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Conductance spectroscopy of Majorana zero
modes in superconductor-magnetic insulator
nanowire hybrid systems
Roshni Singh 1 & Bhaskaran Muralidharan 2,3✉

There has been recent interest in superconductor-magnetic insulator hybrid Rashba nanowire

setups for potentially hosting Majorana zero modes at smaller external Zeeman fields. Using

the non-equilibrium Green’s function technique, we develop a quantum transport model that

accounts for the interplay between the quasiparticle dynamics in the superconductor-

magnetic insulator bilayer structure and the transport processes through the Rashba nano-

wire. We provide an analysis of three-terminal setups to probe the local and non-local

conductance in clean and disordered nanowires. We uncover the gap closing and reopening

followed by the emergence of near-zero energy states, which can be attributed to topological

zero modes in the clean limit. In the presence of a disordered potential, trivial Andreev bound

states may form with signatures reminiscent of topological zero modes. Our results provide

transport-based analysis of regimes that support the formation of Majorana modes in these

hybrid systems while investigating the effect of disorder on devices.
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Rashba nanowire-superconductor hybrid systems1–7 are the
front-running platforms for detecting and manipulating
Majorana zero modes (MZMs)8–13. The quantized zero-

bias conductance peak (ZBCP), observed in two terminal setups
featuring the normal metal-topological superconductor (N-TS)
link, once considered to be a definitive signature of MZMs14–19,
has become a controversial issue. Quasi-MZMs13,20–24, which are
near-zero energy trivial Andreev bound states (ABS) mimic most
of the MZM signatures.

As a result, recent efforts25–32 have focused on distinguishing
between trivial and topological zero-energy modes. Recent
efforts33–38, culminating in the topological gap protocol
(TGP)39,40, have converged on guidelines that necessitate the
measurement of all the elements of the conductance matrix,
particularly focusing on non-local transport measurements using
three-terminal normal-topological superconductor-normal (N-
TS-N) setups to identify the bulk-gap closing and reopening,
which separates the trivial and topological regimes. Non-local
conductance signatures should thus supplement the local con-
ductance measurements in identifying MZM signatures by
detecting non-local correlations, particularly in the presence of
disorder.

With the aforementioned on one hand, the basic Rashba wire
setup itself has further drawbacks which includes the requirement
of large magnetic fields that could potentially destroy
superconductivity41–44 apart from the practicalities of precise
magnetic field alignment45. Recently, efforts are being made
towards realizing topological superconductivity with zero external
magnetic fields by using proximity effects from magnetic insu-
lators (MI)46–59. Recent experimental47 and theoretical
works48–52,55,60 featuring this setup indicate that at very low
external magnetic fields, or even zero external magnetic fields, a
topological phase can emerge.

Theoretical studies on the isolated system, schematized in
Fig. 1a, thus far have set a preliminary stage by providing an
insight on the geometric configurations and regimes of physical
parameters which support the emergence of topological phases.
However, the experimental basis for probing the formation of
MZMs, in connection with the TGP, will entail a detailed analysis
of conductance signatures. This necessitates detailed quantum
transport calculations to evaluate the‘current flow in a multi-
terminal geometry that is schematized in Fig. 1b. The object of

this paper is hence to provide an in-depth analysis of the trans-
port signatures of MZMs in these structures, particularly focusing
on the local and non-local conductance spectra in both pristine
and disordered nanowires.

Using the Keldysh non-equilibrium Green’s function (NEGF)
technique, we develop a detailed quantum transport approach
that accounts for the complex interplay between the quasiparticle
dynamics in the superconductor-magnetic insulator (SC-MI)
bilayer structure, and the transport processes through the semi-
conducting Rashba nanowire. Using this, we provide a detailed
analysis of three terminal setups to probe the local and non-local
conductance spectra in both the pristine as well as the disordered
cases. We uncover the conductance quantization scaling with the
bilayer coupling and the signatures of the gap closing followed by
the emergence of near-zero energy states, which can be attributed
to the zero modes in the clean nanowire. However, in the pre-
sence of a smoothly varying disorder potential, trivial Andreev
bound states may form with signatures reminiscent of topological
zero modes.

Results and discussions
We consider semiconductor nanowires (SM) with Rashba-spin-
orbit coupling with epitaxial layers of superconductors (SC) (usually
Al/Pb) and magnetic insulators (MI) (usually EuS), as depicted in
Fig. 1a. We then consider the device geometry where the MI and SC
are in contact with the SM individually and overlap with each other,
and connected to metallic leads as depicted in Fig. 1b.

The strength of the coupling of the metallic leads to the nano-
wire is controlled by the parameter γ, which represents the escape
rate of the electrons into the leads. In the broadband limit of
treating the contacts, as described in earlier works, this quantity is
energy independent and can be used as a parameter. The isolated
Rashba nanowire is described by the following Hamiltonian:

HSM ¼ VSM
Z σ̂x þ

_2k2

2m� � μþ αRkσ̂y

� �
τ̂z; ð1Þ

Where VSM
Z is the Zeeman Hamiltonian in the SM, μ is the elec-

trochemical potential, αR is the strength of the Rashba spin–orbit
coupling, m* is the effective mass of the electron and σ̂ i; τ̂i, are the
Pauli matrices in the spin and the particle–hole space, respectively.

Fig. 1 Device schematics. a Cross section of Rashba nanowire epitaxially epitaxially coated with a superconductor (SC) and a magnetic-insulator (MI),
showing overlapping SC and MI layers. b A 3-D schematic of the device setup with the nanowire connected to two normal contacts via tunnel barriers, and
a gate to control chemical potential, μ. c, d Effective 1D models used for computation, treating MI-SC as a stacked bilayer, with the homogeneous and
inhomogeneous chemical potential profiles shown below.
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As detailed in the Methods section and in Supplementary
Note 1, the effects of the SC-MI bilayer are accounted for as a
self-energy term in the Green’s function for the nanowire and the
effect of the direct coupling of the MI to the nanowire is taken to
be an effective Zeeman field in the wire. The strength of the
coupling of the SC-MI bilayer to the Rashba nanowire is con-
trolled by the parameter γSC. It comes into play while calculating
the self-energy accounting SC-MI bilayer from the Green’s
function for the bilayer. We also use the self-consistent value of
the superconducting gap, Δ, calculated from the bare super-
conducting gap Δ0 of the parent superconductor in the presence
of the Zeeman field and scattering processes. The process of
obtaining this is involved and has been described in Supple-
mentary Note 1. We use Δ0= 0.23 meV, m*= 0.015me, where me

is the electron rest mass, for all our simulations.
In order to model the system to simulate transport measure-

ments, we reduce the hexagonal nanowire to a quasi one-
dimensional system52 as shown in Fig. 1c, d. In Fig. 1c, we
consider a ‘clean’ nanowire, with a constant chemical potential.
We also consider an inhomogeneous potential which is a spatially
varying Gaussian potential as illustrated in Fig. 1d. Smoothly
varying Gaussian potentials such as the one we have used in our
simulations may arise in experimental situations due to charged
impurities in the nanowire61,62.

An external Zeeman field is applied which is anti-parallel to the
magnetization in the MI. It reduces the Zeeman term in the
Hamiltonian of the SC, but increases the Zeeman field in the
normal metal. We parameterize the Zeeman fields in the SC and
the SM in terms of the field directly induced in the SC due to the
MI ðVSC

0 Þ, and the coupling strengths of the SC and SM nanowire
to the external magnetic field, (gSC, gSM) as follows:

VSC
Z ¼ VSC

0 þ gSCV
Z
ext

VSM
Z ¼ gSMV

Z
ext :

ð2Þ

We use gSC= 2, gSM=− 15 for our calculations, closely fol-
lowing the setup in52, used for equilibrium calculations. A finite
Zeeman energy in the semiconductor, either induced by coupling
to a magnetic insulator or by an applied magnetic field, is
required to enter the topological phase63. Here we have con-
sidered only an external Zeeman field, and neglected the direct
coupling of the SM to the MI–an assumption which can altered
by adjusting the parameterization.

We first present the numerical results for the pristine nano-
wire, in the absence of an inhomogeneous potential. The low
energy density of states (DOS) shown in Fig. 2a, b illustrates the
lowest ABS which form a near-zero energy oscillating mode after
the topological transition, which is marked by the bulk gap
closing and reopening. The bulk gap closing and reopening is
more prominent in the longer nanowire than the shorter one,
since there are more sub-gap states. As the length of the nanowire
increases, the oscillations around zero-energy are exponentially
suppressed64–66.

The local density of states (LDOS) corresponding to these
nanowires, as seen in Fig. 2c, d, shows that the zero energy state is
well localized at both ends, and more prominently so in the longer
nanowire. The LDOS plots also show a greater splitting in energy
around the zero energy for the shorter nanowire than the longer
nanowire. While on closer inspection, the longer nanowire also
shows some splitting, in reasonable experimental measurements we
expect to see a single broadened peak. These observations are due
to the hybridization of the MZMs when they overlap in finite
nanowires, resulting in a splitting of the zero mode67. The hybri-
dization of the MZMs through the nanowire is suppressed with
increasing length64–66, which is consistent with our observations.

In Fig. 3a, b we plot the differential conductance for clean
nanowires of lengths 2.25 μm and 4.5 μm with chemical potential
μ= 0.125 meV and find a clear ZBCP in the topological regime,
and no peak near zero energy in the topologically trivial regime.
The peak is close to the quantized value of e2

h expected from an
MZM in an N–S–N setup under symmetric biasing64,65, but is
smaller. We attribute this observation to the level broadening due
to the composite SC-MI bilayer which effectively acts as an extra
contact68 and induces further broadening compared to a two-
terminal N–TS–N device69. This is also borne out by the fact that
as the coupling to the metallic contacts becomes much stronger
than the coupling to the bilayer, the ZBCP asymptotically reaches
the quantized value, as shown in Fig. 3c, since the broadening due
to the effective MI-SC bilayer becomes negligible in comparison
to the broadening induced by the metallic contacts. It should also
be noted that the exactness of the quantization would also depend
on the external magnetic field because the Majorana overlap
energy oscillates with the externally applied magnetic field. As the
overlap energy of the MZMs at the ends of the nanowire varies,
the peak value of the ZBCP also changes70. This figure clearly
elucidates the effect of introducing the bilayer on the actual
conductance quantization of MZMs in the setup.

The ZBCP quantization reflects upon the local Andreev
reflection process, and can be a diagnostic for MZMs in pristine
setups. In disordered setups, as currently encountered in experi-
ments, the current guidelines on the detection of MZMs follows
the TGP39,40. The TGP employs a combination of local and non-
local conductance measurements on three terminal setups as an
effective diagnostic tool for the detection of MZMs. In this pro-
tocol, first, the local conductance measurements at the two ends
of a disordered setup must individually show a sustained gap
closure and ZBCP spanning a large range of applied magnetic
fields. Such gap closures will have local variations due to the
presence of random uncorrelated impurities at the two ends. In
addition, the non-local conductance gap must close and re-open,
signaling a topological phase transition. Besides that, at the point
at which the non-local conductance gap closes, one must observe
a zero magnitude of the conductance along with a flip in the sign
of the conductance. From the transport physics angle33,66, this
can be attributed to the fact that the non-local conductance
magnitude is given by the difference between the direct compo-
nent and the crossed Andreev component, all of which are
described in Supplementary Note 2 and several other references.

We now turn our attention to our simulations on the local and
non-local conductances in accordance with the TGP. Following
previous analysis61,71 for the disordered setup, we have specifi-
cally considered the inhomogenous potential as depicted in
Fig. 1d. A smoothly-varying potential barrier can be interpreted
as a spatially varying chemical potential. In such a scenario, parts
of the nanowire may locally enter the topological regime,
resulting in a local pair of near-zero energy modes. This typically
happens when the system is tuned close to the topological phase.
These quasi-MZMs may mimic many of the characteristic sig-
natures of MZMs, including zero bias peaks in the local con-
ductance at magnetic fields smaller than those at which the
topological MZMs appear. However, these near-zero-energy
states do not have topological protection and are hence not
true MZMs.

Before embarking on the results related to the local and nonlocal
transport spectroscopy simulations, we must make a quick remark
on the biasing conditions of three terminal setups. In such a setup,
voltages can be applied and currents can be measured across either
terminals independently. As defined in (6) and explicitly derived in
(7) and (8), this tantamounts to enforcing asymmetric biasing at
the contacts, (VL=V,VR= 0). As a consequence, the ZBCP is
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Fig. 2 Majorana Zero Modes (MZMs) in the structure. a, b Density of states (DOS) as a function of the energy(E) and the externally applied Zeeman field
Vext
Z of the device region for nanowire (NW) lengths a 2.25 μm, and b 4.5 μm. The low energy DOS shows the gap closing, followed by the emergence of a

state near zero energy. The splitting of this low energy state is greater for shorter nanowires than longer nanowires. c, d Local density of states (LDOS)
profiles at Vext

Z ¼ 0:1Δ0 which clearly show the localization of the zero energy states at the ends of the nanowire, consistent with the appearance of MZMs.
The longer (length 4.5 μm) nanowire d shows a greater degree of localization than the shorter (length 2.25 μm) nanowire c. The bare superconducting gap
in the parent superconductor Δ0 sets the scale for all energies. The colorbars represent the magnitude of the DOS, LDOS.

Fig. 3 Scaling of conductance quantization with bilayer coupling. a, b Low bias differential conductance plots for nanowires of length a 2.25 μm, and b
4.5 μm in the topological region (External Zeeman field, Vext

Z ¼ 0:07Δ0) (orange) and trivial region (Vext
Z ¼ 0:005Δ0) (green). The topological regime

shows clear conductance peaks absent in the trivial regime, though not quantized. The splitting of the zero bias peak is more pronounced for the shorter
nanowire, consistent with Fig. 2. c Shows that as the coupling to the normal contacts, γ, is increased, so that it becomes much larger than the coupling, γSC,
between the nanowire and the superconductor-magnetic insulator bilayer, the peak asymptotically reaches the expected quantized value. The bare
superconducting gap in the parent superconductor Δ0 sets the scale for all energies. The differential conductance, G is plotted as a function of the bias, V. G
is measured in units of e2/h, which is the conductance quantum, e being the electronic charge and h being Planck’s constant.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01147-7

4 COMMUNICATIONS PHYSICS |            (2023) 6:36 | https://doi.org/10.1038/s42005-023-01147-7 | www.nature.com/commsphys

www.nature.com/commsphys


quantized at 2e2
h , unlike that in Fig. 3, where we had considered a

symmetric bias scenario (VL=V/2,VR=−V/2), and hence
obtained the ZBCP quantized at e2

h
65. The quantized peak is a

signature of the MZM and may be attributed to a perfect and
coherent Andreev reflection at a semiconductor—topological
superconductor (N-TS) interface, typically seen in two-terminal
devices69.

Both the local and non-local conductance spectra for the
pristine nanowire are shown in Fig. 4, for nanowires of length
2.25 μm (Fig. 4a, b) and 4.5 μm (Fig. 4c, d) which exhibit similar
features, that is, the bulk gap closing and reopening followed by
the emergence of Majorana oscillations around zero energy. Since
the zero modes appear after the closure of the bulk gap, we can
conclude that they are not quasi-MZMs, but may indeed be
topological MZMs72. We also note that a finite low-bias non-local
conductance only emerges after the topological transition. The
low bias non-local conductance is rectifying in nature33 and
switches sign as the the voltage polarity is reversed. At the turning
points, the non-local conductance vanishes.

In the sub-gap region, there is a correspondence between the
non-local conductance and the BCS charges of the bound state at
the leads such that the nonlocal conductance is proportional to
the BCS charge at a contact73. The charge difference between the
even and odd parity ground states is equal to the net charge
carried by the BdG fermion state, which can be nonzero when the

constituent Majorana wave functions overlap74. The vanishing of
the non-local conductance at the turning points is a signature
expected from hybridized MZMs, which should be chargeless at
turning points. From the plots of local and nonlocal conductance
of the pristine nanowire, we can see an oscillation in the energy
splitting as the magnetic field is increased. Meanwhile, the mag-
nitude of the nonlocal conductance, which corresponds to the
BCS charge, vanishes at the turning points (maxima and minima)
of the energy splitting, and is maximum (close to the quantized
value) at the points where the energy splitting vanishes75.
Therefore, the BCS charge and the energy splitting oscillate out of
phase with each other, which is a characteristic signature of
MZMs. The local conductance is almost quantized at 2e2

h where
the Majorana splitting goes to zero. The deviation from the
precise quantization value may be attributed to contact broad-
ening, and due to the fact that we have three contacts in our
system, as elaborated previously. At the points where the
Majorana overlap energy becomes significant, the value of the
local conductance drops further.

In the presence of a smoothly-varying potential barrier, the
formation of quasi-MZMs is expected33,62,76–85. They character-
istically appear in the topologically trivial regime before the clo-
sure of the bulk gap, mimicking many signatures originally
considered as ‘smoking gun signatures’ for MZMs including
oscillations with the externally applied magnetic field, and with
the associated local conductance quantized at values close to 2e2

h . It
is expected that systems which show quasi-MZMs, will also
exhibit true MZMs in the topological phase on increasing the
external Zeeman field. For such a disordered case, for the longer
nanowire, as shown in Fig. 5a, in the DOS, we find signatures
characteristic of a quasi-MZM state, followed by a gap reopening
signature and the emergence of a potential topological MZM. The
local conductance, as shown in Fig. 5b in this case is quite
deceptive since we see a premature gap closing and the bulk-gap
reopening signature is extremely faint.

The quasi-MZM and the true MZM regions are quite difficult
to distinguish. In the non-local conductance plot shown in
Fig. 5c, the bulk-gap reopening is seen more prominently, in
closer accord with the gap protocol39. The non-local conductance
shows signatures of both the quasi-MZM and the topological
MZM states, which can be distinguished by their position with
respect to the reopening of the bulk gap76. For the shorter
nanowire, as seen in Fig. 5d–f, the local and the non-local con-
ductance spectra both show the gap closing and reopening fol-
lowed by the emergence of MZMs, which oscillate in energy as
the Zeeman field is increased. At the points where the splitting is
zero, the local conductance is quantized at values very close to 2e2

h .
We do not find any signatures of quasi-MZM states in this device.
An interesting point to note is that the local conductance exhibits
signs of negative differential conductance. It is also worth noting
that especially for longer nanowires, neither the local nor the
non-local conductance alone has the entire information regarding
the channel DOS, that arises from its eigenspectrum.

The MZMs are protected by a clear topological gap both for the
pristine nanowire and for the nanowire with a smoothly varying
background potential. The local conductance fails to probe the bulk
states for sufficiently long nanowires. Before one lays claim to
having observed topological MZMs, it is necessary to measure the
entire conductance matrix to probe a device and investigate whether
the zero bias peaks at both the contacts or on both the sides are
correlated and emerging after the bulk gap closing and reopening,

To conclude, using the NEGF technique, we developed a
detailed quantum transport approach that accounts for the
complex interplay between the quasiparticle dynamics in the SC-
MI bilayer structure, and the transport processes through the

Fig. 4 Conductance spectra for the clean nanowire. a Local (GLL) and
b non-local conductance (GLR) signatures for a nanowire of length 2.25 μm,
with a potential profile as shown in Fig. 1c. c Local and d non-local
conductance spectra for a nanowire of length 4.5 μm, with a potential
profile as shown in Fig. 1c. Both the local and the non-local conductances
show the bulk gap closing and reopening, which signals a topological
transition, followed by the emergence of a near-zero energy state with a
splitting that oscillates as a function of the externally applied magnetic field,
Vext
Z . The bare superconducting gap in the parent superconductor Δ0 sets

the scale for all energies. GLL, GLR are plotted as a function of the biasing
energy e, and the externally applied magnetic field Vext

Z and are measured in
units of e2/h, which is the conductance quantum, e being the electronic
charge and h being Planck’s constant. The colorbars represent the
magnitude of the DOS, LDOS.
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semiconducting Rashba nanowire. We provided a detailed ana-
lysis of three terminal setups to probe the local and non-local
conductance spectra in both the pristine as well as the disordered
limits. We uncovered the conductance quantization scaling with
the bilayer coupling and the signatures of the gap closing followed
by the emergence of near-zero energy states, which can be
attributed to the topological zero modes in the clean nanowire
limit. However, in the presence of a smoothly varying potential,
trivial Andreev bound states may form with signatures reminis-
cent of topological zero modes in the form of a premature gap
closure in the conductance spectra. Our results therefore provide
transport-based analysis of the operating regimes that support the
formation of MZMs in these hybrid systems of current interest,
while considering experimentally relevant device structures with
realistic disordered potentials accounting for shallow tunnel
barriers which may be formed inside the hybrid nanowire
structure. Having set the stage for understanding device modeling
in these emerging structures, the technique can also be easily
extended to account for other experimental device designs and
also the inclusion of scattering effects64,77 inside the nanowire
channel.

Methods
We discretize the Hamiltonian of the system (2) on a 1D lattice with N sites, and
write the Green’s function in the Nambu spinor basis78 ðψ";ψ#;�ψy

";ψ
y
#Þ

T
. The

Hamiltonian for the Rashba nanowire and the self-energies corresponding to the
metallic contacts and the SC-MI bilayer, are then used obtain the retarded Green’s
function for the hybrid device which is used for our transport calculations,

GR ¼ ðE þ iηÞI�HSM � ΣL � ΣR � Σ0� ��1
; ð3Þ

where η is an infinitesimal positive damping parameter introduced for numerical
stability, and I is the identity matrix of the dimension of the Hamiltonian matrix in
Nambu space. In the wide-band approximation64–66, the self energies for the

metallic contacts, ΣL(R), are written in their eigenbasis and are hence diagonal, as
detailed in Supplementary Note 2. We use the Usadel equation, which is derived
from a quasi-classical approximation to the Gorkov equations, to find the Green’s
function, and hence, the self-energy, Σ0 for the SC-MI bilayer52. The effect of the
proximity of the MI on the SC can be taken into account in the boundary con-
ditions of the Usadel equation. The MI layer induces a uniform Zeeman field VSC

Z
in the diffusive superconductor79. The Usadel equation is then solved with the self-
consistent value of Δ to obtain the quasi-classical Green’s function for the bilayer,
�g. The gap is induced in the bare Rashba nanowire by considering the proximity
effect of the bilayer, which is taken into account using the self energy, Σ0 which can
be obtained from the semi-classical Green’s function, �g. The imaginary part of Σ0

connects the electron and hole subspaces, thus, inducing a gap in the system.
We also take into account spin-orbit and spin-flip scattering in the SC, by adding

a scattering self-energy term in the Usadel equation. The energy scales for the spin-
orbit and spin-flip relaxation processes are characterized by Γso, Γsf respectively. We
take Γso= Γsf= 0.4Δ0 for our simulations unless stated otherwise. We also use the
Usadel Equation to calculate the self-consistent value of the superconducting gap in
the presence of an external magnetic field. For this, we solve the Usadel equation
self-consistently with the superconducting gap equation along with a thermo-
dynamic constraint as outlined in Supplementary Note 1.

The retarded Green’s function is be used to calculate the spectral function, A(E),
the trace of which gives the density of states (times 2π), and the diagonal elements
of which gives us the local density of states (times 2π).

DOSðEÞ ¼ 1
2π

Tr½AðEÞ� ¼ 1
2π

Tr½GRðEÞ � GAðEÞ� ð4Þ
We also use the retarded Green’s function defined above to calculate the

transmission coefficients, and hence the conductance matrix for this setup64–66,78.
As shown in Fig. 1, we apply voltages VL(R) to the left and right contacts and
measure terminal currents IL(R). We use the Keldysh non-equilibrium Green’s
function formalism to evaluate the terminal currents64–66,78. The terminal elec-
tronic current at the left contact80 can be derived in the Landauer Büttiker form as:

IðeÞL ¼� e
h

Z
dETðeÞ

A ðEÞ f E � eVL

� �� f E þ eVL

� �� ��

þ
Z

dETðeÞ
CARðEÞ f E � eVL

� �� f E þ eVR

� �� �

þ
Z

dET ðeÞ
D ðEÞ f E � eVL

� �� f E � eVR

� �� �	þ I0;

ð5Þ

Fig. 5 Conductance spectra for the disordered nanowire. a Low Energy density of states (DOS) b local and c non-local conductance spectra for a nanowire
of length 4.5 μm, with a potential profile as shown in Fig. 1d. d Low energy DOS, e the local and f the non-local conductance conductance spectra for a
nanowire of length 2.25 μm, with a potential profile as shown in Fig. 1d. For the long nanowire, we see premature emergence of a quasi-Majorana Zero
Mode before the bulk gap closing and reopening.The bare superconducting gap in the parent superconductor Δ0 sets the scale for all energies. GLL, GLR are
plotted as a function of the biasing energy e, and the externally applied magnetic field Vext

Z and are measured in units of e2/h, which is the conductance
quantum, e being the electronic charge and h being Planck’s constant. The colorbars represent the magnitude of the DOS, LDOS.
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where, T ðeÞ
D ðEÞ, TðeÞ

A ðEÞ, and T ðeÞ
CARðEÞ represent the energy resolved transmission

probabilities for the direct, Andreev and crossed-Andreev processes involving the
left and right contacts for the electronic sector of the Nambu space and I’ is the
extra current due to the SC-MI bilayer acting as an effective contact, derived in
Supplementary Note 1. These transmission probabilities can be calculated from
Green’s function of the device and the self-energies of the contacts64,66.

Using the expressions for the terminal currents from above, the conductance
matrix [G] can be defined as:

½G� ¼ GLL GLR

GRL GRR
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VR¼0

∂IL
∂VR





VL¼0

∂IR
∂VL





VR¼0

∂IR
∂VR
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0
B@

1
CA; ð6Þ

The diagonal matrix elements represent the local conductance at the left and right
contacts, and the off-diagonal components represent the non-local conductance.

The local conductance at the left contact can be derived by taking a partial
derivative of the left terminal current (IL), as given in (5), with the left contact
voltage (VL), and the right contact voltage (VR) set to zero, and is given by :
GLL ¼ ∂IL

∂VL





VR¼0

. Using this, we derive the following expression for the local con-
ductance using the Landauer Büttiker form

GLLðVÞ



T!0

� e2

h
TAðE ¼ eVÞ þ TAðE ¼ �eVÞ�

þ TCARðE ¼ eVÞ þ TDðE ¼ eVÞ þ G0
LLðVÞ

�
;

ð7Þ

The term G0
LLðVÞ is due to currents flowing into the SC-MI bilayer66.

The non-local conductance formula can similarly be derived by taking a partial
derivative of the left terminal current (IL), as given in (5), over the right terminal
voltage (VR), with the left terminal voltage (VL) set to zero, such that, GLR ¼ ∂IL

∂VR





VL¼0

.

GLRðVÞ



T!0

� e2

h
TCARðE ¼ �eVÞ � TDðE ¼ eVÞ� �

: ð8Þ

Using the above, we have analyzed the local and non-local conductances of the device
in both the pristine and disordered setups.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The codes generated during the simulation study are available from the corresponding
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