adjoint action59. This is
defined by60

ad� � : RG ´AH ! AH ; adG O :¼ id � Sð ÞΔG 	 O ; ð19Þ
where RG is the vector space spanned by the representatives of
the generators of the symmetry algebra, G 2 RG and the ◇
operator is defined by

ða� bÞ 	 O :¼ aO b : ð20Þ
This generalization of the adjoint action reduces to the

standard one when the coproduct and antipode are the standard
ones like e.g. in Eqs. (5) and (6). In fact, given A 2 AH and G
with trivial coproduct ΔG ¼ G� 1þ 1� G and antipode
S(G)=−G, one finds

adG A ¼ ðG� 1� 1� GÞ 	 A ¼ G;A½ � : ð21Þ
In ordinary quantum mechanics, the evolution of the density

operator ρ is given by the (standard) adjoint action Eq. (21) of the
Hamiltonian, generator of time translations, on the density
operator itself:

i ∂tρ ¼ adH ρ ¼ H; ρ
� �

: ð22Þ
This is the standard Liouville–von Neumann equation.

The generalised adjoint action Eq. (19) can be used to define
the evolution equation for the density operator of a quantum
system when the symmetry generators are those of the κ-Galilei
Hopf algebra described in the previous section. Assuming that the
time evolution is given by the time translation generator P0, we
define

i ∂tρ :¼
1
2

adP0
ðρÞ � adP0 ðρÞ

h iy� �
: ð23Þ

This reproduces the standard evolution Eq. (22) for ordinary time
translations with standard antipode and coproduct. Notice that
we considered the combination of adP0

ðρÞ and ½adP0
ðρÞ�y in Eq.

(23) so that the evolution preserves the Hermiticity of ρ.
The evolution Eq. (23) encodes an equation of Lindblad

type52,61:

∂tρ ¼ �i H; ρ
� �� 1

2
gmn QmQn ρþ ρQmQn � 2Qm ρQn

� �
;

ð24Þ
where Qn form a basis of Hermitian operators. Indeed, after some
algebra one can show that

∂tρ ¼ �i P0; ρ
� �� 1

2κ
P2ρþ ρP2 � 2Pi ρP

i
� �

; ð25Þ

which reproduces (24) for gmn= κ−1δmn, H= P0 and Qm= Pm.
The fact that the evolution Eq. (25) takes the form Eq. (24), with a
real and positive-definite matrix gmn, guarantees that the operator
ρ is a good density operator at any time, namely, Eq. (25)
preserves the positivity and the Hermiticity of ρ. Notice that the
link between non-commutative deformations of relativistic
symmetries and generalized time evolution for quantum systems
was noticed by one of the authors a few years ago60. However, in

ref. 60 the time evolution is not of the Lindblad type and
conservation of the positivity of ρ is not guaranteed.

Equation (25) describes the evolution of the density operator of
a quantum system living on a non-commutative spacetime and
whose symmetries are those of a quantum deformation of the
Galilei algebra: the κ-Galilei algebra. Notice that with the same
definition of the time evolution given in (23), using the deformed
coalgebra structures in Eq. (18), the same equation is obtained to
the first order in κ−1 when symmetries are given by the κ-
deformation of the Poincaré algebra rather than the Galilei
algebra. Notice also that the key ingredient to obtain the
decoherence described by Eq. (25) is a deformation of time
translation symmetries. However, similar decoherence mechan-
isms might arise in other models of spacetime noncommutativity
if time evolution is governed by a Hamiltonian with a deformed
coproduct and antipode.

By studying the evolution of the linear entropy

SðtÞ ¼ 1� Tr ρ2
	 


; ð26Þ
we can show that the density operator converges asymptotically
to the maximally mixed state proportional to the identity, with all
the off-diagonal terms being washed out by the evolution.

The time derivative of Eq. (26) gives

d
dt
S ¼ �2Tr ρ ∂tρ

	 


¼ 1
2κ

Tr ρðP2ρþ ρP2 � 2 Piρ P
iÞ�	 


;

ð27Þ

where we used Tr ρ P0; ρ
� �	 
 ¼ 0. This result can be rewritten as

d
dt
S ¼ 1

κ
∑
i
Tr OiO

y
i

n o
≥ 0 ; ð28Þ

where Oi :¼ ρ; Pi

� �
. Therefore, we see that Eq. (25) indeed leads

to an increase of the entropy (or a decrease of the purity) of the
system.

In order to give a more detailed characterization of the
nonunitary evolution, we focus on a free nonrelativistic particle,
and use P0 as time evolution operator:

d
dt ρpq ¼ �i EðpÞ � EðqÞ� �� 1

2κ ðp� qÞ2� �
ρpqðtÞ ; ð29Þ

where ρpq :¼ hEðpÞ; pjρjEðqÞ; qi. The solution of this equation
gives the time evolution of the density operator

ρpqðtÞ ¼ ρpqð0Þ exp �it EðpÞ � EðqÞ� �� t
2κ

ðp� qÞ2
h i

: ð30Þ

The diagonal elements are conserved, while the off-diagonal
elements are characterized by an exponential damping factor,
which realises a localization in momentum. This indicates a
decoherence process in the superselected62 basis of momenta.

For this density operator the linear entropy reads

SðtÞ ¼ 1�
Z

d3pd3qjρpqð0Þj2 e�
t
κðp�qÞ2 : ð31Þ

Expanding asymptotically around t→∞ we find

SðtÞ 
 1� πκ

t

� �3
2

Z
d3pρppð0Þ2 ; ð32Þ

This quantity converges to 1 as t→∞, making the density
operator a maximally mixed state.

The decoherence time of this process is given by Eq. (30):

τD ¼ 2 κ

ðp� qÞ2 : ð33Þ

We can rewrite the time evolution of the density operator Eq. (30)
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in terms of the decoherence rate Γ ¼ τ�1
D as

ρpqðtÞ ¼ ρpqð0Þe�itΔE�Γt : ð34Þ
The decoherence rate is suppressed by the quantum deformation
scale κ (which, as we mentioned, is taken to be of the order of the
Planck energy scale, κ ~ EP) and is amplified by increasing values
of p− q, in such a way that the decoherence process becomes
increasingly more efficient as the energies involved approach the
Planck scale.

We provide a comparison with other mechanisms of gravita-
tional decoherence proposed in the literature in Table 1. To allow
for such a comparison we reinstate units of ℏ, set κ= EP and
consider parallel momenta. Notice that this provides an upper
bound on the actual decoherence time, since τD ≤ τD(p∥q). Then
we can write the decoherence time as

τDðpkqÞ ¼
_ EP

E0ðδ
ffiffiffi
E

p Þ2 ð35Þ

where E= p2/2m and E0=m.
The decoherence time Eq. (33) can be used to derive

fundamental constraints on the characteristic scales of quantum
systems. To do so, we observe that if a system is in a state with a
given energy spread δE, the state is characterized by a lifetime63.

τc ≳
1
δE

: ð36Þ

Decoherence cannot be observed if the decoherence time is longer
than the lifetime of the state of the system. Thus, for decoherence
to be observable, the decoherence time and the lifetime must
satisfy the condition τD≤ τc. Conversely, if we do not observe
decoherence in a given quantum system prepared in a state with
energy spread δE we have the opposite bound, τD ≥ τc≳ (δE)−1,
namely,

ðδpÞ2
δE

≲ 2 κ : ð37Þ

For quantum states whose wave function is localized in spatial

momentum,
hpij j
δ pj j � 1 (from which δ p2

ðδpÞ2 
 1), we have from Eq.

(37) that

m≲ κ : ð38Þ
This bound sets a limit on the mass of quantum systems.
Specifically, it is not possible to create states highly delocalized in
the position for quantum systems with mass greater than the
Planck scale κ. This can be regarded as a more rigorous derivation
of an expected feature of quantum-gravitational physics, namely,
that the Planck mass constitutes a limit on the mass of quantum
mechanical systems, as it is shown from heuristic arguments for
instance in ref. 33. Notice that had the momentum dependence in

Eq. (33) been different, e.g. linear, we would not have been able to
derive such absolute bound. This bound is a genuine implication
of quantum spacetime properties.

Before closing this section let us remark that the limit Eq. (38)
should be taken seriously only for elementary quantum systems.
For composite systems it has been suggested that the effects of
symmetry deformation might be suppressed by some power of
the number of constituents64–66.

Discussion
We showed that a Lindblad equation arises naturally as the
evolution equation of quantum systems living in a non-
commutative spacetime, where the symmetry generators are
deformed and described by nontrivial Hopf algebras. This leads to
a fundamental decoherence mechanism by which the density
operator of a quantum system asymptotically approaches a
maximally mixed state. While the decoherence mechanism we
derived is due to a modified quantum evolution and not to the
presence of an environment, still the evolution equation we found
is described by a Lindlad equation, which is usually associated to
environmental decoherence. It would be interesting to under-
stand what type of environment could lead to such a Lindblad
equation. This might also provide insights into the physical origin
of the time reversal asymmetry emerging in our model, see Eq.
(30), which is usually an imprint of environmental decoherence.

Our analysis shows that there exists a consistent framework
modelling putative quantum spacetime effects in which pure
quantum states can evolve into mixed states. This fact is parti-
cularly suggestive when seen from the perspective of the black
hole information paradox that we mentioned in the introduction.
Indeed the possibility that the evolution of quantum fields on a
black hole background might be not given by ordinary quantum
evolution has been dismissed over the years as problematic and
lacking links with fundamental theories of quantum gravity67. A
natural development on this side would be to check whether the
nonunitary evolution we derived can be recast in the form of a
qubit toy model of black hole evaporation68 thus providing a fully
worked out model of nonunitary black hole evolution derived
from first principles.

The fundamental decoherence effect we uncovered might also
be instrumental in explaining the quantum-to-classical transition
of primordial cosmological perturbations. In fact, the Fourier
modes of such perturbations are expected to have Planckian
energy at sufficiently early times. At these scales, the decoherence
time Eq. (33) is of the order of the Planck time, thus making the
decoherence process very effective. In this scenario, one does not
need to invoke any of the additional decoherence mechanisms
that have been considered in the past, such as the interaction of
the perturbations with external fields.

Besides the possible implications for the foundational issues
just discussed, the emergence of fundamental decoherence might
open up several windows to experimentally access the quantum
gravity regime. Notice that the decoherence process discussed in
this work is not expected to replace the experimentally well-
established environmental decoherence62,69, and in fact it pro-
vides a negligible contribution in typical experimental setups
devised to study this. However, it can become relevant and
observable in specific regimes, as discussed below.

One example of such experimental opportunities concerns
tabletop experiments with optomechanical cavities14,32. In these
setups, two cavities are realized by means of four mirrors, one of
which is movable. Inside the cavities, two atoms or molecules in a
harmonic potential are prepared in an entangled state and are hit
by an external laser source (realizing a Raman single photon
source). The excitations of these sources lead to single photon

Table 1 Comparison of the behaviour of the decoherence
times characterizing different gravitational decoherence
scenarios, compared to the model studied in this work
(last line).

Physical source of decoherence Decoherence time

Stochastic perturbations with noise temperature
Θ30

_
kBΘ

E2P
E δE

Perturbation around flat spacetime31 _ EP
ðδEÞ2

Thermal background of gravitons at temperature T7 _
kBT

E2P
ðδEÞ2

Fluctuating minimal length32 _ E5P
E20ðδE2Þ

2

Deformation of symmetries (current model) _ EP
E0ðδ

ffiffi
E

p
Þ2
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excitations and the radiation so obtained in the cavities allows to
study the vibrational modes of the oscillators. In the presence of
an environment, entanglement between the two oscillators is
degraded with a rate Λheat ¼

kBT
_Q from mechanical heating at

temperature T; the presence of additional gravitational deco-
herence mechanisms would increase such a rate to Λheat+Λgrav,
where in our case Λgrav ¼ ðδpÞ2

2_MP
. Adapting the analysis presented

in ref. 32 to the peculiarities of the fundamental decoherence
mechanism we uncovered, we find that experimental parameters
that will be achievable in the nearby future, like temperatures
T ~ 10mK and quality factors Q ~ 106 70,71, will allow to reach
Planck-scale sensitivity on the quantum deformation scale,
κ ~ 1019 GeV, for quantum systems with mass M ~ 10−28 Kg.

Another physical framework that can allow to test the relati-
vistic version of our model, based on a quantum deformation of
the Poincaré algebra, which we showed that produces the same
quantum evolution to the first order in κ−1, involves modifica-
tions of the oscillation rates for cosmological neutrinos. Generic
decoherence mechanisms induce modifications on such rates72–74

that are driven by the exponential damping factor e−Γ t. Such
factor starts giving a significant contribution to the oscillation
probability roughly when e−Γ t ~ e−172. In our case
Γ ~ κ−1(δp)2 ~ κ−1(δm)2, see Eq. (34) and the discussion around
it. Taking κ ~ 1019 GeV and (δm)2 ~ 10−3 eV2(ref.74), we find
Γ ~ 10−40 GeV. Therefore the e−Γ t factor starts producing rele-
vant effects on neutrino oscillation when they propagate over
cosmological times t ~ 1015 s ~ 108 yr.

Such opportunities to look for experimental signatures of the
interplay between quantum and gravitational effects are not to be
missed given their potential significant impact in the quest for a
theory of quantum gravity.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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