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Tunable Dirac points in a two-dimensional non-
symmorphic wallpaper group lattice
Miguel A. J. Herrera 1,2✉ & Dario Bercioux2,3✉

Non-symmorphic symmetries protect Dirac nodal lines and cones in lattice systems. Here,

we investigate the spectral properties of a two-dimensional lattice belonging to a non-

symmorphic group. Specifically, we look at the herringbone lattice, characterized by two sets

of glide symmetries applied in two orthogonal directions. We describe the system using a

nearest-neighbor tight-binding model containing horizontal and vertical hopping terms. We

find two nonequivalent Dirac cones inside the first Brillouin zone along a high-symmetry path.

We tune these Dirac cones’ positions by breaking the lattice symmetries using on-site

potentials. These Dirac cones can merge into a semi-Dirac cone or unfold along a high-

symmetry path. Finally, we perturb the system by applying a dimerization of the hopping

terms. We report a flow of Dirac cones inside the first Brillouin zone describing quasi-

hyperbolic curves. We present an implementation in terms of CO atoms placed on the top of

a Cu(111) surface.
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S ince the isolation of single-layer graphene, there has been a
growing interest in analyzing two-dimensional (2D) sys-
tems with low-energy physics described by a Dirac-like

electronic dispersion1,2. In addition to graphene, systems of
interest are also 3D topological insulators1,3,4 and other 2D
materials beyond graphene5,6. The quest for systems hosting
Dirac-like features is not only within condensed matter but
extended to cold-atoms7 and electronic quantum simulators8,9.
Most of these systems share the property of having an underlying
crystal structure characterized by a symmorphic space group10.
However, there has been an increasing research interest in Dirac-
like physics in non-symmorphic crystalline systems10–19. A non-
symmorphic crystalline system contains a fractional lattice
translation combined with either a mirror reflection (glide plane)
or a rotation (screw axis). This results in a band-folding with
crossings inside the first Brillouin zone (FBZ) boundaries that are
protected against hybridization17,20–24. In general, a peculiar
property of Dirac cones (DCs) is that they can merge into a so-
called semi-Dirac (SD) point2,25–28. These points are dis-
tinguished by an energy dispersion linear in one direction and
parabolic in the other. They are particularly interesting for their
topological29 and anisotropic transport properties30.

In this work, we investigated the spectral properties of a non-
symmorphic wallpaper group lattice: the herringbone lattice
(HL)31, characterized by a pair of DCs. By breaking some of the
system’s symmetries, we can tune the position of these DCs
within the FBZ to merge them into an SD one and eventually gap
them. We achieve similar results by modifying the internal
strength of the hopping terms. Moreover, we show that this type
of modification leads to the appearance of features similar to a
system characterized by a set of parallel Su-Schrieffer-Heeger
(SSH) chains32–35. In refs. 33,34, the authors consider inclined
SSH chains in a square lattice model. For a certain choice of
parameters, the system presents a non-symmorphic
symmetry33,34. However, the HL already possesses non-
symmorphic symmetries for homogeneous hopping terms,
which introduces additional constraints to the bands of the sys-
tem. Specifically, it possesses band degeneracies along high-
symmetry paths. We also find that the SD unfolds along a high-
symmetry path for a specific set of parameters. This unfolding
results in a nodal line presenting linear and parabolic dispersion
along parallel lines in the FBZ.

Results
Model Hamiltonian and spectrum. The HL contains four sites in
its unit cell, all with coordination number 3 (Fig. 1a). The lattice
vectors are a1= (1, 1) a0 and a2= (−2, 2) a0, where a0 is the
interatomic distance. We label each unit cell by (m, n)=ma1+
na2. The HL can be regarded as a square lattice with each site
missing a link; thus, we classify the four sites in the unit cell
according to the remaining link: rmn and lmn along the horizontal
direction with a link to the right and left, respectively, and umn

and dmn along the vertical direction with a link upwards and
downwards, respectively. Placing s-like orbitals, the HL nearest-
neighbor tight-binding Hamiltonian reads

Ĥ ¼ ∑
hm; ni

hα; α0i 2 r; d; u; lf g

tα;α0 c
y
α;mncα0;mn þ εαc

y
α;mmcα;mm

� �
ð1Þ

where tα;α0 is the hopping amplitude between nearest-neighboring
sites, and cα,mn(cyα;mn) annihilates (creates) an electron on a lattice
site α; α0 2 fr; d; u; lg at unit cell (m, n). In Eq. (1), the symbol
〈…〉 indicates nearest-neighbor lattice sites. The last term is the
on-site εα: we will use it to break some of the HL symmetries

selectively. The hopping terms can be classified into intra-cell,
where we only find horizontal terms, and inter-cell hoppings,
where we find both horizontal and vertical terms.

Neglecting the on-site energies and introducing ki= k ⋅ ai, we
can Fourier transform the HL Hamiltonian (1) as follows

Ĥ ¼ ∑kΨ̂
y
khðkÞΨ̂k , where

hðkÞ ¼ 0 qðkÞ
qðkÞy 0

� �
; ð2aÞ

qðkÞ ¼ t0
1þ e�ik1 eik2

e�ik1 1þ e�ik1

 !
: ð2bÞ

We have set tα;α0 ¼ t0 for simplicity. Figure 1b shows the
reciprocal space associated with the HL. With the following
choice of basis Ψk ¼ ðψr;ψd;ψu;ψlÞT the Hamiltonian in (2a)
fulfills the chiral-symmetry operator C ¼ τz � σ0. This operator
hints at an interpretation of the HL as two coupled SSH chains,
each with its chiral symmetry33,34. The chains are formed by pairs
of r, u and d, l, respectively. The chains are connected along the
horizontal direction via u, d atoms and along the vertical
direction via r, l atoms (Fig. 1a). Thus, in the operator C, the
τx,yz represent the intrachain degrees of freedom, while σx,y,z
represent the interchain ones. This will be addressed further in
the text when breaking the various symmetries. The energy
spectrum associated with Eq. (2a) reads:

Eα;βðkÞ ¼ αt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 þ 2 cos k1 þ 4β cos

k1
2

� �
cos

k2
2

� �s
ð3Þ

with α, β= ±. It presents four energy-symmetric bands with
several features (Fig. 1c). To start, it displays DCs between bands
2 and 3 located at K±= ±b1/3, along a high-symmetry path17.
These cones are characterized by a ±π Berry phase. Additionally,
we observe flat nodal lines along SXS lines and dispersive ones
along SYS, both between bands 1 and 2 and 3 and 4. All these
features are rooted in the symmetries of the HL: it belongs to the
pgg wallpaper group31. This group is non-symmorphic, meaning
that some symmetry operators do not leave any point of the space
invariant since they include fractional translations along lattice
vectors, called glide symmetries. There are two sets of glides
acting on different sites; thus, we name them with two indices,
Giα, where i corresponds to the index of the lattice translation
involved, and α= {A, B} depending on whether the r lattice site is
closest to the mirror (see Fig. 1a). Using Seitz, symbols36, these
glides are G1α ¼ m01j 12 0

� �
and G2α ¼ m10j0 1

2

� �
(Fig. 1a). The

unit cell of the HL contains four maximal Wyckoff positions, and
none of the glide planes go through them. However, glides G2α

� �
do go through the lattice sites, while G1α

� �
do not (Fig. 1a). This

affects how lattice sites transform under these symmetries: when
applying the set of glides G1α

� �
, no matter which symmetry

operation is performed first (mirror or half translation), the
lattice site falls on empty space, whereas for G2α

� �
the half

translation already maps r into d, and u into l. These properties
affect how the spectrum behaves after breaking G2α

� �
vs. G1α

� �
.

Strategies for tuning the Dirac cones. Here, we show how to gap
the cones, move them within the FBZ and eventually merge them
into an SDC cone. All the on-site perturbations respect Tr
h(k)= 0. However, they all commute with C, and as a con-
sequence, this is not anymore a well-defined chiral symmetry. We
will perturb the bands according to the SSH-like interpretation,
meaning we will differentiate between chains and between lattice
sites inside each chain in several ways.
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To gap the cones, we fix opposite on-site energies at lattice sites
r and u, d and l, i.e., (εr, εd, εu, εl)= δ1(1, 1,−1,−1)t0. This
configuration differentiates between the inside of each chain
respecting the chiral symmetry, and it can be expressed by the
G1α

� �
-breaking mass term

M1ðδ1Þ ¼ δ1 τz � I2
	 


t0: ð4Þ
For δ1= 0 (critical point), the spectrum is gapless and energy
symmetric (see Fig. 1c). Away from this value, the band structure
splits into two gapped composite sets of bands. The rest of the
spectral features (flat and degenerate lines) are shifted in energy,
preserving the degeneracy.

The spectrum is symmetric with respect to δ1= 0, but the
eigenfunctions behave differently after a change in sign of δ1: the
Berry curvature37,38 reveals the exchange of the charge at the K±

points (Fig. 1d, e). Having only two DCs inside the FBZ, once
gapped, the Berry curvature displays a dipolar distribution with a
fixed length. Given fG1α

g involves the mirror m01 in real space, the
same mirror in reciprocal space is conserved, and the dipolar
distribution is oriented along b1.

The breaking of G1α

� �
can also be studied from symmetry

eigenvalues of G2α

� �
before and after the closing of the gap. We

observe that the eigenvalues of bands 2 and 3 invert before and
after the gap’s closing, which reflects a band inversion (see
Supplementary Note 2).

Next, we show the first strategy to move the DCs. We fix
opposite on-site energies at lattice sites r and d, u and l, i.e., (εr, εd,
εu, εl)= δ2(1, −1, 1, −1)t0. Now, we are differentiating between
chains by placing the same energy in chiral-symmetric lattice
sites. This corresponds to the following G2α

� �
-breaking mass

term

M2ðδ2Þ ¼ δ2 I2 � σz
	 


t0: ð5Þ
We recover the unperturbed gapless phase for δ2= 0. However,
the band structure remains gapless within the interval jδ2j≤

ffiffiffi
3

p
(degeneracy interval) but differs from the fully symmetric case.
The band structure is symmetric with respect to a change in the
sign of δ2, so as soon as δ2 ≠ 0, the DCs move away from K±

towards Γ. We can find their position as a function of δ2 by
solving E3½δ2; kD2 ðδ2Þ� ¼ 0, where E3 is the third band, corre-
sponding to (α, β)= (+, −). It yields:

kD2 ðδ2Þ ¼
1
a0

arccos
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p 2
� �

b1
jb1j

: ð6Þ

The motion of the DCs is shown in Fig. 2a. For jδ2j ¼
ffiffiffi
3

p
(limits

of the degeneracy interval), the DCs have shifted away from K±

(at δ2= 0), merging at Γ into an SDC. Figure 2c, d shows the SDC
at Γ with the parabolic/linear behavior explicitly displayed. For
jδ2j>

ffiffiffi
3

p
, the SD is gapped away, and the band structure again

splits into two detached composite sets of bands, with the flat

S3
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Fig. 1 Herringbone lattice in real, reciprocal, and energy space. a Herringbone lattice unit cell with the naming of the lattice sites (r, d, u, l), direct lattice
vectors a1 and a2, and the two sets of glides: the dashed blue lines correspond to G1α while the red ones to G2α. The red and blue diamonds represent the 2a
and 2bmaximal Wyckoff positions, respectively. The Su-Schieffer-Heeger-like chains have been highlighted by two different densities of the dashing. b First
Brillouin zone, reciprocal lattice vectors b1 and b2, and high-symmetry points, plus the position of the Dirac cones appearing in the irreducible Brillouin zone.
c Energy spectrum (E in units of t0) along the high-symmetry path, in the fully symmetric case (dashed red) and with mass termM1ðδ1 ¼ 0:5Þ (solid blue).
d, e Berry curvature Ωz(k) inside the first Brillouin zone for δ1= ± 0.5.
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degeneracy untouched but the dispersive lifted up. The Berry
curvature of this situation is shown in Fig. 2f, k, where we observe
a band inversion at Γ depending on the sign of δ2. Figure 6
displays the trajectory of the DCs for increasing δ2, starting at K±

as DCs for δ2= 0, shifting towards Γ at jδ2j ¼
ffiffiffi
3

p
merging into

an SDC.
There is another way in which we can gap the band structure,

and it is by adding a M1ðδ1Þ term to the already existing M2ðδ2Þ.
The behavior of the bands under MTðδ1; δ2Þ ¼ M1ðδ1Þ þM2ðδ2Þ is shown in Fig. 2b, where we have added a M1ðδ1 ¼
0:5Þ to the bands in Fig. 2a. The unperturbed case has also been
added as a guide to the eye. The overall effect is to gap the four
bands everywhere, but more interestingly, to gap the DCs
appearing at generic positions. With this total mass term, we are
able to shrink the Berry curvature dipolar distribution (Fig. 2i) as
well as to visualize the Berry curvature of a gapped SDC, Fig. 2h, j.
Here we present some remarks after combining
M1ðδ1Þ þM2ðδ2Þ: (1) a change in the sign of δ1 always produces
a band inversion (Fig. 2f–l) only displays the Berry curvature for
negative δ1, the ones for positive δ1 differ in an overall sign; (2)
the gap cannot be closed by using M1ðδ1Þ when δ2 falls outside
the interval of degeneracy, so the gap at zero between the solid
blue lines in Fig. 2b cannot be closed; (3) the flat degeneracies
along SXS remain flat but are completely lifted up by a nonzero
value of δ1, so these two degeneracies are protected by both glides.

Figure 2e displays all the gapped/metallic phases of the HL under
MTðδ1; δ2Þ depending on the position of the gap. The values of
the parameters for bands in Fig. 2a, b are explicitly shown. At
δ1= 0, we find the phase diagram ofM2ðδ2Þ, which is an interval,
and for δ2= 0, we find the phase diagram of M1ðδ1Þ, which is
just the critical point.

The breaking of these glides can also be studied from symmetry
eigenvalues of G1α

� �
for different values of δ2. We observe that

the eigenvalues of bands 2 and 3 remain different for all values of
δ2, so the crossing is still protected by the first set of glides (as
soon as we add M1ðδ1Þ, we gap the band structure). See
Supplementary Note 2.

Now, we present another strategy to tune the cones at different
positions: simultaneously breaking both glides while respecting
inversion symmetry. The origin of the unit cell represents the
inversion center of the lattice, so in order to define this
perturbation, we make (εr, εd, εu, εl)= t0δI(1, −1, −1, 1), or

MIðδÞ ¼ δI τz � σz
	 


t0 ð7Þ
This perturbation again commutes with the chiral operator C. The
spectrum displays common features between the two previous
cases (Fig. 3a). Bands 2 and 3 touch for ∣δI∣ ≤ 1. Outside of it, the
four bands are detached. For ∣δI∣= ± 1, bands 2 and 3 are
degenerated at zero energy along SXS, forming a nodal line
showing two different regimes: along the path XΓX, the
dispersion is locally parabolic around the X point. At the same
time, it is locally linear around the S points along SYS. This is
represented in Fig. 3b; the SDC is unfolded (UnSDC) along SXS,
forming the nodal line. Shifting δI from −1 to 1, DCs appear from
X (where the UnSDC is placed), shifting towards K± points at
δI= 0 and going back to X.

We obtain the analytical position of the DCs by solving
E3½δI; kDI ðδIÞ� ¼ 0. It yields:

kDI ðδIÞ ¼
1
2a0

arccos � 1þ δ2I
2

� �
b1
jb1j

ð8Þ

Figure 6 displays the trajectory of the DCs for increasing δI. With
this perturbation, we achieve the splitting of all degeneracies,
which we have already seen after consecutively breaking both
glide symmetries. However, here we are breaking both sets of
glides at the same time while preserving inversion symmetry;
thus, the results are different. Since we preserve time-reversal
symmetry, the Berry curvature is zero in the FBZ for all δI values
and bands.

We now combine the inversion-symmetric mass term MIðδIÞ
with the two previous mass terms, i.e., M1ðδ1Þ and M2ðδ2Þ. We
show in Fig. 3c the behavior of the band structure with the total
mass term MA

T ðδI; δ1Þ ¼ MIðδIÞ þM1ðδ1Þ. This choice gaps the
DCs at generic positions given by expression (8), as shown in Fig. 3c.
Band inversions are detected using the distribution of the Berry
curvature inside the FBZ, which has stretched with respect to
Figs. 1d and 3j. Robust degenerate flat bands along SXS are found by

setting MA
T ðδIÞ ¼ MA

T ðδI; δIÞ ¼ MIðδIÞ þM1ð±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2I � 1

q
Þ for

any δI > 1 (see Fig. 3d).
Now that inversion has been broken, bands acquire a finite

Berry curvature (Fig. 3f–j). There is a line at which the flat
features of the Berry curvature start to appear. In this situation,
the gapped DCs merge into the band, reaching the same value of
the energy along the nodal line. We look for the relation between
(δ1, δI) that makes the energy at kDI ðδIÞ equal to the energy along
SXS since δ1 does not change the position of the DCs. We obtain:

δ1ðδIÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 10δ2I þ δ4I

q
4δI

ð9Þ

Fig. 2 Spectral properties of the Herringbone lattice under
M1ðδ1Þ þM2ðδ2Þ. a Energy spectrum (E in units of t0) with M2ðδ2Þ for
several values of δ2. b Energy spectrum (E in units of t0) with MTðδ1 ¼
�1=2; δ2Þ ¼ M1ð�1=2Þ þM2ðδ2Þ for the same values of δ2 in (a).
c, d Dispersion of bands 2 and 3 displaying a semi-Dirac cone along two
different orientations. e Phase diagram of the Herringbone lattice under
MTðδ1; δ2Þ according to the position of the gap. f–l Berry curvature
distributions for different sets of parameters (δ1, δ2). The colorbar helps to
distinguish peaks and valleys in the Berry curvature distributions.
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Fig. 3 Spectral properties of the Herringbone lattice under M1ðδ1Þ þMIðδIÞ. a Energy spectrum (E in units of t0) with MIðδIÞ for different values of δI.
b Bands 2 and 3 with the nodal line, where the parabolic/linear behavior around X/S points is highlighted. c Energy spectrum of the Herringbone lattice
with MA

T ðδI; δ1 ¼ �0:7Þ ¼ MIðδIÞ þM1ð�0:7Þ. d Robust nodal line. e Phase diagram of the Herringbone lattice with MA
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of the gap. f–j Berry curvatures for the selected set of parameters. Band inversions occur for the positive value of δ1. The colorbar helps to distinguish peaks
and valleys in the Berry curvature distributions.
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All this information is displayed in the phase diagram of Fig. 3e.
The three colored regions represent different gapped phases. As
in the previous case, for δ1= 0, we recover the phase diagram of
MIðδIÞ, which is an interval. Setting δI= 0, we recover the phase
diagram of M1ðδ1Þ (same as before). The Berry curvature
distribution is shown for different sets of parameters. Along the
line δI=−2, the band inversion has been explicitly displayed
since the Berry curvature changes sign without a gap closing. This
is due to the fact that at δ1= 0, δI > 1, inversion symmetry is
recovered while the bands are fully gapped, and thus the Berry
curvature is zero. Figure 3g has been rescaled to match the
colorbar.

We now study the mass term MB
TðδI; δ2Þ ¼ MIðδIÞ þM2ðδ2Þ.

Figure 4a shows the band structure for different values of (δ2, δI).
Figure 4b shows the phase diagram of this choice of mass term. It
describes the physics of M2ðδ2Þ by making δI= 0 and the physics
of MIðδIÞ by making δ2= 0. Starting from these two setups, we
can expand the phase diagram in the following way. The vertical
axis is delimited by the point where the gap closes at Γ forming an
SDC, so we solve E3[δ2, δI, Γ]= 0. We obtain:

δ2ðδIÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ δ2I

q
ð10Þ

When δI ≠ 0, the SDC is formed just by the two intermediate
bands. This new SDC can be gapped by adding a M1ðδ1Þ.
However, with the three mass terms, the bands are no longer
symmetric in energy by pairs since the four on-site energies are in
general different (see Supplementary Note 3).

We can split the new SDC into DCs moving across the whole
FBZ. The position of the DCs is now governed by:

kDIþ2ðδI; δ2Þ ¼
1
2a0

arccos
δ22 � δ2I � 1

2

� �
b1
jb1j

: ð11Þ

By making δ2= ± ∣δI∣ the new DCs always locates at K±. Figure 6
displays the trajectory of these DCs moving across the whole FBZ
from X, where an SDC splits into two DCs that move towards Γ,
merging again into an SDC.

In order to expand the horizontal axis, at (δ2, δI)= (0, ±1), the
gap closes along SXS in an UnSDC, so we solve E3[δ2, δI, X]= 0
to find the extension of the UnSDC for nonzero δ2. We obtain:

δ2ðδIÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2I � 1

q
ð12Þ

The band structure is gapless at zero energy inside the region

R ¼ ðδ2; δIÞ : δ22 � δ2I<j3j∪ δ2I � δ22<1
� � ð13Þ

Outside this gapless region, the bands are gapped, and thus, the
associated Berry curvature can be nonzero inside the FBZ.
Figure 4c–e shows the Berry curvature for the selected cases. With
this, we complete the phase diagram and our study of the on-site
energies. In Supplementary Note 1, we present a low-energy
theory39 for all the cases studied so far.

Finally, we present a completely different strategy for tuning
the DCs. It is based on differentiating between the horizontal and
vertical hopping amplitudes in a breathing form
th/v= t0(1 ± δD)34,40. Figure 5a shows the real space interpretation
of this choice of breathing. There are several other choices to
distort the system that also preserve some of the glides, but we
studied the breathing one since it is the one yielding corner
modes in certain geometries35. This breathing distortion breaks
both glides while preserving inversion symmetry. We add to Eq.
(2b) the matrix:

qBðkÞ ¼ t0δD
1� e�ik1 �eik2

e�ik1 1� e�ik1

 !
: ð14Þ

After diagonalizing the Hamiltonian, SDCs appear at the S2,4
points for δD ¼ �1=

ffiffiffi
5

p
. For increasing δD, these cones split into

DCs moving out from the S points towards the K± for δD= 0,
where the fully symmetric case is recovered. For positive δD, the
cones keep moving continuously until they reach S1,3, where
they merge into SDC points with the ones coming from the
neighboring reciprocal unit cells. The trajectory of the cones is
quasi-hyperbolic. Figure 5b shows the two Dirac cones outside

of the high-symmetry path for δD ¼ ð2 ffiffiffi
5

p Þ�1
. If we now add

on-site potentials according to (4) or (5), the overall effect is to
gap the cones at the arbitrary positions along the quasi-
hyperbolic curve. This translates into an arbitrary orientation
and length of the Berry curvature dipolar distribution, as shown
in Fig. 5c. We show the trajectory of the DCs as a function of δD
in Fig. 6.

In this work, we have shown how to tune the position of the
DCs of the non-symmorphic HL. We have proposed several
strategies for merging the cones into an SDC one and
eventually opening an energy gap in the system. We have
summarized all the possible positions of the DCs within the BZ
in Fig. 6. In addition to tuning the position of the DCs, we can
manipulate the orientation of the Berry curvature dipolar
distribution, from being parallel to the reciprocal lattice
vectors to having a generic length and orientation. Table 1
summarizes the action of the on-site perturbations studied so
far in the system. As mentioned above, the combination of
breathing plus on-site only gaps the spectrum, so it has not
been added to the table.

Conclusions
The moving and merging of the DCs has already been
experimentally observed in black phosphorous41,42: a 2D
layered material characterized by non-symmorphic symme-
tries. We propose here a realization of the HL within the
synthetic platform known as the artificial electron lattice43.
Here the two-dimensional electron gas hosted on the (111)
surface state of Cu is confined to a potential well designed with
a set of CO molecules, which are placed with atomic precision
at certain positions with the help of the tip of a scanning
tunneling microscope8,9,35,44–48. We present the design of the
HL in Fig. 7a. Symmetry plays a crucial role: if the space groups
of the substrate and the simulated lattice have common gen-
erators (one is a subgroup of the other), then the electronic
structure of the lattice is very well recovered. However, if this
condition is not met, it is more difficult to describe a lattice
with this technique9. In our case, we expect something similar
for our proposal. First of all, Fig. 7b shows the lower bands
obtained for the unit cell depicted in Fig. 7a. Only the lowest
four bands come from the inner electronic levels of the arti-
ficial electronic lattice, and so they represent the bands closer
to our spectrum presented in the results section. Figure 7c
shows bands 2 and 3 inside the FBZ, and we can see how two
DCs appear at opposite k points. From the discussion in the
previous section, we can already see that the proposed unit cell
will show some dimerization plus some on-site energies that
will return to the position of the DCs. To fit these bands to a
tight-binding Hamiltonian, next-nearest neighbors may be
included, and even longer range hoppings, since the nearly free
electron method does not involve atomic orbitals or species,
nor chemical bonds between them. The lattice sites are built
with artificial interacting quantum dots (also known as artifi-
cial atoms48) connected by hopping amplitudes which are
always long-range and modeled by potential wells or barriers.
We present further details about the calculation of the spec-
trum in the “Methods” section. In conclusion, we have
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presented the spectral properties of a 2D non-symmorphic
lattice. We have shown that the system is characterized by two
DCs along a high-symmetry line that can either gap or move
within the FBZ. We also achieve the possibility of merging
these DCs into an SDC one or, in a special case, into an UnSDC
that respects the nodal line degeneracy imposed by a glide
symmetry.

Methods
Berry curvature. We have classified the topological character of the bands below
the Fermi level using the Berry curvature as a topological marker. It is important
to note that there are always two bands below zero energy that can be degen-
erated or not. To evaluate the Berry curvature, we made use of the Kubo
formula38, provided the occupied set of bands is well separated from the unoc-
cupied one:

ΩγðkÞ ¼ iϵαβγ ∑
n
∑
m

hunjvαjumihumjvβjuni
ðEm � EnÞ2

; ð15Þ

where vμ ¼ ∂μH are electron velocity along the μ-direction, un
�� �

are the periodic
parts of the Bloch wave functions, and ϵαβγ is the Levi-Civita antisymmetric
tensor.

Energy spectrum for the artificial electron lattice. The solution to the bulk
problem for the artificial electron lattice is obtained within the nearly free electron
method35,43,49. We model each CO molecule as a cylindrical potential barrier
placed at position r0:

Vðr � r0Þ ¼
V0 r ≤ r0
0 r>r0


: ð16Þ

The complete lattice Vlatt(r) is given by the superposition of such potential barrier
in Eq. (16). Then, we expand the periodic potential in Fourier components

V lattðrÞ ¼ ∑
G
VGe

iG�r; ð17Þ
which are

VG ¼ 1ffiffiffiffiffi
2π

p
Z

unitcell
dr e�iG�rV lattðrÞ

¼ V0r0 ∑
α0
e�iG�Rα J 1ðjGjr0Þ

jGj ;

ð18Þ

where Rα are the positions of the molecules inside the unit cell, and J 1ðjGjr0Þ is
the Bessel function of the first kind.

The stationary Schrödinger equation is transformed into a set of linear
equations for the coefficients {cn,q}, which expand the wave function in plane waves
∣ and the energy of the system,

_2 q� G
�� ��2
2m

� E
 !

cq�G þ∑
G0
VG0�G cq�G ¼ 0; ð19Þ

solving this equation for the energy E results in the energy spectrum artificial
electron lattice in the nearly free electron approximation. From the coefficients

min.

max.

(c)

(b)(a)

Ω (k)z

E
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δ =(2√5)D
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th
tv
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l

Fig. 5 Spectral properties of the dimerized Herringbone lattice. a Sketch of the chosen dimerized implementation of the Herringbone lattice in real space.
b Bands 2 and 3 of the dimerized Herringbone lattice for δD ¼ ð2 ffiffiffi

5
p Þ�1

. The Dirac cones are now inside the first Brillouin zone and not along a high-
symmetry point or line. Their position as a function of δD is displayed. c Berry curvature for the dimerized Herringbone lattice after gapping the Dirac cones
with M1ðδ1Þ. The colorbar helps to distinguish peaks and valleys in the Berry curvature distributions.

Fig. 6 Summary of the positions of the Dirac cones according to the
different perturbations. Representation of all trajectories of the Dirac
cones as they move across the first Brillouin zone as a function of the
different perturbations (only showing positive values of kx, ky).

Table 1 Summary of the main features of the combination of
mass terms.

+ M1ðδ1Þ M2ðδ2Þ MIðδIÞ
M1ðδ1Þ Gap at K± •Gapped SDC •Gapped UnSDC

• Shrunken BC dist. • Stretched BC dist.
• Robust flat
degeneracy

M2ðδ2Þ • SDC •New SD +UnSD
• Cones at kD2 ðδ2Þ • Cones inside R at

kDIþ2ðδIÞ
MIðδIÞ •UnSDC

• Cones at kDI ðδIÞ

Only the upper triangle has been filled not to overload the table. Adding only M1ðδ1Þ to the
Hamiltonian, the bands are gapped at K±. Adding only M2ðδ2Þ to the Hamiltonian, a semi-Dirac
cone (SDC) appears and can be split into Dirac cones that move according to kD2 ðδ2Þ. Adding
only MIðδIÞ to the Hamiltonian an unfolded semi-Dirac cone (UnSDC) appears and can be split
into Dirac cones that move along kDI ðδIÞ. Combining M1ðδ1Þ þM2ðδ2Þ the SDC gaps and the
Berry curvature (BC) is shrunken. Combining M1ðδ1Þ þMIðδIÞ, the UnSDC gaps, the BC is
stretched, and there is a robust flat degeneracy between the bands. Combining M2ðδ2Þ þ
MIðδIÞ a new SD point is found that can be split into Dirac cones that move across the FBZ.
Additionally, there is a region of parameters where the band structure shows Dirac cones.
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{cn,q} that are used to obtain the periodic part of the wave function as

un;qðrÞ ¼ ∑
G
eiG�rcn;q�G:

Data availability
Numerical data used to generate all the figures in this manuscript is available upon
reasonable request.

Code availability
The codes that were employed in this study are available from the authors upon
reasonable request.
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