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Inverse Hamiltonian design by automatic
differentiation
Koji Inui 1,2✉ & Yukitoshi Motome 1

An ultimate goal of materials science is to deliver materials with desired properties at will.

Solving the inverse problem to obtain an appropriate Hamiltonian directly from the desired

properties has the potential to reach qualitatively new principles, but most research to date

has been limited to quantitative determination of parameters within known models. Here, we

develop a general framework that can automatically design a Hamiltonian with desired

physical properties by using automatic differentiation. In the application to the quantum

anomalous Hall effect, our framework can not only construct the Haldane model auto-

matically but also generate Hamiltonians that exhibit a six-times larger anomalous Hall effect.

In addition, the application to the photovoltaic effect gives an optimal Hamiltonian for

electrons moving on a noncoplanar spin texture, which can generate ~ 700 Am−2 under solar

radiation. This framework would accelerate materials exploration by automatic construction

of models and principles.
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A conventional theoretical approach to materials explora-
tion is to search for Hamiltonians that produce physical
properties of interest (Fig. 1a). This is not only tedious but

also nontrivial since the parameter space to be explored is usually
unknown a priori. Therefore, most of the research to date has
been conducted for the known Hamiltonians and their exten-
sions. However, these approaches make it difficult to reach qua-
litatively new models and principles. In contrast, the inverse
approach to find appropriate Hamiltonians directly from the
desired properties is not only efficient but also has the potential to
unveil qualitatively new physics (Fig. 1a). Many proposals have
been made for the inverse approach1–13. Since the early stage, the
perturbation theory2,7,14, the potential interpolation15,16, and the
eigenstate-to-Hamiltonian construction17 have been employed,
but their applications were limited to the objective functions in
terms of energy. In recent years, machine learning-based meth-
ods, such as the generative models using neural networks1,18,19,
the Bayesian optimization using Gaussian processes5,20,21, and
the genetic algorithms22,23 have been developed, but they require
numerous data and computational resources for training. In
particular, the Bayesian optimization and the genetic algorithms
do not necessarily improve the objective function after parameter
update, and the generative models would fail in the parameter
space where data is insufficient. For these reasons, the previous
research has been limited to the quantitative estimation of a few
parameters within known Hamiltonians. Thus, it is still challen-
ging to explore new models and principles by taking full advan-
tage of the inverse problem.

To address these issues, we develop a framework that can
automatically design a Hamiltonian with desired physical prop-
erties by using automatic differentiation. Automatic differentia-
tion enables us to compute the analytic derivatives of any
functions by adapting chain rules, which have been widely used in
the field of deep learning in the process of backpropagation24,
even for over a trillion parameters25. In recent years, automatic
differentiation has been applied to physics, such as computing
physical quantities represented by derivatives26,27, calculating

conditions for solar cells28, applications to quantum gate
control29–31, non-equilibrium steady state32, numerical renor-
malization group33, Hatrtee–Fock calculation34,35, molecular
dynamics36, and density functional theory37,38. However, the
application to the inverse design of a Hamiltonian has not been
fully explored thus far to the best of our knowledge.

In this article, we first describe the framework and its
advantages over previous methods. Then, we demonstrate a
proof of concept of this framework by applying it to two pro-
blems: the anomalous Hall effect (AHE) and the photovoltaic
effect (PVE). We show that our framework can automatically
construct the Haldane model with the quantum AHE on the
honeycomb lattice. Moreover, by applying the framework to a
model on the triangular lattice, we find a Hamiltonian that
exhibits a six-time larger AHE than that of the Haldane model.
For the PVE, we are able to automatically generate a spin-
charge-coupled Hamiltonian with electrons moving over an
umbrella-shaped spin configuration, which can produce a
photocurrent of about 700 A m−2. Our framework is applicable
to a wide range of systems and physical properties, including
first-principles Hamiltonians, strongly correlated electron sys-
tems, and interacting bosonic systems.

Results and discussion
Framework. The flowchart of our framework is shown in Fig. 1b.
First, we prepare a HamiltonianHðθÞ with a set of parameters θ. We
also define the objective function L(θ) to be minimized for achieving
the desired properties; for instance, if the objective is to maximize the
expectation value of a physical quantity P, we can take
L(θ)=−〈P(θ)〉. Next, we compute the derivative ∂L

∂θ by automatic
differentiation. Then, we update the Hamiltonian by changing the
parameters θ according to ∂L

∂θ. By repeating this procedure until θ
converge, we end up with the Hamiltonian HðθoptÞ that optimizes
the desired properties, where θopt are the parameters after the con-
vergence, as commonly done in machine learning.

Inverse
Calculate the derivatives  
by using automatic differentiation

∂L( )/∂

Update to minimize  
by using 

L( )
∂L( )/∂

Obtain the Hamiltonian  
satisfying the desired physical properties

ℋ( opt)

a b

Conventional

Physical properties

Repeat until 
convergence

Hamiltonian

Prepare a Hamiltonian  
with parameters 

ℋ( )

Calculate an objective function  
representing desired physical properties

L( )

Fig. 1 Inverse design of Hamiltonian. a In the conventional approach, the Hamiltonian is first constructed based on phenomenology or first principles, and
then, the optimal parameters of the Hamiltonian are explored through physical properties calculated from the Hamiltonian. In contrast, in the inverse
approach, the desired physical properties are prepared first, and then, the Hamiltonian to realize them is obtained directly. b Flowchart proposed in the
present study to solve the inverse problem by using automatic differentiation. First, we prepare a HamiltonianHðθÞ that depends on parameters θ. Next, we
calculate the objective function L(θ), which represents the desired physical properties. By optimizing θ to minimize L(θ), we obtain a Hamiltonian HðθoptÞ
that satisfies the desired physical properties, where θopt are the parameters after the optimization.
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Our framework has the following advantages in comparison
with the existing methods1,2,5,7,14–23: (i) It does not require
training, hence, there is no need to collect data or consume
computational resources on the training. (ii) It performs the
optimization by using the analytical derivatives, which can
achieve higher accuracy than the approximations based on
neural networks even for large parameter space. (iii) It is
applicable to a wide range of objective functions, unlike the
perturbation theory. Therefore, our framework is able to deal
with a large number of parameters in the Hamiltonian, which
may lead to the findings of Hamiltonians that have not been
reported thus far.

Automatic construction of the Haldane model showing spon-
taneous quantum AHE. First, we demonstrate that our frame-
work can automatically find the Haldane model with a
spontaneous quantum AHE39. We consider a tight-binding
model on a honeycomb lattice with two sublattices, whose
Hamiltonian reads

H ¼ ∑
i; ai 2 fA;Bg

Maicyi ci þ ∑
hi;ji

t1c
y
i cj þ ∑

hhi;jii
t
dij
2 cyi cj; ð1Þ

where cyi (ci) is the creation (annihilation) operator of a spinless
fermion at site i; the first term describes an on-site staggered
potential with real coefficients Mai (ai= A or B denotes the
sublattice), and the second and third terms represent the hopping
of fermions to nearest- and second-neighbor sites, respectively.

Here, we set t1= 1 as an energy unit and parametrize t
dij
2 as

t
dij
2 ¼ σðrdij Þ expðiϕdij Þ with real variables rdij and ϕdij , where
σ(x)= 1/(1+ e−x) is the sigmoid function to avoid the divergence

of the absolute value of t
dij
2 , and dij denotes the direction of the

second-neighbor hopping, dij∈ {A1, A2, A3, B1, B2, B3} (see
Fig. 2a). Thus, the model includes 14 parameters in total repre-
sented by θ ¼ fMA;MB; frdijg; fϕdijgg. The Haldane model is given

by taking MA=+M, MB=−M, and t
dij
2 ¼ t2 expðiϕÞ regardless

of d. The phase diagram is shown in Fig. 2b, which has two
topologically nontrivial phases with a spontaneous quantum AHE
corresponding to the nonzero Chern numbers C= ±1.

With this setup of HðθÞ, we try to obtain a Hamiltonian
that maximizes the AHE by the framework in Fig. 1b. For
this aim, we take the objective function as L(θ)=−σxy(θ),
where σxy is the Hall conductivity. Details of the
calculations are described in the “Methods” section. We
find that σxy increases monotonically through the optimiza-
tion, as shown in Fig. 2d. Note that we introduce
temperature and control it as shown in Fig. 2c to avoid
that ∂L

∂θ becomes zero due to the quantization (β is the
inverse temperature). In contrast to the continuous change
of σxy, the Chern numbers of the two bands, which are
separated by the band gap shown in the inset of Fig. 2d,
converge quickly to C ≃ ±1 in the very early stage of the
optimization, as shown in Fig. 2e. The evolution of each
parameter is plotted in Figs. 2f–h. We find that both MA

and MB converge to zero, and jtdij2 j ! 1 and ϕdij ! π=2 for
all dij. These values correspond to the center of the
topological phase with C= 1 in the Haldane model,
indicated by the star in Fig. 2b. We confirm that different
initial conditions converge to the same state (see Supple-
mentary Note 1). Thus, our framework automatically
constructs the Haldane model with a spontaneous quantum
AHE under the condition of maximizing σxy. The reason
why the optimal state is always at the center of the C= 1
phase is due to the introduction of temperature; at nonzero

temperature, σxy becomes largest at the center where the
band gap becomes largest in the topological phase. We note
that the value of σxy in Fig. 2d is considerably smaller than
the quantized value+1, which is also due to the finite
temperature.

Finding a Hamiltonian with large quantum AHE on a trian-
gular lattice. To demonstrate that our framework can find more
complex models automatically, we apply it to a triangular lattice
assuming a four-sublattice unit cell (Fig. 3a). The Hamiltonian
reads

H ¼ ∑
hi;ji

tij1c
y
i cj þ ∑

hhi;jii
tij2c

y
i cj þ ∑

hhhi;jiii
tij3c

y
i cj: ð2Þ

We take tij1 ¼ expðiϕij1Þ and tijm ¼ σðrmÞ expðiϕijmÞ for m= 2 and 3
(see the arrows in Fig. 3a). Thus, the model includes 38 para-
meters in total represented by θ ¼ fr2; r3; fϕij1g; fϕij2g; fϕij3gg. As in
the previous calculation, we take L(θ)=−σxy(θ) to maximize the
AHE. We optimize the parameters with a schedule of temperature
shown in Fig. 3b. At each optimization step, the fermion density
is fixed at half filling by tuning the chemical potential using the
bisection method.

We find that the Chern numbers for four bands converge to
C= 5, 1, −3, and −3 from the lower band, as shown in Fig. 3d.
This indicates that σxy reaches 6 at half filling, which is six times
larger than that in the Haldane model, although σxy in Fig. 3c is
much smaller due to the finite temperature similar to the previous
case. The band structure is shown in Fig. 3e with the Berry
curvature Ω (see the “Methods” section). Note that the system
recovers (approximately) threefold rotational symmetry after the
convergence (see Supplementary Note 2). Ω of the lowest energy
band is positive at all wave numbers, whose sum gives the largest
C= 5, while the other bands include negative contributions. This
indicates that our framework tries to maximize C for the lowest
energy band. We note that the same conclusion is obtained for
many other initial conditions, while some cases converge to
C= 3, 3, −1, and−5 from the lower band, which gives the same
value of σxy= 6. The reason why the solution in Fig. 3 is rather
preferred is the finite temperature introduced in the optimization
process, for the same reason as in the honeycomb lattice model
for which the center of the topological phase was obtained (see
Supplementary Note 2).

Let us discuss the optimized parameters. We find that both
∣t2∣ and ∣t3∣ converge to ≃1, while the phases take the various
values shown by colors in Fig. 3a. We show, however, that their
sums along closed loops in the counter-clockwise direction,
Φm ¼ ∑ϕijm, representing the fictitious magnetic fluxes, take
some regular values: Φ1 ≃ 7π/4 for the smallest triangles
composed of t1 (Fig. 3f), and Φ2 takes ≃0.91π and ≃1.59π for
larger triangles of t2 facing right and left, respectively (Fig. 3g),
while Φ3 is always ≃ π (ϕij3 is either ≃ 0 or π). Although ϕijm take
different values for different initial conditions, Φm converges to
the same values. These results indicate that our framework
automatically finds a model whose complex hoppings realize
spontaneous fictitious magnetic fluxes to maximize σxy, which is
hard to obtain by intuition. Based on the results, we can also
refine the Hamiltonian by taking more regular values of the
phases (multiples of π/4) (see Supplementary Note 2).

Maximizing photovoltaic current generation in a spin-charge-
coupled system. Finally, we apply our framework to optimize
the PVE in a bulk system with broken spatial inversion
symmetry40–44. An example is the shift current, which is
understood as a shift in the real space of electron wave func-
tions excited by light. For simplicity, here we focus on (quasi-)

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01132-0 ARTICLE

COMMUNICATIONS PHYSICS |            (2023) 6:37 | https://doi.org/10.1038/s42005-023-01132-0 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


one-dimensional spin-charge-coupled systems where the spin
configurations break spatial inversion symmetry45. The sche-
matic is shown in Fig. 4a. Note that the model approximately
describes chiral magnetic metals, such as CrNb3S646 and
Yb(Ni1−xCux)3Al947. The Hamiltonian reads

H ¼ ∑
i;α

t1c
y
iαciþ1α þ t2c

y
iαciþ2α þH:c:

� �
þ J ∑

i;α;β
cyiασαβciβ � Si;

ð3Þ
where cyiα (ciα) denotes the creation (annihilation) operator of an
electron at site i with spin α. Here, we take t1 ¼ffiffiffi
2

p
tanhðrtÞ cosðθtÞ ´ 0:1 [eV], t2 ¼

ffiffiffi
2

p
tanhðrtÞ sinðθtÞ ´ 0:1

[eV], and J ¼ logð1þ expðrJ ÞÞ [eV]; the spins are treated as
classical and their configurations are parametrized as
Si ¼ ðsin θi cosϕi; sin θi sin ϕi; cos θiÞ, with θi= πσ(ηi). ∣t1∣ and
∣t2∣ are represented by the hyperbolic tangent functions to be
bounded, otherwise, they will become too large through the
optimization since the shift current increases with increasing
momentum derivatives of the band dispersions. We set ∣t1∣ and
∣t2∣ to be within about 0.1 eV, considering the situation in the
real materials. J is set to be positive without loss of generality.
We set the number of sublattice sites to N= 12. Thus,
the model includes 3+ 2N= 27 parameters in total
represented by θ= {rt, θt, rJ, {ηi}, {ϕi}}. The quantity of our
interest is the photocurrent under solar radiation, defined as
I= ∫dωσPVE(ω)∣E(ω)∣2 [A m−2], where σPVE(ω) is the nonlinear
optical conductivity48,49, and ∣E(ω)∣2 denotes the intensity of

the linearly polarized solar light with frequency ω, approxi-
mately given by blackbody radiation at T= 5500 K (the inset of
Fig. 4a) (see the “Methods” section); we take L(θ)=−I. We
consider a three-dimensional system in which the one-
dimensional chains are arranged in a square lattice fashion
for simplicity, taking the lattice constants az= 9 Å in the chain
direction and ax= ay= 4 Å in the orthogonal directions,
referring to a chiral magnet47. The fermion density is fixed at
half filling as for the previous model.

Figure 4c shows the optimization process of the photocurrent
I under the schedule of temperature shown in Fig. 4b. We
obtain I ~ 700 Am−2 after the convergence. This value is
comparable to or larger than those for Ge semiconductors50

and perovskites substances51,52. Changes in the parameters t1,
t2, and J are plotted in the inset of Fig. 4c. The optimized spin
configuration is an umbrella-shaped chiral state with a three-
site period, as shown in Fig. 4d–f. We also note that other
noncoplanar spin configurations are also obtained for different
initial conditions, but they generate smaller I (see Supplemen-
tary Note 3).

To elaborate the mechanism behind the optimization of the
photocurrent, we plot the ω dependence of IðωÞ ¼ σPVEðωÞjEðωÞj2
in Fig. 4g, together with σPVE(ω)ω2 and ∣E(ω)∣2 in the inset. We
find that I(ω) has a sharp peak at ω ~ 7.15 × 1014 [rad s−1], due to
the peak of σPVE(ω)ω2 located at the frequency where ∣E(ω)∣2
becomes large. We show that dominant contributions to the peak
come from the interband processes between the conduction and
valence bands split by 2J≃ 0.5 [eV]≃ 7.15 × 1014 [rad s−1], as

Fig. 2 Automatic construction of the Haldane model. a A tight-binding model on a honeycomb lattice in Eq. (1). There are 14 parameters including on-site
potential Mai and the amplitudes and phases of the second-neighbor hopping t

dij
2 , where ai∈ {A, B} is the index of the sub-lattice and

dij∈ {A1, A2, A3, B1, B2, B3} is the direction of the hopping. The nearest-neighbor hopping t1 is fixed to 1. b Phase diagram of the Haldane model, where
MA=+M, MB=−M, t1= 1, and t

dij
2 ¼ t2 expðiϕÞ. There are two topologically nontrivial phases with nonzero Chern numbers C= ±1. The yellow star

represents where our framework reaches after the convergence. c, Schedule of log β, where β is the inverse temperature. d, e Changes of the Hall
conductivity σxy (d) and the Chern numbers C for the two bands (e) through the optimization process. The inset in d shows the change of the band gap.
f–h Changes of the parameters: Mai (f), jtdij2 j (g), and ϕdij (h), where ϕdij is the phase of t

dij
2 .
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shown in Fig. 4h (see the “Methods” section). The results indicate
that the enhanced photocurrent of ~ 700 Am−2 under solar
radiation is generated by band engineering with automatic
optimization of t1, t2, J, and the spin configurations. We note
that the peak value of σPVE(ω) ~ 0.06 A V−2 is considerably large
compared to existing materials, such as BaTiO3

40,53 and TaAs54,
and is also even an order of magnitude larger than the value
obtained in the previous theoretical study45, while we may need
substantially large competing magnetic interactions to stabilize
the umbrella spin configuration at room temperature.

Conclusions
Through the applications to AHE and PVE, our framework has
proven capable of automatically finding Hamiltonians that
optimize the physical properties of interest. The key aspect is
in the use of automatic differentiation in the inverse problem,
which provides the derivatives of the objective function in
terms of a large number of parameters; although the current
studies are limited to several tens of parameters, we can
practically deal with a million or more. Since automatic dif-
ferentiation is a versatile technique, our framework has a wide
range of applicability, such as first-principles Hamiltonians
computed by the Kohn–Sham equations, strongly correlated
electron systems, quantum spin systems, and interacting
bosonic systems, as long as the forward computation can be
performed efficiently. In addition, it is applicable to a wide

range of physical properties to be optimized, including the
reproduction of experimental raw data. Thus, our findings will
be useful for the exploration of new models and principles in
materials science.

Methods
Application to the AHE. The Hall conductivity is calculated by using the Kubo
formula as

σxy ¼ � e2

h
V

2πNk
∑

m;n;k
ð f ðEkn; βÞ � f ðEkm; βÞÞΩðkÞ; ð4Þ

where e is the elementary charge, h is the Planck constant, V is the volume of the
Brillouin zone, Nk is the number of k points, f(E, β) is the Fermi distribution
function at inverse temperature β, Ekn is the energy at k in nth band; Ω(k) is the
Berry curvature given by

ΩðkÞ ¼ Im
hknj ∂H∂ky jkmihkmj ∂H∂kx jkni

ðEkn � EkmÞ2 þ iδ
; ð5Þ

where knj i is an eigenstate at k in nth band. We take e= h= 1, Nk= 1002, and
δ= 10−5.

The optimization starts from initial parameters randomly chosen as
MA,MB∈ (−1, 1), rdij 2 ð0; 1Þ, and ϕdij 2 ð�π; πÞ for the honeycomb lattice model,
and r2, r3∈ (0, 1) and ϕij1 ;ϕ

ij
2 ; ϕ

ij
3 2 ð�π; πÞ for the triangular lattice model.

Automatic differentiation is implemented using JAX55. Note that ∂H
∂kx

and ∂H
∂ky

in

Eq. (5) are also calculated by using automatic differentiation. We employ
RMSPROP56 as an optimization method, in which we take the learning rate, the
decay factor, and the infinitesimal as 0.1, 0.99, and 10−8, respectively.

Fig. 3 Automatic construction of a Hamiltonian showing a six-times larger quantum anomalous Hall effect than the Haldane model. a A tight-binding
model on a triangular lattice with 38 parameters, including the nearest-neighbor (t1), the second-neighbor (t2) and the third-neighbor (t3) hoppings. The
shades denote four-sublattice unit cells. The color of the arrows represents the optimum phase of each hopping, ϕijm, after the convergence, according to
the inset below. b Schedule of log β, where β is the inverse temperature. c, d Changes of the Hall conductivity σxy (c) and the Chern number C for four bands
(d). e The band structure after the convergence plotted with the Berry curvature Ω(k) at each wavenumber k= (kx, ky). f and g Fictitious magnetic fluxes
defined by the sum of phases along the counter-clockwise direction as Φm ¼ ∑ijϕ

ij
m on the smallest triangles by the nearest-neighbor hopping t1 (f) and

larger ones by the second-neighbor hopping t2 (g), which are indicated by the same color code as the inset of (a).
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Application to the PVE. According to the second-order optical response
theory44,45, a nonlinear electric current produced by electric fields E(ω1) and E(ω2)
with two frequencies ω1 and ω2, respectively, is given by

Iðω1 þ ω2;ω1;ω2Þ ¼ σoptðω1 þ ω2;ω1;ω2ÞEðω1ÞEðω2Þ; ð6Þ
with the second-order optical conductivity σopt(ω1+ ω2; ω1, ω2). In the case of
ω1=− ω2, a DC current is generated as

IðωÞ ¼ σPVEðωÞjEðωÞj2; ð7Þ
where I(ω)= I(0; ω,−ω) and σPVE(ω)= σopt(0; ω,−ω). The ω integral I= ∫dωI(ω)
gives a photocurrent generated by the shift current mechanism42,43,45, which is
used for the objective function in the main text. We approximate solar radiation by
blackbody radiation B(ω, T) at 5500 K as

jEðωÞj2 ¼ 2μ0cCsolar
Bðω;T ¼ 5500KÞR
dωBðω;T ¼ 5500KÞ ; ð8Þ

where μ0, c, and Csolar are the magnetic constant, speed of light, and solar constant,
respectively;

Bðω;TÞ ¼ _ω3

4π3c2
1

expð _ωkBT
Þ � 1

; ð9Þ

where ℏ and kB are the reduced Planck constant and the Boltzmann constant,

respectively. In Eq. (7), σPVE(ω) is computed as44,45

σPVEðωÞ ¼ � Ve3

ð2πÞ3
1

Nkω
2 ðσPVE;1 þ σPVE;2 þ σPVE;3 þ σPVE;4Þ; ð10Þ

where

σPVE;1 ¼ �∑
k;a

f ðEk; βÞJ ð3Þaa ; ð11Þ

σPVE;2 ¼ ∑
k;a;b

f abJ
ð1Þ
ab J

ð2Þ
ba

ωþ iγ=2� Eab
þ f abJ

ð1Þ
ab J

ð2Þ
ba

�ωþ iγ=2� Eab

 !
; ð12Þ

σPVE;3 ¼ ∑
k;a;b

f abJ
ð2Þ
ab J

ð1Þ
ba

iγ� Eab
; ð13Þ

σPVE;4 ¼ � ∑
k;a;b;c

J ð1Þab J
ð1Þ
bc J

ð1Þ
ca

iγ� Eca

f ab
ωþ iγ=2� Eba

þ f cb
ωþ iγ=2� Ecb

þ f ab
�ωþ iγ=2� Eba

þ f cb
�ωþ iγ=2� Ecb

� �
:

ð14Þ
Here, a, b, and c denote the bands; Eab= Eka−Ekb, fab= f(Eka, β)−f(Ekb, β), and

J ðnÞab ¼ kah j ∂nH∂kn kbj i. We use V ¼ ð2πÞ3
axayNaz

, Nk= 100, and γ= 2π × 1013 [rad s−1]. ∂
nH
∂kn

in J ðnÞab are calculated by using automatic differentiation. We also calculate the
contribution to I from each k point in each band, Iband(k), by calculating I without
taking the summations of k and the band indices in Eqs. (11)–(14). The optimization

Fig. 4 Automatic construction of a Hamiltonian for electrons moving on a noncoplanar spin texture, which can generate ~ 700Am−2 under solar
radiation. a Schematic of the system. A photocurrent is generated by solar radiation (blackbody radiation at 5500 K in the inset) onto the one-dimensional
spin-charge coupled system. b Schedule of temperature T [K]. c Change of the photocurrent I [Am−2]. The insets show the changes of the nearest-
neighbor hopping t1 [eV], the second-neighbor hopping t2 [eV], and the coupling constant J [eV]. d–f Spin configurations after the convergence (d), plotted
with the z components Sz (e) and the angles of spins projected onto the xy plane, ϕSxy (f). The Sz axis is taken in the direction of the total magnetization. g ω
dependence of I(ω)= σPV E(ω)∣E(ω)∣2, where σPVE(ω) is the nonlinear optical conductivity and ∣E(ω)∣2 is the intensity of solar light (inset). h The band
structure of electrons. Iband(k) shown in color bar represents the contribution to I from each band.
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starts from initial parameters randomly chosen as rt∈ (−1, 1), θt∈ (−π, π), rJ∈ (0,
0.5), ηi∈ (−1, 1), and ϕi∈ (−π, π).

Data availability
All the data can be generated from the code below.

Code availability
We have published the code to reproduce all the results on https://github.com/koji-inui/
automatic-hamiltonian-design.git.
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