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Evidence of entropy cascade in collisionless
magnetized plasma turbulence
Eiichirou Kawamori 1✉ & Yu-Ting Lin1,2

The turbulence of collisionless magnetized plasmas, as observed in space, astrophysical, and

magnetically confined fusion plasmas, has attracted considerable interest for a long-time. The

entropy cascade in collisionless magnetized plasmas is a theoretically proposed dynamics

comparable to the Kolmogorov energy cascade in fluid turbulence. Here, we present evidence

of an entropy cascade in laboratory plasmas by direct visualization of the entropy distribution

in the phase space of turbulence in laboratory experiments. This measurement confirms the

scaling laws predicted by the gyrokinetic theory with the dual self-similarity hypothesis,

which reflects the interplay between the position and velocity of ions by perpendicular

nonlinear phase mixing. This verification contributes to our understanding of turbulent

heating in the solar corona, accretion disks, and magnetically confined fusion plasmas.
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The spectral universality in seemingly case-dependent fluid
turbulence, which reflects self-similar dynamics in the
inertial range of an energy cascade, is one of the most

surprising findings in modern physics1–3. The presence or
absence of universality in collisionless magnetized plasma tur-
bulence exemplified by space, astrophysical, and magnetically
confined fusion plasmas has been explored out of scientific
interest. This question not only comes out of pure scientific
curiosity but is also strongly associated with important practical
problems, so-called turbulent heating in the solar wind4,5, solar
corona6,7, accretion disks8–10, and energy transport in magneti-
cally confined fusion plasmas11–13. These problems raise the
question: at which scales are ions accelerated and thermalized?
Some examples of turbulent heating include the coronal heating
problem and the nonadiabatic temperature evolution of the solar
wind6. One of the major models for explaining the heating
mechanisms of the high-temperature corona/solar wind is the
wave turbulence heating model (one is the microflare/nanoflare
theory). The energy flux of the Alfvén waves/kinetic Alfvén waves
propagating from the solar photosphere and chromosphere into
the corona is considered to be sufficient to heat the corona
temperature up to the observed temperature of ~100 eV. How-
ever, this model encounters a complicated problem of what
mechanisms (exemplified by ion cyclotron resonance, Alfvén
resonance, linear phase mixing, and shock dissipation, among
many others) are responsible for dissipating (partitioning) the
wave energy of the Alfvén wave/kinetic Alfvén wave turbulence.
The entropy cascade attributed to nonlinear phase mixing is a
compelling hypothesis4 for the mechanism. This hypothesis
motivates us to experimentally study the validity of the entropy
cascade via nonlinear phase mixing.

According to Boltzmann’s H-theorem, entropy production, in
other words, ion heating, is realized only by collisions in weakly
collisional (collisionless) plasmas at the microscopic scale14 much
smaller than the ion gyro-scales (the inner scale) with a sig-
nificant ∂f/∂v or ∂2f/∂v2, where f and v are the ion velocity dis-
tribution function and the velocity vector of ions, respectively.
However, macroscopic scales are typical energy inputs to the
system (the outer scale), which are considerably separated from
the dissipation scales (the inner scale). This fact strongly indicates
that the injected energy is nonlinearly transferred as free energy
(≈ negative signed entropy) from the outer scale to the inner scale
in collisionless magnetized plasmas. This process is called an
entropy cascade14–16. The gyrokinetic theory15,17,18 predicts that
the nonlinear phase-mixing19 is responsible for the transfer of
entropy in the inertial subrange14,20, and has been confirmed in a
number of gyrokinetic numerical simulations regardless of two-
dimensional (2D) electrostatic16 or three-dimensional (3D)
electrostatic21 or electromagnetic turbulence4,22,23. In addition, in
a real plasma, an indication of a free energy cascade was observed
in electromagnetic turbulence in the Earth’s magnetosheath as
fine-scale structures in the ion velocity distribution functions24.
Regardless of the fact that the original concept of the entropy
cascade by the nonlinear phase mixing considers only 2D elec-
trostatic fluctuations14,19, signatures of the entropy cascade have
been witnessed in magnetized plasma turbulence in various
situations. This broad applicability of the entropy cascade picture
to a wide range of collisionless magnetized plasma turbulence is
attributed to the fact that turbulence of collisionless magnetized
plasmas universally consists of highly anisotropic fluctuations
with frequencies much lower than the ion cyclotron frequency in
addition to the intrinsic electrostatic nature of perpendicular
fluctuations.

Nonlinear phase mixing is a phase-randomizing mechanism of
electrostatic fluctuations of quasi-2D magnetized plasmas by a
finite-Larmor radius effect19. It couples ion dynamics in the

position and the velocity spaces, resulting in entropy cascades in
the phase space14,25.

Although the visualization of the entropy distribution in the
phase space of ions has been implemented in some
simulations25,26, no measurements have been conducted in real
plasmas, including space and laboratory plasma experiments.

The gyrokinetic theory for treating gyroscale plasma phe-
nomena considers kinetics of ‘charged rings’ of gyrating ions,
whose statistics are represented by ring-averaged ion velocity
distribution functions at a fixed guiding center. The gyrokinetic
system is invariant under the scaling transformation; (g, ϕ, r,
v⊥)→ (g, μ2ϕ, μr, μv⊥), where g, ϕ, r, v⊥, and μ are fluctuation
components of the ring-averaged ion velocity distribution func-
tion, the electrostatic potential, the space coordinate, the per-
pendicular velocity of ions, and a scaling factor, respectively20.
Note that g(R, v⊥) is the gyro average of δf= f (r, v, t)− F0(r, v),
which is the perturbed distribution function, where F0 is the
background equilibrium distribution function that is steady on
the timescale of turbulent fluctuations (a Maxwellian is assumed
in the standard gyrokinetic theory), and R is the fixed guiding
center position.

The dual self-similarity hypothesis for the position and velocity
spaces based on the above scale invariance predicts the power
laws of spectra of the free energy Wg1 ¼

RR gðR;v?Þ2
2 dv?dR and

energy Eg ¼ 1
2

R
~ϕðrÞ2dr with the use of g(R, v⊥) for the 2D

electrostatic turbulence. The dual self-similar dynamics in the
phase-space are expected to be accompanied by a dual cascade of
two kinds of turbulence energy in 2D electrostatic turbulence: the
forward cascade of free energy and an inverse cascade of elec-
trostatic energy25. This dual self-similarity hypothesis extends the
renowned Kolmogorov self-similarity hypothesis in fluid
turbulence27 to the phase space of ions in gyrokinetic turbulence.
It argues that the turbulent behavior of ions at the sub-Larmor
scales is independent of scale in both their position and velocity
spaces. These are strongly coupled in the phase space by non-
linear phase mixing.

Therefore, in this experiment, we employed diagnostic
instruments named Ring-averaged ion velocity distribution
function probes (RIDFPs)28 to measure g(R, v⊥) for evaluation of
the theoretically predicted power laws. Although our previous
paper29 showed agreement between measurements and the the-
oretical prediction on the power spectrum of Eg as a function of
the fluctuation wavenumber perpendicular to the background
magnetic field k⊥, we still face a lack of information on the
velocity space to conclude the validity of the dual-cascade theory
of gyrokinetic turbulence.

Here, we show the direct visualization of the entropy dis-
tribution of ions in the phase space of laboratory-magnetized
plasma turbulence. These results provide the evidence of the
existence of dual self-similarity and the dual cascade of entropy
and field energy in the phase space of turbulence.

Results and discussion
Experimental setup. In this experiment (“Methods”: Magnetized
plasma experiment (MPX) device, ring-averaged ion velocity
distribution function probes, other measurement tools, and the
plasma parameters), we prepared four states of electrostatic 2D
turbulence driven by resistive drift-waves having varied driving
perpendicular wavenumbers kdriveρthi between ~0 and 10 with
control of the density of the background neutral particles, where
ρthi is the Larmor radius of ions at the thermal velocity vthi. While
this control scheme of kdriveρthi is not a well-established techni-
que, we prepared the turbulent states with the control of the
neutral particle density with reference to the numerical work30,
which describes the numerical investigation results of an energy
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partition of turbulence in a cylindrical plasma. We use
Fourier–Hankel components of the free energy: Wg1ðk?; pÞ �
p∑jk?j¼k?

jgðk?; pÞj2 ¼ πk?pjgðk?; pÞj2, where g(k⊥, p) is the
Fourier–Hankel transform of g(R, v⊥) concerning the guiding
center position and the ion velocity20, and the parameter p
indicates the reciprocal of the fluctuation scale of g(R, v⊥) in the
velocity direction corresponding to the wavenumber in the
velocity space.

The gyrokinetic approximation requires ω≪Ωci, where ω and
Ωci are the wave frequencies and the ion cyclotron frequency,
respectively. The higher the axial magnetic field strength is, the
more improved the gyrokinetic condition. However, our experi-
ment does not completely satisfy ω≪Ωci (ω/2π ~ 0.1–4 kHz, Ωci/
2π= 8.4 kHz), which is a consequence of the two following
adverse impacts of the strong field on our plasma states: (i) the
suppression of the excitation of the drift waves; in our plasmas,
the high magnetic field stabilizes the drift waves because of a
change in the radial profile of the density; and (ii) the reduction
of the ion gyro-radius, which limits the performance of the
diagnostic. In other words, the axial magnetic field strength is set
at a weak value to fully use all the velocity channels of the RIDFPs
by expanding the ion gyro radii. This improves the resolution of
the RIDFP measurement in the velocity space. In the third
paragraph from the end of this section, we explain the influence
of this incomplete satisfaction of the gyrokinetic ordering on the
interpretation of the experimental results.

Spectra of free energy in the k–v space. Figure 1 shows time-
averaged free energy spectra k⊥|g(k⊥, v⊥)|2 as functions of kxρthi
and v⊥ up to ~2vthi for (Fig. 1a) kdriveρthi ~ 1 (Wg1 injection at large
scales) and (Fig. 1b) kdriveρthi ~ 10 (Wg1 injection at small scales),
respectively. We regard kx ≈ k⊥ in evaluating k⊥|g(k⊥, v⊥)|2 based
on the assumption of isotropy and fast decay of |g(k⊥, v⊥)|2 for k⊥.
The factor k⊥ indicates the circumferential length in the k⊥-space.

k⊥|g(k⊥, v⊥)|2 for (A) kdriveρthi ~ 1 exhibits, in the entire range
of v⊥, the large amplitude at kxρthi ~ 1−2 consistent with
j~ϕf ð f ; kyÞj2 measured by a fine-scale Langmuir probe (FSLP) for
kdriveρthi ~ 1 (Fig. 2a), which shows excitation of kxρthi ~ 1
components at f ~ 1.0−1.3 kHz. Accordingly, the low k⊥ compo-
nents at kxρthi ~ 1–2 show variation in the v⊥-direction at the
scale of ~vthi in Fig. 1a. The amplitude of components for
|kxρthi| > 2 decays in large kx with finer-scale variation in the v⊥-
direction. On the other hand, k⊥|g(k⊥, v⊥)|2 for (B) kdriveρthi ~ 10
exhibits significant power at |kxρthi| > 10. These |kxρthi| > 10
components exhibit structures in the v⊥-direction at sub-vthi
scales. This indicates strong coupling between the position and

velocity spaces. See the next subsection for a quantitative
assessment of scales in v⊥ space using spectra.

Comparison with theory. In the second–fourth rows of Fig. 2, we
show variation in the spectra of the collisionless invariants of
2D electrostatic gyrokinetics, Wg1(k⊥, p) and Eg(k⊥), for varied
kdriveρthi approximately between 0 and 10, (the first column)
kdriveρthi ~ 1, (the second column) kdriveρthi ~ 3−4, (the third
column) kdriveρthi ~ 0–4, and (the fourth column) kdriveρthi ~ 10.

These values of kdriveρthi are evaluated from j~ϕf ð f ; kyÞj
2
measured

by FSLP as shown in the first row of Fig. 2a–d. In the respective
cases of different kdriveρthi, the following two distinct frequency

bands can be identified in j~ϕf ð f ; kyÞj
2
: one showing significant

power with nonstatistical/deterministic distribution correspond-
ing to the drive, for example, kyρthi ~ 1 component at f ~ 1.3 kHz
in Fig. 2a (kyρthi ~ 3–4 component at f ~ 1.7 kHz in Fig. 2b, and
kyρthi ~ 10 component at f ~ 3–4 kHz in Fig. 2d), and the other
bands showing scattered, statistical distribution in the ky-direc-
tion corresponding to turbulent cascade. Nonlinear dynamics
exhibited in these shots are local because no nonlocal resonant
wave–wave interactions occurred except for the
kdriveρthi ~ 0–4 state (the vertical array of Fig. 2c, g, k and o),
which exhibits a continuous driving spectrum in the f-kyρthi
diagram and is a turbulent state originating from a nonlinear
coherent state of drift waves called solitary drift waves31.

The plots shown in the second row (Fig. 2e–h) are Wg1(k⊥, p)
(negative signed entropy) in the k⊥-p space, namely,
position–velocity space (see “Evaluation of 1D spectrum of free
energy Wg1

1D(kx, p) and relationship with Wg1(k⊥) and Wg1(p)”
in Methods). In the following results of varied kdriveρthi, a position
of the drive moves along the diagonal in the k⊥-p space, as shown
in Fig. 2e–h.

When Wg1 is injected at large scales (Fig. 2e), in which a
significant power of Wg1 can be seen at the left bottom of the
diagram at k⊥ρthi ~ pvthi ~ 1–4 corresponding to kdriveρthi, Wg1

broadly develops along the diagonal from the driving scale toward
the upper-right direction, reaching the top right corner around
k⊥ρthi ~ pvthi ~ 20. (A similar profile can be seen in Fig. 6 in the
article by Tatsuno et al.26). According to the gyrokinetic Poisson
Eq., the potential fluctuation ~ϕðk?Þ is generated solely by
nonlinear phase mixing, that is, gðk?; p ¼ k?Þ (Eq. (2.11) in the
article by Plunk et al.20). This provides a Fjørtoft-type relation-
ship Wg1(k⊥, p= k⊥)= k⊥Eg(k⊥) (Eq. (7.14) in the article by
Plunk et al.20). Therefore, diagonal transport of Wg1 in the k⊥-p
space is inevitable when a dual-cascade of Wg1 and Eg occurs.

Fig. 1 Spectra of free energy in the wavenumber–velocity space. Time-averaged power spectra k⊥|g(k⊥, v⊥)|2 measured by RIDFPs as functions of the
wavenumber kx normalized by the ion Larmor radius ρthi at the thermal velocity vthi and the perpendicular ion velocity v⊥ up to ~2vthi for a driving
perpendicular wavenumbers kdriveρthi ~ 1 and b kdriveρthi ~ 10, respectively.
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This Wg1(k⊥, p) spectrum exhibits the generation of Wg1 at
finer scales than the drive. This indicates that the nonlinear phase
mixing works, resulting in a forward cascade of Wg1. This
cascading nature will be examined below by comparing their
power laws obtained from the measurement and the theory.

As kdriveρthi increased to ≈10, as shown in Fig. 2f–h, the
significant Wg1 part moved in the upper-right direction along the
diagonal line toward higher k⊥ρthi ~ pvthi locations corresponding
to the increase in kdriveρthi. In all the cases of kdriveρthi (Fig. 2e–h),
the spread of Wg1(k⊥, p) along with the diagonal directions
(between the bottom left and the upper right) is obvious. In these
cases, the Fjørtoft-type energetic transition25, namely, a transition
involving only diagonal components, can be realized.

In the third row of Fig. 2i–l), (crosses) one-dimensional (1D)
spectra Wg1

1D of the free energy as functions of kxρthi and (open
squares) p-spectra of Wg1(p), respectively, are shown. Note that
when Wg1(k⊥) ∝ k⊥−α, Wg1

1D(kx) ∝ kx−α (see “Evaluation of 1D
spectrum of free energy Wg1

1D(kx, p) and relationship with
Wg1(k⊥) and Wg1(p)” in Methods). Respective kdriveρthi ranges

are shown by purple bars. The blue and red bars represent the
power laws predicted by the gyrokinetic theory for (blue) the
inverse-cascade range k⊥ < kdrive and (red) the forward cascade
range k⊥ > kdrive, respectively20. The respective power indices of
Wg1

1D(kx) and Wg1(p) evaluated from the least-square fitting to
the measured data points are indicated by numbers with the
standard errors (SE). The noise levels of Wg1

1D(kx) and Wg1(p)
estimated from a vacuum shot are included in Fig. 2i. Wg1(p) in
Fig. 2i (injection at a large scale) shows power-law decay
starting at kxρthi ~ kdriveρthi ~ 1 up to the detection limit of
kxρthi ~ pvthi ~ 20, clearly indicating the existence of an inertial
subrange of the entropy (free energy). The evaluated exponent
for the measured Wg1(p), −1.0, approximately agrees with the
theoretical value of −4/3 within 5 times SE. For smaller scales
kxρthi > 3, Wg1

1D(kx) in Fig. 2i shows a similar decaying
tendency to Wg1(p), which is a strong indication of the dual
self-similarity dynamics, although the discrepancy of Wg1

1D(kx)
from the theoretical exponent is larger than 25 times SE. Larger
discrepancies between the theoretical exponents and the

Fig. 2 Variation in spectra of the invariants of gyro-kinetics. The free energy Wg1(k⊥, p) and the electrostatic energy Eg(k⊥) for varied driving
perpendicular wavenumbers kdriveρthi between ~0 and 10, (the 1st column) kdriveρthi ~ 1, (the 2nd column) kdriveρthi ~ 3−4, (the 3rd column) kdriveρthi ~ 0−4,
and (the 4th column) kdriveρthi ~ 10, respectively. The plots in the 1st row (a–d) are the power spectra of potential fluctuation j~ϕf ðf; kxÞj

2
measured by FSLP.

The plots shown in the 2nd row (e−h) areWg1(k⊥, p) in the k⊥- p-space, namely, position–velocity-space. The 3rd row (i−l) are (cross) 1D spectraWg1
1D of

the free energy as functions of kxρthi and (open square) p-spectra of Wg1(p), respectively. Eg(k⊥) spectra are shown in the 4th row (m−p). Respective
kdriveρthi ranges are shown by purple color bars. The blue and red bars represent power laws predicted by the gyrokinetic theory20 for (blue) k⊥ < kdrive and
(red) k⊥ > kdrive, respectively.
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measured ones in Wg1
1D(kx) than those in Wg1(p) are seen in all

cases of kdrive.
As kdriveρthi increases to 3–4 (Fig. 2j), Wg1(p) shows an

inflection point at kxρthi ~ kdriveρthi ~ 3–4. Correspondingly,
Wg1

1D(kx) follows this change in the spectrum. For an injection
at small scales kdriveρthi ~ 10 (Fig. 2l), both Wg1(p) and Wg1

1D(kx)
become independent of p and kx, indicating good agreement with
the theory20. It should be noted that the decaying exponents of
both Wg1

1D(kx) and Wg1(p) at kxρthi≫ 1 exhibit similar values in
the respective cases of kdriveρthi and similar variation for varied
kdriveρthi in Fig. 2i–l. This indicates the formation of inertial
subranges in both the position and velocity spaces and strong
coupling between them. A similar result is obtained in the
gyrokinetic simulation16,26.

In the case of kdriveρthi ~ 0–4 (Fig. 2k), despite the driving
source in the target k-range (i.e., noninertial range), strong k–p
coupling occurs, indicating the universality of nonlinear phase
mixing in magnetized plasma turbulence.

The abovementioned approximate agreement between the
measurement and the theoretical prediction of Wg1(p) and
Wg1(k⊥) within ~1− 25 times SE is supported by the Eg(k⊥)
spectra measured by FSLP shown in the fourth row of Fig. 2
(Fig. 2m–p). Note that when Eg(k⊥)∝ k⊥−α, Eg11D(kx)∝ kx−α

(“Methods”: Evaluation of the 1D spectrum of the electrostatic
field energy Eg1D(ky) and its relationship with Eg(k⊥)). The blue
and red bars represent the power laws predicted by kinetic theory
for (blue) k⊥ < kdrive and (red) k⊥ > kdrive, respectively. The
respective power indices of Eg11D(kx) evaluated from the least-
square fitting to the measured data points are indicated aside by
numbers with the standard errors. The noise levels of Eg11D(kx)
estimated from a vacuum shot are included in Fig. 2m–p. The
evaluated scaling for Eg11D(kx) in Fig. 2m is kx−3.0, close to the
theoretical power law k⊥−10/3. The theoretical prediction k⊥−2 for
the inertial range in the larger scale than the driving scale
becomes dominant as kdriveρthi increases. The exponent evaluated
for the measured Eg11D(kx) in Fig. 2p is kx−1.8. The observed
behavior of these power laws in Wg1 and Eg is consistent with the
theory based on the hypothesis of dual self-similarity and the dual
cascade of the entropy and field energy of the gyrokinetic
system20. Our result strongly supports the validity of the dual-self
similar hypothesis of gyrokinetic turbulence.

Note that the nonlinear decorrelation time16,26 for these states
is evaluated as τρ ~ 10 × 10−5 s; hence, the dimensionless
parameter16,26, which represents the scale separation analogous
to Reynolds number, D ~ 30–40. Accordingly, the cutoff wave-
number, above which the collisional dissipation dominates the
cascade, kcutρthi ~ 2D3/5 ~ 20. This guarantees that the observed
power-law spectral range corresponds to the inertial subrange.

In what follows, we discuss the applicability of the gyrokinetic
theory and its impact on the interpretation of the experimental
results. The theoretical aspects of the applicability of gyro kinetics
to space and astrophysical plasmas are discussed in previous
works15,18,23. In brief, strong magnetization, anisotropy, small
amplitude, low fluctuation frequencies, equilibrium Maxwellian
distribution, and nonrelativistic effects are assumed.

As described in Experimental setup, our experiment does not
completely satisfy the strong magnetization condition ω≪Ωci in
consideration of the two adverse impacts of the strong field on
our plasma states. One possible influence of this incomplete
satisfaction of the gyrokinetic ordering is the possibility of
stochastic ion heating32,33. According to ref. 34, the amplitude
threshold for strong stochastic heating when β < 1 can be
expressed in terms of the quantity εi∼ qiδΦi/mv2, where β, qi,
and δΦi are the thermal pressure normalized by the magnetic
field pressure, electric charge of the ions, and root mean square
amplitude of the electrostatic potential fluctuation at k⊥ρthi∼ 1,

respectively. In our case, εi∼ 0.2; therefore, the influence of
stochastic ion heating is considered to be small. Ion cyclotron
resonance heating is negligible because ω ⋡ Ωci.

One of the weakest points of the gyrokinetic theory is the use of
a Maxwellian as F015. Therefore, highly nonequilibrium turbulent
states are not subjects of gyrokinetic theory. Nevertheless, the
gyrokinetic theory is in effect in a wide range of space and
turbulent astrophysical plasmas, as shown in numerous numer-
ical simulations and theoretical considerations. Although our
measurement has not had sufficient accuracy to be able to discuss
a degree of deviation of F0 from a Maxwellian distribution
(Fig. 3d in “Methods” shows an example of the velocity
distribution F0), we believe that F0 of our plasmas is not that
different from a Maxwellian because of the following reasons: (i)
no mechanisms that heat preferentially ions with specific velocity
components exist; the collisional energy transfer caused by
electron–ion collisions is the only possible heating source of ions;
and (ii) ions are weak collisional, but not too weak. The mean-
free path of ions for ion–ion collision is ~0.5 m < 1.6 m ~ L, which
is the length of the plasma column. For the same reasons,
pressure anisotropy is not considered.

The influence of the electron behavior on the entropy cascade
in the ion phase space is considered negligible according to
gyrokinetic numerical simulations4,16,23. The work done by
Tatsuno et al. showed that no essential difference was observed
between the cases of applying Boltzmann-response (3D) and no-
response (2D) electrons in their simulations4. For more detailed
electron energetics, please see, the work by Kawazura et al.23,
which studied the partition of irreversible heating between ions
and electrons in terms of a compressive drive using hybrid
gyrokinetic simulations.

Conclusions. In laboratory experiments, we present the mea-
surement results of the Gibbs entropy distribution in the phase
space of ions in electrostatic gyrokinetic turbulence. We confirm
good agreement between the measurement and the theoretical
prediction with a dual self-similar hypothesis in the scaling laws
of the spectra of the entropy and the electric field energy. This
result indicates an interplay between the position and velocity
spaces of ions by perpendicular nonlinear phase mixing accom-
panied by a cascade of entropy in the phase space. Excitation of
spectral components of the free energy Wg1 with k⊥ ∼ p in the
phase space gives evidence of nonlinear phase mixing at sub-
Larmor scales. This observation corroborates the evidence of the
existence of dual self-similarity and the dual-cascade of entropy
and field energy.

An entropy cascade via nonlinear phase mixing is considered
universal in magnetized plasma turbulence because it has been
witnessed in various numerical simulations in different
magnetized turbulence setups, including 2D16 and 3D
electrostatic21, 3D electromagnetic turbulence, including the
Alfvenic solar wind4,22, and a simulation targeting an Alfvenic
hot accretion disk23. The essential physical components in
entropy cascades via nonlinear phase mixing include the gyro
motion of the particles at the sub-Larmor scales and the
interaction between the particles and the electrostatic fluctua-
tions in addition to the strong anisotropy (k⊥≫ k||). Our
experiment prepares turbulent states with these essential
components in a simplified setup. Therefore, although our
turbulence setup is in a narrow range (electrostatic turbulence in
a drift-kinetic regime), our result is crucial for verifying
universality. We believe that verifying the entropy cascades via
nonlinear phase mixing contributes to understanding turbulent
heating in the solar corona, solar wind, accretion disks, and
magnetically confined fusion plasmas.
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Methods
Magnetized plasma experiment (MPX) device: experimental device. The
experiment was conducted in the MPX device35 (Fig. 3a), which can prepare
qualified plasma configurations for our purposes, namely, quasi-2D configurations
with the magnetic field (the strength is denoted by B0), the density, and tem-
peratures within the target ranges. The hot cathode generated plasmas with the
introduction of argon gas as the working gas. g(R, v⊥) was measured by two
RIDFPs separated by 3 mm and 230mm in the x- and the z-directions, respectively
(Fig. 3a), to obtain perpendicular wavenumbers k⊥ of g(R, v⊥) with the use of a
two-point correlation technique36. RIDFPs were positioned at the center axis of the
target plasmas to minimize the influence of steady E × B rotation of the plasmas.
Figure 3 shows the equilibrium ring-averaged ion velocity distribution functions F0
for B0= 0.022 T and B0= 0.033 T, respectively. The red solid curves indicate
Maxwellian with a temperature of 0.1 eV. It can be observed that the orbits of the
ions (Larmor radii) shrink as B0 change from 0.022 T to 0.033 T, indicating the
validity of the RIDFP measurement.

Ring-averaged ion velocity distribution function probes28. The RIDFP is a set
of ion collectors that detect different velocity components and is immersed into
magnetized plasmas. The RIDFP achieves momentum selection of incoming ions
by selection of the ion Larmor radii by the orbit filter. To nullify the influence of
the sheath potential surrounding the RIDFP on the incoming ions’ orbits, the
RIDFP body’s electrostatic potential is automatically adjusted to coincide with the
space potential of the target plasma with the use of an emissive probe and a voltage
follower28.

For precise measurement of the fluctuation g(R, v⊥) in time, the ground
potential of the current detection circuits is adjusted to that of the RIDFP body in
order to eliminate capacitive coupling between the ion collectors and the RIDFP
body. The length of RIDFP L= 79 mm satisfies the condition of v||fci−1 > L, where
v|| is the parallel component of the thermal velocity of ions. This inequation
imposes a condition for the plasma (ions) residing in the magnetic flux tube, in
which an RIDFP is allocated, not to being severed by the RIDFP.

In the experiments, the resolution of the RIDFP measurement in the p-space
Δ(pvthi) can be evaluated as follows: Δpvupper_bound ~ Δp(2vthi)= j0≒ 2.4, ∴Δp≒ 1.2/
vthi ∴Δ(pvthi) ~ 1.2, where vupper_bound and j0 are the upper bounds of the
measurable ion velocity by RIDFP and the first zero of the Bessel function of the
first kind, respectively. The maximum (pvthi) in the RIDFP measurement is
obtained as: (pvthi)max ~ j0vthi/Δv ~ 20.

The other measurement tools and the plasma parameters. In addition to
RIDFPs, we employed a few sets of Langmuir probes (LPs) for different purposes.
An LP measured the plasma density in addition to a microwave interferometer37.

The LP also measured the electron temperature and the space potential of the
plasmas. A poloidal array of LPs named LPA diagnosed the macroscopic poloidal
structures of fluctuations of ion saturation current and their floating potential.
Another set of LPs named fine-scale LP (FSLP) was applied to measure the fluc-
tuation of floating potential ~ϕf � ~ϕ as functions of frequencies f and ky (kx), whose
upper bound of measurable k⊥ is ~8 × 102m−1.

The hot cathode generated plasmas with the introduction of argon gas as the
working gas. The typical plasma density and temperature are ne ~ 0.5–5 × 1016m−3

and Te ~ 1–5 eV, respectively, with a 15–20 cm diameter. Accordingly, the
characteristic frequencies of the ion cyclotron fci, drift-wave fDW, ion–ion Coulomb
collisions fii, and ion-neutral collisions fin have the following numbers:

fci :=Ωci/2π ≈ 8.4 kHz > fDW ~ 1–4 kHz ~ fii ~ 1–5 kHz > fin ~ 0.1–0.5 kHz, where
Ωci is the ion cyclotron angular frequency of singly ionized argon ion.

Evaluation of 1D spectrum of free energy Wg1
1D(kx, p) and relationship with

Wg1(k⊥) and Wg1(p). From the RIDFP measurement, 1D spectrum of free energy
Wg1

1Dðkx ; pÞ � πp
R1
�1jgðk?; pÞj2dky ¼ πp

R1
�1jgðkx ; ky ; pÞj2dky is evaluated as

follows, where: gðk?; pÞ � 1
2π

R
Rd

2R
R vupper?
0 v?dv?J0ðpv?Þe�ik?�RgðR; v?Þ

(1) Application of the Hankel transform concerning ion velocity v⊥ to g(R0, v⊥, t)

and g(R0+Δx, v⊥, t) measured by RIDFP-1 and RIDFP-2 gives gðR0; p; tÞ �
1
2π

R vupper?
0 v?dv?J0ðpv?ÞgðR0; v?; tÞ and g(R0+Δx, p, t), where R0 and R0+Δx

are the positions of the guiding center of RIDFP1 and RIDFP2, respectively.
(2) Fourier transforms of g(R0, p, t) and g(R0+ Δx, p, t) about time t are applied

to obtain g(R0, p, f, θ) and g(R0+ Δx, p, f, θ), where θ represents the phase of
the component of the frequency f.

(3) Wavenumbers kx for all p-components are calculated by applying the two-point
correlation technique to g(R0, p, f, θ) and g(R0+Δx, p, f, θ). Integration of those
about f gives

R1
�1jgðkx ; ky ; pÞj2dky ¼ Wg1

1Dðkx ; pÞ=ðπpÞ.
If turbulence is isotropic, Wg1

1Dðkx ; pÞ ¼ πp
R1
�1jgð ffiffiffiffiffiffiffiffiffi

k2xþk2y
p

;pÞj2dky : Applying a

variable change tan θ ¼ ky
kx
and a cutoff θcut for the upper bound of the integration,

one can obtain

Wg1
1Dðkx ; pÞ ¼ 2p

Z θcut

0
g kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θ

p
; p

� ����
���
2

dθ
cos2θ

ð1Þ

When Wg1(k⊥)= ∫k⊥|g(k⊥, p)|2dp∝ k⊥−α, Wg1
1D(kx)= ∫Wg1

1D(kx, p)dp∝ kx−α.

Wg1ðk?; pÞ � p ∑
jk?j¼k?

jgðk?; pÞj2 ¼ πk?pjgðk?; pÞj2: ð2Þ
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Fig. 3 Experimental setup. a Schematic diagram of the MPX plasma device including diagnostic systems. b System diagram of RIDFP (Ring-averaged ion
velocity distribution function probe). c Schematic of the orbit filters and collector of the incoming gyrating ions. d Examples of equilibrium ring-averaged ion
velocity distribution functions F0 at a fixed guiding center position for the background magnetic field strength B0= 0.022 T and B0= 0.033 T, respectively.
The red solid curves indicate Maxwellian having the temperature of 0.1 eV. Shrink of orbits of the ions (Larmor radii) for the B0 change from 0.022 T to
0.033 T can be clearly observed, indicating validity of RIDFP measurement.
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Then,

Wg1ðpÞ � πp
Z 1

0
∑

jk?j¼k?
jgðk?; pÞj2dk? ¼ πp

Z Z 1

�1
jgðkx ; ky ; pÞj2dkydkx

¼
Z 1

�1
Wg1

1Dðkx; pÞdkx
ð3Þ

Evaluation of the 1D spectrum of the electrostatic field energy Eg1D(ky) and its
relationship with Eg(k⊥). From the FSLP measurement, the 1D spectrum of the

electrostatic field energy Eg
1DðkyÞ �

R1
�1j~ϕðk?Þj

2
dkx is evaluated as follows:

If turbulence is isotropic, Eg
1DðkyÞ ¼

R1
�1j~ϕð ffiffiffiffiffiffiffiffiffi

k2xþk2y
p

Þj
2
dkx : Applying a variable

change tan θ ¼ ky
kx
and a cutoff θcut for the upper bound of the integration, one can

obtain

Eg
1DðkyÞ ¼ 2

Z θcut

0

~ϕ kx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θ

p� ����
���2 dθ
cos2θ

: ð4Þ

When Eg(k⊥)∝ k⊥−α, Eg1D(ky)= ∫Eg(k⊥)dkx∝ ky−α.

Data availability
The data supporting this study’s findings are available from the corresponding author
upon reasonable request.
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