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Symmetry-protected difference between spin Hall
and anomalous Hall effects of a periodically driven
multiorbital metal
Naoya Arakawa 1✉ & Kenji Yonemitsu 1,2

Nonequilibrium quantum states can be controlled via the driving field in periodically driven

systems. Such control, which is called Floquet engineering, has opened various phenomena,

such as the light-induced anomalous Hall effect. There are expected to be some essential

differences between the anomalous Hall and spin Hall effects of periodically driven systems

because of the difference in time-reversal symmetry. However, these differences remain

unclear due to the lack of Floquet engineering of the spin Hall effect. Here we show that when

the helicity of circularly polarized light is changed in a periodically driven t2g-orbital metal, the

spin current generated by the spin Hall effect remains unchanged, whereas the charge

current generated by the anomalous Hall effect is reversed. This difference is protected by

the symmetry of a time reversal operation. Our results offer a way to distinguish the spin

current and charge current via light and could be experimentally observed in pump-probe

measurements of periodically driven Sr2RuO4.
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Periodically driven systems enable the realization of various
nonequilibrium quantum states and their control. Periodi-
cally driven systems are realized by a time-periodic field,

and their properties in a nonequilibrium steady state can be
described by the Floquet theory1–5, in which the effective
Hamiltonian is independent of time. In fact, various theoretical
predictions, such as the light-induced anomalous-Hall effect
(AHE)6–8 and the Floquet time crystal9–11, are confirmed by
experiments. Then, since the effective Hamiltonian of the Floquet
theory depends on parameters of the driving field, its properties
can be controlled by tuning the driving field. This is called Flo-
quet engineering3–5. For example, it is possible to change the
magnitude, sign, and bond anisotropy of exchange interactions of
Mott insulators12–16. The Floquet engineering has been studied in
many fields of physics, including condensed-matter, cold-atom,
and optical physics.

Although there are many studies of the AHE of periodically
driven systems, the Floquet engineering of the spin-Hall effect
(SHE) is still lacking. The SHE is the key phenomenon in
spintronics17–21. In the SHE, an electron spin current, a flow of
the spin angular momentum, is generated by an electric field
perpendicular to it22–24. This is the spin version of the AHE, in
which an electron charge current is generated25,26. A significant
difference between the AHE and SHE is about time-reversal
symmetry (TRS): TRS is broken in the AHE, whereas it holds in
the SHE. Since TRS can be broken by circularly polarized light27,
there should be some essential differences between those of a
periodically driven system. It is highly desirable to investigate the
intrinsic SHE of a periodically driven multiorbital metal because
the intrinsic SHE, the SHE intrinsic to the electronic structure,
can be engineered by the driving field and several multiorbital
metals, such as Pt, have the huge SHE28,29.

Here we show that in a multiorbital metal driven by circularly
polarized light, the charge current generated by the AHE can be
reversed by changing the helicity of light, whereas the spin cur-
rent generated by the SHE remains unchanged. This is demon-
strated by constructing a theory of pump-probe measurements of
the AHE and SHE of a periodically driven t2g-orbital metal
coupled to a heat bath and evaluating their conductivities
numerially. This significant difference between the AHE and SHE
results from the difference in TRS and thus should hold in many
periodically driven systems. We also show that spin–orbit cou-
pling (SOC) is vital for the SHE of the periodically driven mul-
tiorbital metal, whereas it is unnecessary for the AHE. This
property is distinct from that of non-driven metals.

Results and discussion
Periodically driven t2g-orbital metal. We consider a t2g-orbital
metal coupled to a heat bath in the presence of a field A(t)
(Fig. 1a):

HðtÞ ¼ HsðtÞ þHsb þHb: ð1Þ
(Note that in the t2g-orbital metal, such as Sr2RuO4, electrons
occupy the t2g orbitals, i.e., the dyz, dzx, and dxy orbitals). First,
Hs(t) is the system Hamiltonian, the Hamiltonian of t2g-orbital
electrons with A(t),

HsðtÞ ¼ ∑
k

∑
a;b¼dyz ;dzx ;dxy

∑
σ;σ 0¼";#

�ϵσσ
0

ab ðk; tÞcykaσckbσ0 : ð2Þ

Here cykaσ and ckaσ are the creation and annihilation operators,
respectively, of an electron for orbital a with momentum k and
spin σ, and

�ϵσσ
0

ab ðk; tÞ ¼ ½ϵabðk; tÞ � μδa;b�δσ;σ 0 þ ξσσ
0

ab ; ð3Þ

where ϵab(k, t), μ, and ξσσ
0

ab are the kinetic energy with the Peierls

phase factors due to A(t), the chemical potential, and SOC,
respectively (see Methods). Throughout this paper, we use the
unit ℏ= 1, kB= 1, and alc= 1, where alc is the lattice constant. In
addition to Hs(t), we have considered Hb and Hsb, the Hamilto-
nian of a Büttiker-type heat bath30–33 at temperature Tb and the
system-bath coupling Hamiltonian (see Methods). This is because
a nonequilibrium steady state can be realized due to the damping
coming from the second-order perturbation of Hsb

32,34.
The parameters of Hs(t) are chosen to reproduce the electronic

structure of Sr2RuO4
35. The hopping integrals on the square lattice are

parametrized by t1, t2, t3, t4, and t5 (Fig. 1b)36, and μ is determined
from the condition ne= 4, where ne is the electron number per site;
the value of μ is fixed at that determined in the non-driven case. We
set (t1, t2, t3, t4, t5)= (0.675, 0.09, 0.45, 0.18, 0.03) (eV)36 and
ξ= 0.17 eV37, where ξ is the coupling constant of SOC, in order
that the Fermi surface (Fig. 1c) is consistent with that observed
experimentally38.

Theory of pump-probe measurements of the SHE and AHE.
The SHE and AHE of a periodically driven system are detectable
by pump-probe measurements. In the pump-probe
measurements39, a system is periodically driven by the pump
field Apump(t), and its properties are analyzed by the probe field
Aprob(t). Thus, we set A(t)=Apump(t)+Aprob(t) and treat the
effects of Apump(t) in the Floquet theory and those of Aprob(t) in
the linear-response theory33,40; in our analyses, Apump(t) is cho-
sen to be

ApumpðtÞ ¼ tðA0 cosΩt A0 sinðΩt þ δÞÞ; ð4Þ
where Ω= 2π/T and T is the period of Apump(t). The anomalous-
Hall and spin-Hall conductivities σCyxðt; t0Þ and σSyxðt; t0Þ are
defined as

σQyxðt; t0Þ ¼
1
iω

δhjyQðtÞi
δAx

probðt0Þ
; ð5Þ

where hjyCðtÞi and hjySðtÞi are the expectation values of the charge
and spin current density operators, respectively. In our AHE or
SHE, we have considered the charge or spin current, respectively,
generated along the y-axis with the probe field applied along the
x-axis (Fig. 1a). (Note that our SHE is different from the SHE of
light, in which the helicity-dependent transverse shift of light at
an interface is induced41–43). Then, the charge and spin current
operators JyCðtÞ ¼ NjyCðtÞ and JySðtÞ ¼ NjySðtÞ, where N is the
number of sites, are determined from the continuity equations
(see Methods)28,29,44,45:

JyQðtÞ ¼ ∑
k
∑
a;b

∑
σ
vðQÞyabσ ðk; tÞcykaσðtÞckbσðtÞ; ð6Þ

where vðCÞyabσ ðk; tÞ ¼ ð�eÞ ∂ϵabðk;tÞ∂ky
, vðSÞyabσ ðk; tÞ ¼ 1

2 sgnðσÞ ∂ϵabðk;tÞ∂ky
, and

sgnðσÞ ¼ 1 or− 1 for σ= ↑ or ↓, respectively. By combining Eq. (6)
with Eq. (5) and using a method of Green’s functions34,44,46,47, we
can express σQyxðt; t0Þ in terms of electron Green’s functions (see
Methods).

To analyze the SHE and AHE in the nonequilibrium steady
state, we consider the time-averaged dc anomalous-Hall and spin-
Hall conductivities σCyx and σSyx ,

σQyx ¼ lim
ω!0

Re
Z T

0

dtav
T

Z 1

�1
dtrele

iωtrelσQyxðt; t0Þ; ð7Þ

where trel ¼ t � t0 and tav ¼ ðt þ t0Þ=233. Since we can calculate
Eq. (7) in a way similar to that for charge transport of single-
orbital systems32,33,40, we present the final result here (for the
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derivation, see Supplementary Note 1):

σQyx ¼
1
N
∑
k

∑
a;b;c;d

∑
σ;σ 0

Z Ω=2

�Ω=2

dω0

2π
∑
1

m;l;n;q¼�1
½vðQÞyabσ ðkÞ�ml

´ ½vðCÞxcdσ 0 ðkÞ�nq
∂½GR

bσcσ 0 ðk;ω0Þ�ln
∂ω0 ½G<

dσ 0aσðk;ω0Þ�qm
�

�½G<
bσcσ 0 ðk;ω0Þ�ln

∂½GA
dσ 0aσðk;ω0Þ�qm

∂ω0

)
;

ð8Þ

where ½vðQÞνabσ ðkÞ�mn (Q= C or S, ν= y or x) and ½Gr
aσbσ 0 ðk;ω0Þ�mn

(r= R, A, or < ) are given by

½vðQÞνabσ ðkÞ�mn ¼
Z T

0

dt
T
eiðm�nÞΩtvðQÞνabσ ðk; tÞ; ð9Þ

Gr
aσbσ 0 ðk;ω0Þ� �

mn ¼
Z 1

�1
dtrele

iðω0þmþn
2 ΩÞtrel

Z T

0

dtav
T

´ eiðm�nÞΩtavGr
aσbσ 0 ðk; t; t0Þ;

ð10Þ

respectively; the three Green’s functions are determined from the
Dyson equation with the damping Γ due to the system-bath

coupling (see Methods). (For the energy dispersion of our model,
see Supplementary Note 2.)

Helicity-independent σSyx and helicity-dependent σCyx . We eval-
uate σCyx and σSyx numerically. (For the details of the numerical
calculations, see Methods.) We set Γ= 0.03 eV and Tb= 0.05 eV;
Γ is chosen to be smaller than Tb because the system is supposed
to be well described by the Fermi liquid. To study how σCyx and σSyx
are affected by the helicity of light, we consider the Apump(t)’s for
δ= 0 and π [Eq. (4)], ALCP(t) and ARCP(t), which correspond to
the cases of the left- and right-circularly polarized light, respec-
tively. We show how σSyx and σCyx depend on a dimensionless
quantity u= eA0= eE0/Ω. Note that the u dependence at fixed Ω
corresponds to the dependence on E0, the amplitude of the
electric field.

σSyx and σCyx have the different helicity dependences. Figure 2a
shows the dependence of σSyx on u= eA0 for Apump(t)=ALCP(t)
or ARCP(t) at Ω= 6 eV. The σSyx for Apump(t)=ALCP(t) is the
same as that for Apump(t)=ARCP(t). This property holds even at
Ω= 4 and 2 eV (Fig. 2b, c). Note that Ω= 6, 4, and 2 eV
correspond to Ω >W, Ω ≈W, and Ω <W, respectively, where
W( ≈ 4eV) is the bandwidth in the non-driven case. Meanwhile,

Fig. 1 Set-up of the anomalous-Hall or spin-Hall effect and electronic properties of our model. a Set-up of the anomalous-Hall or spin-Hall effect for our
model of Sr2RuO4 driven by circularly polarized light in the presence of the coupling to a heat bath. In Sr2RuO4, Ru ions form the square lattice; at each ion,
four electrons occupy the Ru t2g orbitals (i.e., the dyz, dzx, and dxy orbitals). In the pump-probe measurements of the anomalous-Hall and spin-Hall effects,
the probe field induces the charge and spin currents, respectively, perpendicular to it, and the pump field, a field of left- or right-circularly polarized light,
periodically drives Sr2RuO4. The nonequilibrium steady state is realized because of the coupling to the heat bath. b The finite hopping processes of
electrons in t2g orbitals on the square lattice. The dyz, dzx, and dxy represent these orbitals. t1, t2, and t3 are the nearest-neighbor hopping integrals, and t4
and t5 are the next nearest-neighbor ones. c The Fermi surface obtained for the non-driven case of our model in the quarter of the Brillouin zone. The other
parts are reproducible by using the rotational symmetry.
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σCyx ’s for Apump(t)=ALCP(t) and ARCP(t) are opposite in sign and
the same in magnitude at Ω= 6, 4, and 2 eV (Fig. 2d–f). Although
such helicity-dependent σCyx was experimentally shown in
graphene8, its origin may be unexplored. Note that the difference
between the u dependences of σSyx and σCyx can be qualitatively
understood by considering the dominant terms of the Bessel
functions due to the Peierls phase factors (see Supplementary
Note 3 and Supplementary Fig. 1).

This difference between σSyx and σCyx comes from the difference
in TRS. Under the time-reversal operation Trev, time t,
momentum k, and spin σ are changed as follows: (t, k, σ)→ (−
t,− k,− σ), where− σ= ↓ or ↑ for σ= ↑ or ↓, respectively. The
spin current and charge current are expressed as JS ¼ 1

2 ðJ" � J#Þ
and JC= (− e)(J↑+ J↓), where J↑ and J↓ are the contributions
from the spin-up and spin-down electrons, respectively. Thus,
(JS, JC)→ (JS,− JC) is obtained as a result of Trev because
(J↑, J↓)→ (− J↓,− J↑) is satisfied under Trev (Fig. 3a, b). (This is

the reason why TRS is broken in the AHE and not broken in the
SHE.) Meanwhile, the right- and left-circularly polarized light
fields are connected by Trev because ARCP(− t)=ALCP(t). Namely,
replacing ALCP(t) by ARCP(t) corresponds to applying Trev. Thus,
the helicity-independent σSyx and the helicity-dependent σCyx result
from JS→ JS and JC→− JC, respectively, under Trev.

The same helicity dependences hold in many periodically
driven multiorbital metals. The spin current and charge current
are of the same form for some transition metals (e.g., Pt and
Au)28 and transition-metal oxides. Then, the similar SHE and
AHE can be realized using circularly polarized light. Thus, the
above arguments are applicable to many transition-metal oxides
and transition metals driven by circularly polarized light.

SOC-dependent σSyx and SOC-independent σCyx . There is another
difference between σSyx and σCyx . Figure 4a compares the u
dependence of σSyx with SOC to that without SOC. In the absence

Fig. 2 Helicity dependences of the spin-Hall and anomalous-Hall conductivities. a, b, c The dependences of the spin-Hall conductivity σSyx on the
dimensionless quantity u= eA0 in the case of left- or right-circularly polarized light (LCP or RCP) at Ω= 6, 4, and 2 eV, where Ω is the frequency of light.
The red and blue curves correspond to those in the case of left- or right-circularly polarized light, respectively. d, e, f The dependences of the anomalous-
Hall conductivity σCyx on u= eA0 in the case of left- or right-circularly polarized light at Ω= 6, 4, and 2 eV. The same notations as those in a, b, c are used.

Fig. 3 Time-reversal symmetry of the charge current and spin current. a, b The charge currents and the spin currents before and after the time-reversal
operation Trev. The charge current JC and the spin current JS are JC= (− e)(J↑+ J↓) and JS= (1/2)(J↑− J↓), where J↑ and J↓ are the spin-up and spin-
down electron currents, respectively. As a result of Trev, J↑ and J↓ become− J↓ and− J↑, respectively. Thus, JC changes its sign (a), whereas JS remains
the same (b). Namely, JC breaks time-reversal symmetry, but JS does not.
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of SOC, σSyx ¼ 0. This is because there is no spin-dependent term
in the Hamiltonian except for SOC. The spin-dependent term,
such as SOC, is needed to obtain the finite difference between the
spin-up and spin-down electron currents. Meanwhile, the u
dependence of σCyx with SOC is almost the same as that without
SOC (Fig. 4b). This is because a spin-independent electron cur-
rent can be generated by using the kinetic energy terms with the
Peierls phase factors6,33 and a multiorbital mechanism48 using
SOC does not contribute to σCyx in the presence of spin degen-
eracy, which is not lifted by the Peierls phase factors. Note that in
periodically driven systems, σCyx can be finite even without orbital
degrees of freedom6,33 because the Peierls phase factors can lead
to the terms odd with respect to momentum in the energy dis-
persion (see Supplementary Note 2).

These results suggest that in periodically driven multiorbital
metals, SOC is vital for the SHE, whereas it is unnecessary for the
AHE. This suggestion may be valid as long as the effects of the
driving field can be treated as the Peierls phase factors and there
is no magnetic order. In addition, this is distinct from the
property of non-driven multiorbital metals where SOC is vital for
the SHE and AHE24–26,28,29,48. In contrast, the multiorbital
nature is required for the SHE of periodically driven systems,
whereas it is unnecessary for the AHE.

Implications and experimental realization. We discuss some
implications of our results. First, the difference between the
helicity dependences of σSyx and σCyx can be used to distinguish the
spin current and charge current without ambiguity. Since that
difference results from the symmetry of Trev, the same helicity
dependences should hold in many periodically driven systems. In
addition, the similar arguments enable us to distinguish two
currents, one of which breaks TRS (and the other does not), in
not only Hall effects, but also other transport phenomena. Thus,
our results have revealed the core physics discipline about the
relations between TRS and transport properties of periodically
driven systems. Then, our theory can be extended to the SHE and
AHE of other multiorbital metals and other transport phenom-
ena. For example, a combination of it and first-principles calcu-
lations enables us to systematically search the SHE and AHE of
periodically driven multiorbital metals. Thus, our results provide
the first step towards the Floquet engineering of spintronics
phenomena, including the SHE, of periodically driven multi-
orbital metals.

Finally, we comment on experimental realization. In our
theory, interaction effects and heating effects are neglected. For

Sr2RuO4, electron-electron interactions cause the orbital-
dependent damping and mass enhancement35,49. Since these
effects are quantitative29, the interaction effects may not change
our results at least qualitatively. The differences in the helicity
dependence and the SOC dependence will hold because those
interaction effects do not break TRS. In general, the periodic
driving makes the system to heat up50. However, for the
periodically driven open system, such as our system, a none-
quilibrium steady state can be realized due to Γ32,33,51 at
times larger than τ(= ℏ/2Γ) ≈ 11fs=O(10fs). In fact, the AHE
predicted theoretically in a periodically driven open
system6 is experimentally realized7,8. For Sr2RuO4, in which
alc ≈ 0.39 nm35, u(= ealcA0)= 0.3 at Ω= 2, 4, or 6 eV corre-
sponds to E0= A0/Ω ≈ 15, 31, or 46MVcm−1, respectively. Since
the pump field of the order of 10MVcm−1 is experimentally
accessible52, we conclude that the predicted properties of σSyx and
σCyx could be observed in the pump-probe measurements of the
SHE and AHE in periodically driven Sr2RuO4.

Methods
Tight-binding Hamiltonian with SOC. We have chosen the following tight-
binding Hamiltonian for t2g-orbital electrons as Hs(t):

HsðtÞ ¼∑
i;j

∑
a;b¼dyz ;dzx ;dxy

∑
σ¼";#

½tabij ðtÞ � μδi;jδa;b�cyiaσcjbσ

þ∑
i

∑
a;b¼dyz ;dzx ;dxy

∑
σ;σ 0¼";#

ξσσ
0

ab c
y
iaσcibσ 0 ;

ð11Þ

where tabij ðtÞ’s are the hopping integrals with the Peierls phase factors due to A(t),

tabij ðtÞ ¼ tabij e
�ieðRi�RjÞ�AðtÞ , and ξσσ

0
ab is the coupling constant of the SOC for t2g-

orbital electrons. The finite elements of ξσσ
0

ab ¼ ðξσ 0σba Þ
�
are given by

ξ""dyzdzx ¼ ξ"#dzxdxy ¼ iξ=2, ξ"#dyzdxy ¼ �ξ=2, ξ"#dxydyz ¼ ξ=2, and ξ"#dxydzx ¼ ξ##dyzdzx ¼ �iξ=2.

By using the Fourier coefficients of the operators, we can write Eq. (11) as Eq. (2)
with Eq. (3), in which ϵab(k, t) is given by ϵabðk; tÞ ¼ ∑jt

ab
ij ðtÞe�ik�ðRi�RjÞ .

Büttiker-type heat bath. Hsb and Hb in Eq. (1) are given by

Hsb ¼ ∑
i
∑
p

∑
a¼dyz ;dzx ;dxy

∑
σ¼";#

Vpaσ ðcyiaσbip þ byipciaσ Þ; ð12Þ

Hb ¼ ∑
i
∑
p
ðϵp � μbÞbyipbip; ð13Þ

where bip and byip are the annihilation and creation operators, respectively, of a
bath’s fermion at site i for mode p, Vpaσ is the coupling constant, and ϵp and μb are
the energy and chemical potential of a bath’s fermion. Note that μb is chosen in
order that there is no current between the system and bath. The heat bath is
supposed to be in equilibrium at temperature Tb. The main effect of the heat bath is
the damping appearing in electron Green’s functions32,33.

Fig. 4 Spin–orbit coupling dependences of the spin-Hall and anomalous-Hall conductivities. a, b The dependences of the spin-Hall and anomalous-Hall
conductivities σSyx and σCyx on the dimensionless quantity u= eA0 in the case of left-circularly polarized light at Ω= 6 eV with and without spin–orbit
coupling. Here Ω is the frequency of light. The red and yellow curves correspond to those with and without spin–orbit coupling, respectively.
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Charge current and spin current operators. We derive the charge current and
spin current operators using the continuity equations. Theories using these
operators derived in that way succeed in describing the SHE observed in non-
driven multiorbital metals28,53.

First, we derive the charge current operator JC(t). JC(t) is supposed to satisfy the
continuity equation44,

dρjðtÞ
dt

þ ∇ � jðCÞj ðtÞ ¼ 0; ð14Þ

where ρjðtÞ ¼ ð�eÞ∑a∑σc
y
jaσ ðtÞcjaσ ðtÞ and∑jj

ðCÞ
j ðtÞ ¼ JCðtÞ. Using Eq. (14), we have

∑
j
Rj

dρjðtÞ
dt

¼ �∑
j
Rj∇ � jðCÞj ðtÞ ¼ JCðtÞ; ð15Þ

where we have omitted the surface contributions. By combining it with the
Heisenberg equation, we can write Eq. (15) as

JCðtÞ ¼ i½HsðtÞ;∑
j
RjρjðtÞ�: ð16Þ

(Note that there is no contribution from Hsb because the bath’s chemical potential
is chosen in order that there is no current between the system and bath). After
some calculations, we obtain

JCðtÞ ¼ i∑
i;j
∑
a;b

∑
σ
ð�eÞtabij ðtÞðRj � RiÞcyiaσ ðtÞcjbσ ðtÞ

¼ �e∑
k
∑
a;b

∑
σ

∂ϵabðk; tÞ
∂k

cykaσ ðtÞckbσ ðtÞ:
ð17Þ

Similarly, we derive the spin current operator JS(t). We suppose that JS(t)
satisfies

dSzj ðtÞ
dt

þ ∇ � jðSÞj ðtÞ ¼ 0; ð18Þ

where Szj ðtÞ ¼ ∑a∑σ
1
2 sgnðσÞcyjaσ ðtÞcjaσ ðtÞ and ∑jj

ðSÞ
j ðtÞ ¼ JSðtÞ. In a way similar to

the derivation of JC(t), JS(t) is given by

JSðtÞ ¼ i½HsðtÞ;∑
j
RjS

z
j ðtÞ�

¼ 1
2
∑
k
∑
a;b

∑
σ
sgnðσÞ ∂ϵabðk; tÞ

∂k
cykaσ ðtÞckbσ ðtÞ:

ð19Þ

Anomalous-Hall and spin-Hall conductivities as functions of time. We express
σCyxðt; t0Þ and σSyxðt; t0Þ in terms of the electron Green’s functions. Using Eq. (6), we
have

hjyCðtÞi ¼
�i
N

∑
k
∑
a;b

∑
σ
vðCÞyabσ ðk; tÞG<

bσaσ ðk; t; tÞ; ð20Þ

hjySðtÞi ¼
�i
N

∑
k
∑
a;b

∑
σ
vðSÞyabσ ðk; tÞG<

bσaσ ðk; t; tÞ; ð21Þ

where G<
bσ 0aσ ðk; t; t0Þ is the lesser Green’s function34,44,46,47,

G<
bσ 0aσ ðk; t; t0Þ ¼ ihcykaσ ðt0Þckbσ 0 ðtÞi: ð22Þ

By substituting Eqs. (20) and (21) into Eq. (5), we can express σCyxðt; t0Þ and
σSyxðt; t0Þ as follows:

σCyxðt; t0Þ ¼ σCð1Þyx ðt; t0Þ þ σCð2Þyx ðt; t0Þ; ð23Þ

σSyxðt; t0Þ ¼ σSð1Þyx ðt; t0Þ þ σSð2Þyx ðt; t0Þ; ð24Þ
where

σQð1Þyx ðt; t0Þ ¼ �1
ωN

∑
k
∑
a;b

∑
σ

δvðQÞyabσ ðk; tÞ
δAx

probðt0Þ
G<
bσaσ ðk; t; tÞ; ð25Þ

σQð2Þyx ðt; t0Þ ¼ �1
ωN

∑
k
∑
a;b

∑
σ
vðQÞyabσ ðk; tÞ

δG<
bσaσ ðk; t; tÞ
δAx

probðt0Þ
: ð26Þ

Then, using the Dyson equation of Green’s functions and the Langreth rule33,47, we
obtain

δG<
bσaσ ðk; t; tÞ
δAx

probðt0Þ
¼ �∑

c;d
∑
σ 0
vðCÞxcdσ 0 ðk; t0Þ GR

bσcσ 0 ðk; t; t0ÞG<
dσ 0aσ ðk; t0; tÞ

�
þG<

bσcσ 0 ðk; t; t0ÞGA
dσ 0aσ ðk; t0; tÞ

�
;

ð27Þ

where GR
aσbσ 0 ðk; t; t0Þ and GA

aσbσ 0 ðk; t; t0Þ are the retarded and advanced Green’s
functions34,44,46,47, respectively,

GR
aσbσ 0 ðk; t; t0Þ ¼ �iθðt � t0Þhfckaσ ðtÞ; cykbσ0 ðt0Þgi; ð28Þ

GA
aσbσ 0 ðk; t; t0Þ ¼ iθðt0 � tÞhfckaσ ðtÞ; cykbσ0 ðt0Þgi: ð29Þ

Combining Eq. (27) with Eq. (26), we have

σQð2Þyx ðt; t0Þ ¼ 1
ωN

∑
k

∑
a;b;c;d

∑
σ;σ 0

vðQÞyabσ ðk; tÞvðCÞxcdσ 0 ðk; t0Þ

´ GR
bσcσ 0 ðk; t; t0ÞG<

dσ0aσ ðk; t0; tÞ
�

þG<
bσcσ 0 ðk; t; t0ÞGA

dσ 0aσ ðk; t0; tÞ
�
:

ð30Þ

Dyson equation of Green’s functions. The Green’s functions of our periodically
driven system are determined from the Dyson equation in a matrix form:

G ¼ G0 þ G0ΣG; ð31Þ
where G, G0, and Σ are the matrices of the Green’s functions with Hsb, those
without Hsb, and the self-energies due to the second-order perturbation of Hsb,
respectively,

G ¼ GR GK

0 GA

� �
;G0 ¼

GR
0 GK

0

0 GA
0

 !
;Σ ¼ ΣR ΣK

0 ΣA

� �
: ð32Þ

The superscripts R, A, and K denote the retarded, advanced, and Keldysh com-
ponents, respectively. For example, the matrix GR as a function of k and ω is given
by GR ¼ ð½GR

aσbσ 0 ðk;ωÞ�mnÞ for a, b= dyz, dzx, dxy, σ; σ0 ¼";#, and m, n=−∞,⋯ ,
0,⋯ ,∞. The retarded, advanced, and Keldysh components are related to the
lesser one through the identity, such as

G< ¼ 1
2
ðGK � GR þ GAÞ: ð33Þ

By treating the effects of Hsb in the second-order perturbation theory, we can
express the retarded, advanced, and Keldysh self-energies as follows:

½ΣR
aσbσ 0 ðk;ωÞ�mn ¼ �iδm;nδa;bδσ;σ 0Γ; ð34Þ

½ΣA
aσbσ 0 ðk;ωÞ�mn ¼ þiδm;nδa;bδσ;σ 0Γ; ð35Þ

½ΣK
aσbσ 0 ðk;ωÞ�mn ¼ �2iδm;nδa;bδσ;σ 0Γ tanh

ωþmΩ

2Tb
: ð36Þ

In deriving them, we have omitted the real parts and replaced π∑pVpaσVpbσ 0 δðωþ
mΩ� ϵp þ μbÞ by Γδa;bδσ;σ 0 for simplicity. Such simplification may be sufficient
because the main effect of Hsb is the relaxation towards the nonequilibrium steady
state due to the damping32,33. Then, using the matrix relation G−1G= 1 and Eq.
(32), we have

ðGRÞ�1 ¼ ðG�1ÞR; ð37Þ

ðGAÞ�1 ¼ ðG�1ÞA; ð38Þ

GK ¼ �GRðG�1ÞKGA; ð39Þ
where

G�1 ¼ ðG�1ÞR ðG�1ÞK

0 ðG�1ÞA

 !
: ð40Þ

Therefore, the retarded and advanced Green’s functions with Hsb are obtained by

calculating the inverse matrices of ðG�1ÞR and ðG�1ÞA, respectively,
½ðG�1ÞRaσbσ0 ðk;ωÞ�mn ¼ ðωþ μþmΩþ iΓÞδm;nδa;bδσ;σ 0

� ξσσ
0

ab δm;n � ½ϵabðkÞ�mnδσ;σ 0 ;
ð41Þ

½ðG�1ÞAaσbσ0 ðk;ωÞ�mn ¼ ðωþ μþmΩ� iΓÞδm;nδa;bδσ;σ 0

� ξσσ
0

ab δm;n � ½ϵabðkÞ�mnδσ;σ 0 ;
ð42Þ

where

½ϵabðkÞ�mn ¼
Z T

0

dt
T
eiðm�nÞΩtϵabðk; tÞ: ð43Þ

The expressions of ½ϵabðkÞ�mn for our model are provided in Supplementary Note 2;
as shown there, ½ϵabðkÞ�mn includes the Bessel functions of the first kind as a
function of u= eA0. After obtaining these Green’s functions, we can obtain the
Keldysh Green’s function with Hsb by combining Eq. (39) with the following
equation:

½ðG�1ÞKaσbσ0 ðk;ωÞ�mn ¼ 2iΓδm;nδa;bδσ;σ 0Γ tanh
ωþmΩ

2Tb
: ð44Þ

We finally obtain the lesser Green’s function with Hsb using the three Green’s
functions obtained and Eq. (33).
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Numerical calculations. We numerically calculated Eq. (8) for Q=C or S, σCyx or
σSyx , in the following way. The momentum summation was calculated by dividing the
Brillouin zone into aNx ×Nymesh and settingNx=Ny= 100. The frequency integral

was done by using
RΩ=2
�Ω=2 dω

0Fðω0Þ � ∑W�1
s¼0 Δω0Fðω0

sÞ, where ω0
s ¼ �Ω=2þ sΔω0

and ω0
W ¼ Ω=2, and setting Δω0 ¼ 0:005 eV. The frequency derivatives of the

Green’s functions was approximated by using ∂Fðω0 Þ
∂ω0 � Fðω0þΔω0 Þ�Fðω0�Δω0 Þ

2Δω0 . The sum-
mations over the Floquet indices, ∑1

m;l;n;q¼�1, was replaced by ∑nmax
m;l;n;q¼�nmax

, and
nmax was fixed at nmax ¼ 2 for Ω= 6 and 4 eV or nmax ¼ 3 for Ω= 2 eV.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used in the numerical calculations is available from the corresponding author
upon reasonable request.

Received: 22 August 2022; Accepted: 14 February 2023;

References
1. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian

periodic in time. Phys. Rev. 138, B979 (1965).
2. Sambe, H. Steady states and quasienergies of a quantum-mechanical system in

an oscillating field. Phys. Rev. A 7, 2203 (1973).
3. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior

of periodically driven systems: from dynamical stabilization to Floquet
engineering. Adv. Phys. 64, 139 (2015).

4. Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical
lattices. Rev. Mod. Phys. 89, 011004 (2017).

5. Oka and S. Kitamura, T. Floquet engineering of quantum materials. Annu.
Rev. Condens. Matter Phys. 10, 387 (2019).

6. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79,
081406(R) (2009).

7. Yin, C. M. et al. Observation of the photoinduced anomalous Hall effect in
GaN-based heterostructures. Appl. Phys. Lett. 98, 122104 (2011).

8. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat.
Phys. 16, 38–41 (2020).

9. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117,
090402 (2016).

10. Choi, S. et al. Observation of discrete time-crystalline order in a disordered
dipolar many-body system. Nature 543, 221–225 (2017).

11. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220
(2017).

12. Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the
exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

13. Mikhaylovskiy, R. V. et al. Ultrafast optical modification of exchange
interactions in iron oxides. Nat. Commun. 6, 8190 (2015).

14. Arakawa, N. & Yonemitsu, K. Floquet engineering of Mott insulators with
strong spin-orbit coupling. Phys. Rev. B 103, L100408 (2021).

15. Arakawa, N. & Yonemitsu, K. Polarization-dependent magnetic properties of
periodically driven α-RuCl3. Phys. Rev. B 104, 214413 (2021).

16. Strobel, P. & Daghofer, M. Comparing the influence of Floquet dynamics in
various Kitaev-Heisenberg materials. Phys. Rev. B 105, 085144 (2022).

17. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current
into charge current at room temperature: inverse spin-Hall effect. Appl. Phys.
Lett. 88, 182509 (2006).

18. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin
Hall effect. Nature 442, 176–179 (2006).

19. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781
(2008).

20. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic
semiconductor. Nat. Mater. 9, 898–903 (2010).

21. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11,
391 (2012).

22. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).
23. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of

the spin Hall effect in semiconductors. Science 306, 1910 (2004).
24. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin

Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

25. Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154
(1954).

26. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous
Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

27. Claassen, M., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Dynamical time-
reversal symmetry breaking and photo-induced chiral spin liquids in
frustrated Mott insulators. Nat. Commun. 8, 1192 (2017).

28. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d
transition metals. Phys. Rev. B 77, 165117 (2008).

29. Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant
intrinsic spin and orbital Hall effects in Sr2MO4 (M= Ru, Rh, Mo). Phys. Rev.
Lett. 100, 096601 (2008).

30. Büttiker, M. Small normal-metal loop coupled to an electron reservoir. Phys.
Rev. B 32, 1846(R) (1985).

31. Büttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 33,
3020 (1986).

32. Tsuji, N., Oka, T. & Aoki, H. Nonequilibrium steady state of photoexcited
correlated electrons in the presence of dissipation. Phys. Rev. Lett. 103, 047403
(2009).

33. Mikami, T. et al. Brillouin-Wigner theory for high-frequency expansion in
periodically driven systems: application to Floquet topological insulators.
Phys. Rev. B 93, 144307 (2016).

34. Keldysh, L. V. Diagram technique for nonequilibrium processes. Zh. Eksp.
Teor. Fiz. 47, 1515–1527 (1964) [Sov. Phys. JETP 20, 1018–1026 (1965)).

35. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the
physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657 (2003).

36. Arakawa, N. & Ogata, M. Competition between spin fluctuations in
Ca2−xSrxRuO4 around x= 0.5. Phys. Rev. B 87, 195110 (2013).

37. Oguchi, T. Spin-orbit effects on the Ru-d orbital hybridization and Fermi
surface in Ca2−xSrxRuO4. J. Phys. Soc. Jpn. 78, 044702 (2009).

38. Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction
in Sr2RuO4. Phys. Rev. Lett. 85, 5194 (2000).

39. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of
magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

40. Eckstein, M. & Kollar, M. Theory of time-resolved optical spectroscopy on
correlated electron systems. Phys. Rev. B 78, 205119 (2008).

41. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett.
93, 083901 (2004).

42. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak
measurements. Science 319, 787 (2008).

43. Kim, M., Lee, D. & Rho, J. Spin Hall effect under arbitrarily polarized or
unpolarized light. Laser Photon. Rev. 15, 2100138 (2021).

44. Mahan, G. D. Many-Particle Physics (Plenum, New York, 2000).
45. Mizoguchi, T. & Arakawa, N. Controlling spin Hall effect by using a band

anticrossing and nonmagnetic impurity scattering. Phys. Rev. B 93, 041304(R)
(2016).

46. Kadanoff, L. P. & Baym, G. Quantum Statistical Mechanics (Perseus Books,
1989).

47. Rammer, J. & Smith, H. Quantum field-theoretical methods in transport
theory of metals. Rev. Mod. Phys. 58, 323 (1986).

48. Kontani, H., Tanaka, T. & Yamada, K. Intrinsic anomalous Hall effect in
ferromagnetic metals studied by the multi-d-orbital tight-binding model. Phys.
Rev. B 75, 184416 (2007).

49. Arakawa, N. Orbital-cooperative spin fluctuation and orbital-dependent
transport in ruthenates. Phys. Rev. B 90, 245103 (2014).

50. D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven
interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

51. Dehghani, H., Oka, T. & Mitra, A. Dissipative Floquet topological systems.
Phys. Rev. B 90, 195429 (2014).

52. Kawakami, Y., Itoh, H., Yonemitsu, K. & Iwai, S. Strong light-field effects
driven by nearly single-cycle 7fs light-field in correlated organic conductors. J.
Phys. B: . Mol. Opt. Phys. 51, 174005 (2018).

53. Morota, M. et al. Indication of intrinsic spin Hall effect in 4d and 5d transition
metals. Phys. Rev. B 83, 174405 (2011).

Acknowledgements
This work was supported by JST CREST Grant No. JPMJCR1901, JSPS KAKENHI
Grants No. JP22K03532, JP19K14664, and JP16K05459, and MEXT Q-LEAP Grant No.
JP-MXS0118067426.

Author contributions
N.A. conceived the project, formulated the theory, performed the numerical calculations,
and wrote the manuscript. K.Y. supervised the project. All authors discussed the results
and commented on the manuscript.

Competing interests
The authors declare no competing interests.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01153-9 ARTICLE

COMMUNICATIONS PHYSICS |            (2023) 6:43 | https://doi.org/10.1038/s42005-023-01153-9 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01153-9.

Correspondence and requests for materials should be addressed to Naoya Arakawa.

Peer review information Communications Physics thanks Tutul Biswas, James LeBlanc
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01153-9

8 COMMUNICATIONS PHYSICS |            (2023) 6:43 | https://doi.org/10.1038/s42005-023-01153-9 | www.nature.com/commsphys

https://doi.org/10.1038/s42005-023-01153-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Symmetry-protected difference between spin Hall and anomalous Hall effects of a periodically driven multiorbital metal
	Results and discussion
	Periodically driven t2g-orbital metal
	Theory of pump-probe measurements of the SHE and AHE
	Helicity-independent  yx^SσyxS and helicity-dependent  yx^CσyxC
	SOC-dependent  yx^SσyxS and SOC-independent  yx^CσyxC
	Implications and experimental realization

	Methods
	Tight-binding Hamiltonian with SOC
	Büttiker-type heat bath
	Charge current and spin current operators
	Anomalous-Hall and spin-Hall conductivities as functions of time
	Dyson equation of Green’s functions
	Numerical calculations

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




