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Explaining the pseudogap through damping and
antidamping on the Fermi surface by imaginary
spin scattering
Friedrich Krien 1✉, Paul Worm1, Patrick Chalupa-Gantner 1, Alessandro Toschi1 & Karsten Held 1

The mechanism of the pseudogap observed in hole-doped cuprates remains one of the

central puzzles in condensed matter physics. We analyze this phenomenon via a Feynman-

diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay

between Mott localization and Fermi surface topology beyond weak-coupling spin fluctua-

tions, which would open a spectral gap near hot spots. We show that strong coupling and

particle-hole asymmetry trigger a very different mechanism: a large imaginary part of the

spin-fermion vertex promotes damping of antinodal fermions and, at the same time, protects

the nodal Fermi arcs (antidamping). Our analysis naturally explains puzzling features of the

pseudogap observed in experiments, such as Fermi arcs being cut off at the antiferromagnetic

zone boundary and the subordinate role of hot spots.
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The single-band Hubbard model is believed to capture key
physics of the cuprates1,2 and nickelates3–5. Various
numerical and theoretical approaches show that this model

exhibits the so-called pseudogap phase6–31, an extreme nodal/
antinodal dichotomy of the Fermi surface (FS), where spectral
weight is concentrated on Fermi arcs32–34.

However, the precise mechanism responsible for the pseudogap
remains one of the most controversially debated topics in con-
densed matter physics. On general grounds, the important role
played by spin fluctuations6–8,20,35,36 is naturally suggested by the
proximity to an antiferromagnetic phase. In the conventional,
weak-coupling picture a spectral gap opens near hot spots25,35,36,
which is observed in electron-doped cuprates37,38. For hole-
doped cuprates this is not the case, instead, the gap opens near
the antinodes33, and a reconstruction of the FS25,26,39,40 is evi-
denced by quantum oscillations41. Other features not explained
by weak-coupling spin fluctuations are the good Fermi-liquid
properties of underdoped cuprates42 and indications of broken
time-reversal symmetry43–45. Alternative origins of the
pseudogap46–51 are hence under consideration.

Here we address the physical origin of the discrepancy between
the conventional picture of spin fluctuations on the one hand,
and both experiments on hole-doped cuprates and numerical
investigations of the single-band Hubbard model on the other. In
particular, we present the strong-coupling spin-fluctuation
mechanism responsible for the pseudogap sketched in the top left
quadrant of Fig. 1: spin fluctuations diminish lifetimes of quasi-
particles near the antinodes (red), while they even enhance life-
times near the nodes (blue). The antiferromagnetic zone
boundary (AZB, dashed) marks the crossover between these
opposite behaviors. Indeed, the strong-coupling mechanism has
no effect near hot spots, defined through the intersection of AZB

and Fermi surface. Here only the conventional weak-coupling
mechanism for spin scattering6–8,25,35,36 is active. Its effect is,
however too small to open a gap due to a short antiferromagnetic
correlation length of less than 1 or 2 lattice spacings.

Compared to conventional weak-coupling theory, the effective
interaction between spin fluctuations and fermions—the spin-
fermion vertex, Γ—plays a radically different role. At weak cou-
pling Γ is real-valued, which promotes scattering between states
“on shell”, i.e., close to the Fermi surface. This constraint is ideally
fulfilled for hot spots (e.g., filled diamond in Fig. 1), which are
connected to other hot spots through the antiferromagnetic wave
vector, here Q= (±π, ±π) [arrows]. As spin fluctuations extend
over a correlation length ξ, the transferred momentum can
deviate from Q in a circle ~ 1/ξ. For large ξ this weak-coupling
mechanism opens a gap beginning with the hot spots, in evident
disagreement with experiments on hole-doped cuprates.

In the past, it was reported52–54 that for strong coupling, and if
particle-hole symmetry is broken55, Γ acquires a large imaginary
part. However, neither refs. 52,53 nor, to our knowledge, any
previous work noted the crucial link between this quantity and
the pseudogap at strong coupling. Here, based on calculations for
the Hubbard model with high spatial resolution, combined with
analytic considerations, we identify the imaginary part of Γ as the
key to the pseudogap dichotomy.

Indeed, this quantity effectively lifts the nesting condition for
spin scattering, allowing fermions to be scattered into off-shell
states. Figure 1 shows that antinodal and nodal (filled square)
fermions can be scattered into high-energy states far from the
Fermi surface. However, the overall feedback on the self-energy
depends on the occupancy of the target states: antinodal (nodal)
fermions are predominantly scattered into hole-like (particle-like)
states, marked with red (blue) color in Fig. 1. As we will show,
this increases (diminishes) the scattering rate at the origin. We
refer to this dichotomy as damping (red) and antidamping (blue).
Near hot spots these effects cancel and hence only the weak-
coupling mechanism, represented by the real part of Γ, is active in
their vicinity.

Results
Method and model. Diagrammatic extensions27 of dynamical
mean-field theory (DMFT)56 have proven useful to study spin
fluctuations in strongly correlated systems. To reduce bias (see
supplementary note 1) we employ the method of ref. 57, corre-
sponding to the parquet approximation58 for dual fermions59,60.
Through the boson-exchange formalism61,62 we establish a rela-
tionship to the spin-fermion model. We apply this machinery to
the hole-doped Hubbard model, H ¼ �∑hijiσ tijc

y
iσcjσ þ

U∑ini"ni#: Here, cyiσ (ciσ) create (annihilate) an electron with spin
σ at site i; nσ ¼ cyσcσ . The nearest t= 1, next-nearest t0 ¼ �0:2t,
and next-next-nearest t″= 0.1t neighbor hopping parameters,
and interaction U= 8t correspond to Bi2Sr2−xLaxCuO6

63.

Spin-fermion self-energy. To illustrate the mechanism in the spirit
of fluctuation diagnostics20,21, we consider the following ansatz
for the contribution of spin fluctuations with an energy ω and
momentum q to the self-energy, Σsp(k, q)∝−Gk+qWqΓkq. Here,
k= (k, ν), q= (q, ω) are momentum-energy four-vectors, Wq ¼
�U � 1

2UχqU denotes the (real-valued) screened interaction, χq
the spin susceptibility, ν (ω) denote fermionic (bosonic) Matsu-
bara frequencies. To obtain the full self-energy Σsp(k) due to spin
fluctuations one still has to sum over momenta q and frequencies
ω. In addition, the full self-energy contains also a momentum-
independent contribution Σloc(ν) due to strong local correlations,
i.e., Σ(k)= Σloc(ν)+ Σsp(k). In the following we consider only the

Fig. 1 Top left quadrant: damping (red) and antidamping (blue) on the
Fermi surface (FS). Right and bottom quadrants: real part of the
noninteracting Green’s function. Blue (red) color indicates particle-like
(hole-like) states above (below) the Fermi level. Filled symbols: antinode
(circle), node (square), hot spot (diamond). Arrows represent the
antiferromagnetic wave vector Q. Open circles ~ 1/ξ comprise available
target states; red (blue) states are occupied (unoccupied) and promote
damping (antidamping). Dashed lines show the antiferromagnetic zone
boundary (AZB).
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dominant static q0= (q, ω= 0) contribution to the imaginary
part of the self-energy,

Σ00
spðk; q0Þ / �½G00

kþq0
Γ0kq0 þ G0

kþq0
Γ00kq0 �Wq0

: ð1Þ
Crucially, Γ has a real (Γ0) and an imaginary part (Γ″).

Imaginary part of the spin-fermion vertex. Let us start by con-
sidering the conditions for a sizable Γ″ in the simpler case of the
Anderson impurity model (AIM). We denote its local spin-
fermion vertex as Γloc(ν, ω). The leading vertex correction due to
local spin exchange has the imaginary part64 (see supplementary
note 2),

Γ00locðν;ω ¼ 0Þ � �TU2

2
χspω¼0g

0ðνÞg 00ðνÞ; ð2Þ

where χsp is the spin susceptibility, T the temperature, g 0 and g″

denote real and imaginary part of the impurity Green’s function.
Equation (2) can be considered as a local one-loop correction to
the spin-fermion vertex. Let us emphasize that this expression
only illustrates how the imaginary part of the vertex arises. The
dual fermion numerical results presented later do not rely on this
approximation, nor on the restriction to the zeroth bosonic
frequency.

Sufficient for a large Γ00locð{η;ω ¼ 0Þ [with small positive η] are
the following conditions: (i) strong particle-hole asymmetry (g 0

vanishes at symmetry), (ii) large enough spectral weight− g″(ıη)/
π, (iii) large χspω¼0 (preformed local moment). All of these
conditions are satisfied by the DMFT solution of the Hubbard
model in the relevant parameter regime for hole-doped cuprates.
In general the vertex Γ in the Hubbard model depends on
momenta, however, as our numerical calculations below show,
the here outlined conditions remain relevant for a large Γ″.

Effect on lifetime. We analyze Eq. (1) and put the qualitative
considerations regarding Fig. 1 on mathematical grounds. The
real part of the vertex, Γ0, universally enhances the magnitude of
the imaginary part of the self energy (the scattering
rate)7,22,25,35,65: the corresponding term in Eq. (1) is always
negative: �G00Γ0W<0, since G″ < 0, Γ0 � 1> 0, and W < 0.

On the contrary, the sign of �G0Γ00W in Eq. (1) depends on the
target state with momentum k+ q. We find in our calculations
that Γ″(k, ν, q, ω= 0) is an odd function of ν and in the parameter
regime for hole-doped cuprates Γ″ < 0 for Matsubara frequency
ν > 0. However, the sign of the real part of the Green’s function
differs: G0ðk þ q; {ηÞ ¼ ½μ� εkþq � Σ0ðk þ q; {ηÞ�=½ðμ� εkþq�
Σ0ðk þ q; {ηÞÞ2 þ Σ00ðk þ q; {ηÞ2� < 0 (>0) for particle-like (hole-
like) target states shown in blue (red) color in Fig. 1. We set ν > 0,
hence

�G0
kþq0

Γ00kq0Wq0

<0 if k þ q is hole� like;

>0 if k þ q is particle� like:

�
ð3Þ

The former enhances the electronic scattering at the Fermi
level (damping), the latter diminishes it (antidamping). This
dichotomy resembles a chemical bonding, where the hybridiza-
tion with a virtual state at higher (lower) energy reduces
(enhances) the energy of the initial state66. The difference is
that, due to the complex vertex, this now becomes a dichotomy
for the state’s lifetime (not its energy).

Relevance to hole-doped cuprates. By applying this reasoning to
the parameter regime of underdoped cuprates63, the nodal/anti-
nodal dichotomy of the pseudogap observed in angle-resolved
photoemission spectroscopy34 can be explained as follows. Colors
in the right and bottom quadrants of Fig. 1 indicate the sign of
G0ðk; ν ¼ π=5Þ, where we use the noninteracting Green’s

function G0 at a suitable filling. Let us consider node, antinode,
and hot spot marked with filled square, circle, and diamond,
respectively. Through the vector Q= (π, π) and circles ~1/ξ we
identify the available target states. Red color of the target state
(hole, G0 > 0) corresponds to damping. Blue color (particle,
G0 < 0) corresponds to antidamping. Hence, according to Eq. (3),
Fermi arcs inside the AZB are cooled, while correlation effects are
enhanced on the outside (The importance of the AZB was also
demonstrated at weak-to-intermediate coupling67–70, where
paramagnon scattering leads to a deformation of the FS29). Near
hot spots positive and negative contributions roughly cancel. The
importance of the AZB was also noted at weak-to-intermediate
coupling67–70, where paramagnon scattering leads to a deforma-
tion of the FS29.

Semi-analytical model self-energy. The mechanism for the pseu-
dogap due to Γ″ is superimposed with the conventional one based
on Γ0 and the outcome depends qualitatively on the ratio Γ00=Γ0.
To describe this interplay in a minimal model we define the
ansatz (spin fluctuations in the static, ω= 0 limit)

Σspðk; {ηÞ / Γc
T
N
∑
q

G0ðk þ q; {ηÞ
ðQ� qÞ2 þ ξ�2 ; ð4Þ

where G0 is the noninteracting Green’s function shown in Fig. 1.
For simplicity, we use here η= πT, which does not affect results
qualitatively. Further, Γc= eıκ is a complex number with phase 0
≥ κ≥−π/2 and of unit length, T/t= 1/5, and N the number of
lattice sites. We restrict the discussion to ω= 0 as before, and
assume the Ornstein-Zernike form for χq peaked around
Q= (π, π) with correlation length ξ. For simplicity we consider
only Γc≡ Γc(ıη). Here, we rotate Γc= eıκ in the complex plane by
an angle κ away from Γc= 1 (κ= 0) which corresponds to weak
coupling25.

Figure 2 shows Σ00
spðkFðϕÞ; {ηÞ along the FS parameterized by

ϕ ¼ arctanðky=kxÞ from the nodal direction to the antinodal
direction, with increasing correlation length. Brown lines show
the result for κ= 0 (Γc= 1), which is always negative and for large
enough ξ develops a minimum near the hot spot (ϕHS ≈ 1.31), as
expected. Dark blue lines show the result for κ ¼ � π

2 (Γc=−ı)
where real and imaginary part of the weak-coupling self-energy
are essentially interchanged. Evidently, for suitable ξ and κ the
minimum of Σ00

sp lies at ϕ ¼ π
2, i.e., a gap first opens in the

antinodal direction instead of the hot spot. At the same time a
finite Γ00c ¼ sinðκÞ< 0 can lead to positive values of Σ00

sp for angles
ϕ < ϕHS: clearly, for large Γ00c the ansatz (4) is meaningful only as a
correction to a negative Σloc(ν), representing local correlations.
That is, non-local spin fluctuations enhance the lifetime of Fermi
arcs. In supplementary note 2 we compare Eq. (4) to our
numerical results.

Fig. 2 Model self-energy (4) at the first Matsubara (πT) and Fermi vector
kF, parameterized by the angle ϕ from π/4 (nodal direction) to π/2
(antinodal direction) for various values of the vertex Γc= eıκ. The
complex phase is turned from κ= 0 (brown) to κ ¼ � π

2 (dark blue) in steps
of π

12. Panels correspond to the different correlation lengths ξ as indicated.
Vertical lines show the hot spot.
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Numerical results. We apply the parquet solver for dual fermions
presented in ref. 57 and evaluate the self-energy Σk and the (dual)
spin-fermion vertex Γkq. The dual formulation implies some more
specific features addressed in the supplementary note 1, but the
physical interpretation of Γ is consistent with the discussion
above. We fix the lattice size to N= 16 × 16, the temperature is
T= 0.15t. Below we refer to node, antinode, and hot spot as
“ARC”, “PG”, and “HS”, respectively.

Figure 3 (a,b) shows the Green’s function in the pseudogap
phase at doping δ= 0.01. The structure of G0 is consistent with
Fig. 1. As expected, G″ is suppressed near the antinodes. Panel (c)
shows Σ″, which is insulating-like at PG; at ARC and HS it is
metallic. Notice that Σ″ at PG is enhanced even compared to its
value at (π, 0) (dashed red, cf. supplementary note 1). In the
dual formalism the lattice self-energy is given as, Σk ¼
ΣDMFT
ν þ ~Σk=ð1þ gν~ΣkÞ, where ~Σ is the dual self-energy, g is the

Green’s function of the AIM corresponding to DMFT. At ARC Σ00
k

is smaller, in absolute value, compared to DMFT. We show that
this is the result of nonlocal spin fluctuations.

Figure 3(d) shows the vertex that couples spin fluctuations with
momentum Q to fermions at ARC and PG. Note that the
imaginary part Γ″ is of similar magnitude as the real part Γ0.
Triangles show the local vertex Γloc(ν, ω= 0) of the AIM. Its
imaginary part is sizable but nonlocal corrections further enhance

it. Figure 4 shows Γ for ν= πT as a function of q for various
dopings. The real part is overall reduced by vertex corrections
(Γ0<1) and it is suppressed in particular near Q. This is a
precursor to the decoupling of Goldstone excitations from
fermions in the antiferromagnet, known as Adler
principle52,53,71–74; in the extreme case ξ→∞ it requires that
the vertex vanishes at the ordering vector72. For larger dopings

Fig. 3 Green’s function, self-energy, and spin-fermion vertex in the pseudogap regime. a Real and b imaginary part of the Matsubara Green’s function G
for doping δ= 0.01 (here, and in all figures, interaction U= 8t, next- and next-next-nearest neighbor hopping t0 ¼ �0:2t, t″= 0.1t, respectively). The
correlation length is ξ≈ 1.6. Black symbols mark Fermi arc (ARC), pseudogap (PG), and hot spot (HS) momentum on the FS. c Self-energy and d static
spin-fermion vertex Γ(Q,ω= 0) at these and further fermionic momenta as a function of the Matsubara frequency ν. Triangles show local dynamical
mean-field (DMFT) quantities.

Fig. 4 Real and imaginary part of the spin-fermion vertex for ARC and PG
as a function of q. Shadings from dark to light: δ= 0.01, 0.05, 0.07, 0.12,
0.16, 0.2, 0.27.
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the suppression moves to incommensurate momenta. At PG, the
Adler principle does not apply for small doping because of the
gap.

Figures 3 and 4 show that Γ″ is large and, hence, the scattering
mechanism sketched in Fig. 1 needs to be taken into considera-
tion. To reveal its quantitative effect, we analyze the contribution
~Σspðk; qÞ of nonlocal spin fluctuations to the dual self-energy, it
has a form similar to Eq. (1) [cf. supplementary note 1]. First, we
integrate ~Σ

00
spðk; ν ¼ πT; q;ω ¼ 0Þ with respect to q over a circle

with radius rq, centered at Q. This corresponds to circles as in
Fig. 1, beginning with Q and ending with the entire Brillouin
zone75. The result is shown as full lines in Fig. 5. A patch of
momenta q ≈Q contributes to the integral, whose final result is
negative for PG and HS, but positive for ARC.

This dichotomy can be traced back to Γ″. To show this, we split
the fluctuation diagnostic into contributions from the real and
imaginary part, ~G

0
and ~G

00
, of the dual Green’s function. We

remind that for Γ″= 0 the real part ~G
0
contributes nothing to the

integral for ~Σ
00
sp [cf. Eq. (1)]. Dashed lines in Fig. 5 show the

contribution of ~G
00
, which is negative, and absolutely smaller at

ARC than at HS and PG. This corresponds to the conventional
mechanism which opens a gap near hot spots for ξ→∞25,35,36.
Dotted lines in Fig. 5 show the contribution of ~G

0
, which is

positive at ARC, negative at PG, and vanishingly small at HS,
corresponding to the mechanism sketched in Fig. 1. The
pseudogap opens at PG as the combined effect of both
mechanisms. Their contributions are comparable at PG, but it
is ~G

0
(Γ″) which differentiates the PG from the HS (opens the gap

at PG first). With only ~G
00
(Γ0) PG and HS would have similar

lifetimes. As already seen in the semi-analytical model, due to Γ″

non-local spin fluctuations even protect (cool) the ARC (~Σ
00
> 0).

We have thus shown that nonlocal spin fluctuations at strong
coupling enhance (weaken) correlation effects outside (inside)
the AZB.

Finally, we explicitly differentiate between scattering rate and
quasiparticle weight by extrapolating the Matsubara self-energy
with a fourth-order polynomial to the Fermi level. The left panel
of Fig. 6 shows− Σ″(k, ıη) as a function of doping. As expected,
for small dopings the scattering rate is very large at PG, a gap
opens and Zk, defined through the slope of Σ, loses its meaning as
a quasiparticle weight65. At ARC the scattering rate is
significantly suppressed compared to DMFT, while Zk remains

similar. Hence, the suppression of the self-energy inside the AZB
corresponds primarily to a reduction of the scattering rate
(enhancement of the lifetime). The protection of the ARC is so
effective that down to δ= 0.01 we do not observe the opening of a
gap inside the AZB.

Discussion
We identified a mechanism for spin-fermion scattering that arises
from a combination of strong correlations and particle-hole
asymmetry. In the considered temperature and doping regime, it
dampens quasiparticle excitations on those parts of the Fermi
surface that lie outside of the antiferromagnetic zone boundary,
whereas lifetimes on the inside are actually enhanced by spin
fluctuations. This may explain why the Fermi arcs observed in
underdoped cuprates are cut off at the antiferromagentic zone
boundary (see76 and references therein) and exhibit remarkably
good Fermi-liquid properties42. This further indicates that strong
non-local correlations cannot simultaneously open an insulating
gap on the entire Fermi surface.

This strong-coupling mechanism is also based on anti-
ferromagentic spin fluctuations, but it opens the pseudogap
already when the correlation length is still smaller than the
thermal de Broglie wavelength (for δ= 0.01 we estimate ξ ≈ 1.6,
while ξth≳ 2.135). Nevertheless, only classical spin fluctuations
(ω= 0) are relevant for the self-energy (an analysis similar to
Fig. 5 but for ω ≠ 0 only yields a vanishingly small contribution).

The presented explanation of the strong-coupling spin-fluc-
tuation mechanism which controls the pseudogap allows us to
resolve the contradiction between conventional spin-fluctuation
theory and experiments/numerics. As a future perspective, it is

Fig. 5 Integrated fluctuation diagnostic (normalized by particle number N and inverse temperature β) for δ= 0.01 as a function of the integration
radius rq (cf. circles in Fig. 1, see text). Dotted and dashed lines show the separate contributions of real and imaginary part of the dual Green’s function ~G,
respectively.

Fig. 6 Scattering rate−Σ″(k, ıη) and quasiparticle weight Zk versus hole
doping δ at indicated points in the Brillouin zone. Both quantities are
obtained through polynomial extrapolation to the Fermi level, η= 0+.
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tempting to also clarify its connection to unconventional
superconductivity.

Methods
The calculations were performed using the boson exchange parquet solver for dual
fermions presented in ref. 57. The underlying DMFT problem was solved using
continuous-time quantum Monte Carlo solvers with improved estimators77–79.

Data availability
All data generated during this study are available from the corresponding author on
reasonable request (see also supplementary notes 1 and 2).

Code availability
All codes used to generate or analyze the results of this study are available from the
corresponding author on reasonable request.
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