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Giant injection-locking bandwidth of a self-pulsing
limit-cycle in an optomechanical cavity
Daniel Navarro-Urrios 1✉, Guillermo Arregui2, Martín F. Colombano1,3, Juliana Jaramillo-Fernández 1,

Alessandro Pitanti 4, Amadeu Griol5, Laura Mercadé 1,5, Alejandro Martínez 5 & Néstor E. Capuj6,7

Locking of oscillators to ultra-stable external sources is of paramount importance for

improving close-to-carrier phase noise in free running oscillators. In most of them, such as

Micro-Electro-Mechanical-Systems or LC circuit-based oscillators, the locking frequency

range is limited by the robustness of their natural frequency, which comes explicitly related

with intrinsic parameters of the system. In this work we report the synchronization of an

optically-driven self-pulsing limit-cycle taking place in a silicon optomechanical crystal cavity

to an external harmonic signal that modulates the driving laser. Because of the extreme

ductility of the natural self-pulsing frequency (several tens of MHz), the injection-locking

mechanism is highly efficient and displays giant relative bandwidths exceeding 60%. The

external modulation reveals itself as a knob to explore dynamical attractors that are other-

wise elusive and, in particular, as a means to initialize a mechanical resonator into a state of

self-sustained oscillations driven by radiation pressure forces. Moreover, we exploit the large

anharmonicity of the studied limit-cycle to induce injection-locking to integer multiples and

fractions of the frequency of the external reference, which can be used for frequency con-

version purposes in nano-electro-opto-mechanical systems.
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It is a well-known phenomenon that a self-sustained oscillator
can be synchronized to a weak external signal if the frequency
of the latter is near the natural frequency of the former1,2.

There are many diverse examples of such unidirectional
mechanism in our everyday life, such as the circadian rhythms of
cells originating from the rotation of the Earth around its axis and
around the Sun, the entrainment of the breathing of anesthetized
human with mechanical ventilators or the working principle of a
radio-controlled watch. The dynamics of injection-locked oscil-
lators have been explored extensively since the pioneer study of
Adler3 and others afterwards4–7 and many applications came
since then. In the last decades, injection locking methods have
been increasingly exploited in oscillators of various natures for
applications in the distribution of clock signals8,9 as well as in
frequency synthesis10,11, among others.

Here we study a rather singular oscillator often appearing in
semiconductor optical cavities, i.e., a self-pulsing (SP) limit-cycle,
and its synchronization to an external periodic signal. This self-
sustained oscillator can be understood as the result of a dynamical
interplay between two or more nonlinear mechanisms that can
modify the optical mode effective refractive index12–16. The SP
limit-cycle usually takes energy from the continuous laser used to
excite a specific optical mode and, therefore, is prone to be
injection-locked to a signal actuating on an optical modulator
placed in the incoming optical path. This work analyses both
experimentally and numerically the specific case of thermo-optic/
free-carrier-dispersion SP, which emerges routinely in silicon-
based optical cavities at sufficiently high laser powers14,16. We
perform our study in optomechanical crystal cavities (OMC),
since the SP oscillator can be further employed to drive a
mechanical mode into the lasing regime by exploiting the tem-
poral modulation of the radiation pressure force17. The first part
of the manuscript studies the synchronization of the SP to the
radio-frequency (RF) tone when the mechanical degrees of free-
dom are damped using the fiber optical probe. Special attention is
paid to the interaction between higher harmonics both of the SP,
which is highly anharmonic by nature, and of the perturbation,
which deviates from harmonicity as the perturbation amplitude
increases. We find that synchronization is achieved in a very
broad bandwidth (60% of its natural frequency), surpassing other
approaches for external locking18–21. In the last part of the work
we study the SP mechanism and its injection-locking mechanism
when the OMC is mechanically liberated. In the latter context, we
find that mechanical modes whose frequency lies far away from
that of the SP can be driven to the lasing regime just by tuning the
frequency of the SP with the RF modulation and then switching
the latter off. We discuss the implications of these findings for
acoustic signal generators based on NOEMS in a monolithic
silicon platform, which enable an enhanced control over the
spatial shape, amplitude and frequency of the generated signals.

Results and discussion
General properties of the sample and experimental con-
siderations. In our study, we consider a silicon OMC nanobeam
cavity described in the “Methods” section22. We employ a two-
wavelength continuous-wave pump and probe optical setup to
characterize the non-linear dynamics of the optically-driven
silicon nanobeam (see Fig. 1a). The pump laser (labelled L1)
excites the fundamental optical mode of the OMC at λ1,o=
1531 nm and activates the nonlinear dynamics within the optical
cavity, while the probe (labelled L2) is resonant with the first-
order optical mode at λ2,o= 1559 nm and is used to monitor the
optical cavity dynamics. A low-power optical transmission spec-
trum of the OMC is shown in Fig. 1b, evidencing the two modes
with optical Q factors of 3.1 × 104 and 0.8 × 104 respectively. Both

lasers are linearly polarized with fiber polarizer controllers (FPC)
to match the polarization of the OMC cavity modes. Optical
signals decoupled from the OMC are spectrally filtered by means
of tunable Fabry-Perot filters (WF) with a pass-band of about
1 nm and detected in the photodiodes (PD) either in transmission
or reflection. Given that the wavelength filters are aligned with L2,
the detected signal solely comprises the cavity dynamics and not
the direct modulation of L1 (the out-band suppression is >40 dB).

The electric signals of the PDs are analysed with an
oscilloscope (OSC), a spectrum analyzer (SA) and a vector
network analyzer (VNA). The VNA is also used to drive a
Mach-Zehnder modulator (EOM), having a half-wave voltage
Vπ= 6.7 V, which modulates in amplitude the output of L1. The
offset voltage (VDC) is set at the quadrature point VDC= 0.5Vπ to
minimize higher harmonics in the perturbation (details in
Methods). The voltage applied to the EOM thus reads:

V tð Þ ¼ Vmax sin 2πfmodt
� �þ VDC ð1Þ

The SP oscillator embedded within the OMC cavity can be
described by two coupled first order differential equations
governing the temporal evolution of the free-carrier-population
(N) and the effective temperature (ΔT) within the cavity region of
the OMC16:

_N ¼ �ΓFCN þ αSPAno No � N
� � ð2Þ

_ΔT ¼ �ΓTΔT þ αFCnoN

where αSPA is the rate of free-carrier density increase per photon
and unit of density of available intragap states and αFC is the rate
temperature increase per photon and unit free-carrier density.
The first differential equation considers Single-Photon Absorp-
tion (SPA) through the No intragap states per unit volume and a
surface recombination rate given by ΓFC. The second equation
considers Free-Carrier-Absorption (FCA) and a heat dissipation
mechanism characterized by a rate ΓT. Although it plays a role in
the number of generated carriers in our OMCs, we have not
considered two-photon absorption because our evidences of the
FCA loss increase per intracavity photon points towards a
dominating SPA mechanism in the OMCs under study (details in
Methods). Both equations are coupled through the number of
intracavity photons (no), which includes both the cavity
resonance filtering effect and the external perturbation induced
by the EOM as described in Eq. (1) and in the “Methods” section.
Under these considerations, no reads:

no tð Þ ¼ no;mðNÞ 1� sin π
Vmax sin 2πfmodt

� �
Vπ

� �� �
Δλ1ðNÞ2

4 λL1 � λ1ðN;ΔTÞ� �2 þ Δλ1ðNÞ2

ð3Þ
where we neglect optical temporal delays due to the relatively low
optical quality factors. The first mode resonant wavelength reads
λ1ðN;TÞ � λ1;o � ∂λ1

∂N N þ ∂λ1
∂T ΔTΔ and includes first order

thermo-optic and free-carrier-dispersion effects. The number of
intracavity photons when the voltage applied to the EOM is
V=VDC= 0.5 Vπ and the L1 wavelength is in perfect resonance
(λL1 ¼ λ1) is denoted by no,m and is set to be in the order of 104

by adjusting the laser power. The modulation percentage is
experimentally quantified in the oscilloscope when the fibre is not

coupled to the OMC and is given by Pmod ¼ ± 100 sin πVmax
Vπ

� �
.

Both no,m and the linewidth of the resonance Δλ1 account for the
intrinsic optical loss increase associated mainly to FCA and hence
proportional to N. Indeed, FCA losses have been experimentally
evaluated as an increase of Δλ1 when no increases (details in
Methods) and inserted in the model. Even under the assumptions
made, the complexity of Eq. (3) hinders the analytical study of the
solutions of Eq. (2). Therefore, we have restricted our study of
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Eqs. (2) and (3)) to numerical simulations (see Supplementary
Notes 1 and 2), which unavoidable misses unstable solutions. In
the absence of external modulation ( _V ¼ 0) the stable solution is
the SP limit-cycle16 that is active for a wide range of the L1 laser
parameters, namely its power and λL1. Its phase-space diagram
and the resulting temporal transmission trace are illustrated in
Fig. 1c, d, respectively. The natural frequency of such closed
trajectory ðυSPÞ can be tailored in a wide range varying the L1
laser parameters16, which is a feature that anticipates the ductility
of the SP oscillator in view of its response to a periodic external
perturbation. It is worth to note that the SP is only perturbed by
the external modulation between points 1 and 3, i.e., when light is
coupled into the cavity. Typical examples of the experimental RF
spectra when the SP limit-cycle is phase-unlocked or phase-
locked to external RF tones are depicted in Fig. 1e, f, respectively.

Self-pulsing oscillator and injection locking mechanism. In the
following we provide further insight of the dynamics of the SP
oscillator and the synchronization mechanism in a framework
common to other standard nonlinear oscillators in presence of
harmonic perturbations. An analysis of the time required to go
over the different numeric points highlighted in Fig. 1c and d
reveals that the SP limit-cycle parametrized in terms of N and ΔT

is not drawn at constant pace. We therefore define a generalized
phase of the SP oscillator along the limit-cycle that increases
monotonously with time as ϕ tð Þ ¼ 2πυSPt. Within this framework
it would eventually be possible to derive an Adler equation3 in a
rotating system that would describe the temporal evolution of the
phase difference between the SP oscillator as defined above and
the phase of an external force (2πfmodt) in the vicinity of a
resonance condition fmod � m

n υSP , where m and n are integers
without a common divisor. It would read:

_ψ ¼ �Δþ εqðψÞ ð4Þ

where ψ ¼ ϕ� 2πfmodt and Δ ¼ 2πðfmod � υSP;mod�off Þ is the
frequency detuning between the external signal and the SP limit-
cycle in the absence of modulation (υSP¼ υSP;mod�off in that case).
The second term on the right hand side of Eq. (4) accounts for the
perturbation related to the modulation of L1, ε being a parameter
quantifying its strength that is related to Pmod and q(ψ) a 2π
−periodic function containing the quasi-resonant terms1. Syn-
chronization to the external perturbation implies a stable fixed
point on Eq. (4), i.e., _ψ ¼ 0 so that ϕ experiences a constant
rotation at a frequency equal to fmod. The range of Δ along which
the latter condition is held is known as the Arnold tongue.

Fig. 1 Experimental setup and principle of operation. a The main optical signals are derived from two external-cavity diode lasers (L1 and L2) and sent into
a tapered microloop optical fiber to evanescently couple light into the silicon optomechanical crystal cavity (OMC). The optical signal decoupled from the
OMC is collected by the same fiber and measured either in transmission or in reflection using an in-fiber circulator. The signals in both arms are band-pass
filtered by 1 nm bandwidth wavelength filters (WF), impinging on two fast photodetectors (PDs). The electrical signals are sent to a spectrum analyzer
(SA), a vector network analyzer (VNA) or an oscilloscope (OSC) for characterization. EOM stands for electro-optic modulator and FPC for fiber
polarization controller. b Optical transmission spectrum, exhibiting two optical modes at λ1,o= 1531 nm and λ2,o= 1559 nm. Lasers L1 and L2 address the
fundamental and first order modes respectively, L1 acting as the pump and L2 as the probe. c Self-pulsing (SP) limit-cycle represented in the phase space
defined by the effective temperature increase of the cavity region (ΔT) and the free carrier concentration (N) d Time trace of the transmitted optical signal
when SP is active. The positions highlighted by numbers 1–4 are associated to the different corners of the SP limit-cycle of panel c. e and f Power spectral
density (PSD) spectra when the system is in a SP state and the modulation is on (Pmod= ±6.1%) at different modulation frequencies. In panel e the SP limit-
cycle is not locked to the external modulation (fmod~33MHz and υSP~43MHz), while it is locked in panel f (fmod= υSP~41 MHz).
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In most of the self-sustained systems studied in literature prone to
display synchronization, such as the well-known Van der Pol or
Duffingoscillators, synchronization to an external reference can occur
via two main mechanisms: phase-locking or suppression of natural
dynamics. Phase-locking is themost common one and derives from a
saddle-node bifurcation in which the natural limit-cycle would
transform into two fixed points, one stable and one unstable, and
generally occurs for small frequency detunings and perturbation
strengths.Thedynamicsoftheoriginalsystemisonlyalteredintermsof
a frequency-entrainment with the external perturbation1,2. On the
other hand, synchronization by suppression of natural dynamics
generally occurs for large frequency detunings and perturbation
strengths,where the stablefixed point originates from the shrinking of
the natural limit-cycle onto an unstable fixed point2. Consequently,
synchronization by suppression implies that the natural dynamics of
theoscillator isgreatlyalterednotonly inphasebutalso inamplitudeso
that the dynamics within the Arnold Tongue is a stable fixed point
mostly determined by the perturbation. Although, to the best of our
knowledge, there is not a general mathematical formalism describing
those two synchronization mechanisms, there are several features
common to specific nonlinear self-sustained systems. Indeed, it is
possible torecogniseexperimentally andnumerically thesynchroniza-
tionmechanismby analysing the evolution of the frequency spectrum
andbymeansof stroboscopic sections2, the latterbeingsetsofpointsof
the phase trajectory taken with a sample rate equal to fmod. We have
applied that analysis to our system to identify the synchronization
mechanism.

Experimental characterization of the injection locking
mechanism. The path towards entering the Arnold Tongue can
be done either by gradually reducing Δ and/or by increasing ε. If
synchronization is achieved through a phase-locking mechanism,
the frequency peak associated to natural oscillations is frequency-
pulled towards that of the perturbation along the path until it
frequency-locks, while in the case of suppression it does not move
but becomes weaker until it finally vanishes leaving just the
perturbation peak2. Following this procedure, we have analysed
the spectral dependence of the power spectral density (PSD)
when the SP is active at υSP~43MHz and fmod is shifted between
20 and 80MHz (scanning of Δ) for different values of Pmod

(scanning of ε). This set of measurements is shown in the dif-
ferent subpanels of Fig. 2a and reveals an increasing size of the
Arnold tongue with Pmod (main dashed white line) as well as its
asymmetric growth, i.e., a larger lock range at fmod > υSP. An
important observation is that the peak associated with natural SP
dynamics appearing at υSP does not significantly degrade and can
move by several tens of percent its initial value to coincide with
fmod even for the largest Pmod value displayed in Fig. 2a. This is, as
mentioned above, a signature of phase-locking regardless of the
large values of Δ and ε. Numerical simulations of Eq. (2) quali-
tatively reproduce the experimental spectral behaviour with
stroboscopic analysis of the simulated temporal traces giving
further indications of the phase-locking nature of the synchro-
nization (details in Methods). Simulations of the nonlinear
dynamics obtained by numerically solving Eq. (2) allow to

Fig. 2 Arnold tongues. a Colormaps of the power spectral density (PSD) of transmitted light for modulation amplitudes from Pmod= ±0.3% to
Pmod= ±11.9%. The dashed white lines are guides to the eye to illustrate the growth of the Arnold tongues. b–g (Left subpanels) Time traces of the
transmission signal in a polar representation, where the distance to the center is the transmission amplitude value and the angle is the phase difference
with respect to the maximum of the modulation signal. The total temporal register used for this representation is 0.5 μs. (Right subpanels) Time traces of
the normalized modulation signal (black) and transmission signal (coloured scale). The modulation amplitude is Pmod= ±3.4% and each panel corresponds
to a different modulation frequency within the Arnold tongue, covering most of its spectral width. Dashed green lines indicate the position of the faster
transmission minimum, i.e., slightly before point 2 of Fig. 1c and d. A common-coloured scale has been used for the transmission curves in each couple of
subpanels.
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qualitatively reproduce the experimental spectral behaviour
including the asymmetry of the Arnold Tongue with Pmod (see
the “Methods” section). The latter feature originates from high-
order synchronization peaks20, which are especially relevant here
due to the specific anharmonic nature of the SP dynamics. Across
the Arnold tongue, the SP limit-cycle adapts its relative phase
with respect to the modulation so that the region between points
1 and 3 of the cycle (see Fig. 1c, d) are aligned with a high
modulation value if the locking frequency is low and vice versa
(Supplementary Fig. 4). The size of the SP limit-cycle in the N-ΔT
phase space changes significantly its size with respect to the
natural case, being larger at low locking frequencies and smaller
at the other side of the Arnold tongue (Supplementary Fig. 3),
thus explaining the giant locking range of the SP oscillator. This is
possible thanks to the large time interval with negligible N and n
and slowly cooling ΔT, which leaves room for a modification of
the time interval between two pulses. This behaviour contrasts
with other types of oscillators, where the perturbation is present
along the whole cycle and the phase trajectory only slightly
deviates from the original one. Moreover, by analysing the
simulated temporal data of N and ΔT with the stroboscopic
technique at fmod (Supplementary Figs. 1 and 2), we observe that
the phase trajectory before entering the synchronization region
does not change meaningfully and that the fixed point is born on
its surface, which is a further indication of phase-locking. The
phase noise of the SP limit-cycle greatly improves within the
Arnold tongue, reaching −100 dBc Hz−1 at 10 kHz (details in
Methods) at Pmod= ±11.9%, which is similar to the values
reported by us in an injection-locked OMC oscillator19.

The secondary Arnold tongue that appears experimentally at
fmod~υSP/2, which is also highlighted in Fig. 2a, is of much smaller
bandwidth than the main one. This is an expected feature since,
as stated above, the modulation signal is configured to suppress
higher harmonics so that the resonant conditions embedded
within the Adler equation (Eq. (4)) are in principle only met
when fmod ≈ mυSP1. The fact that this secondary Arnold tongue
appears at all is related with the small deviation of the modulation
signal from harmonicity and/or with the fact that the perturba-
tion is filtered by the dynamics of the cavity resonance. Although
the experimental configuration ensures filtering out the optical
signal coming from L1, there is still a small contribution at fmod in
phase with the EOM associated to a resonant modulation of the
temperature of the cavity regardless of being inside or outside the
Arnold tongue, which prevents a precise analysis of the SP phase
using the VNA. Therefore, we have used the oscilloscope to
analyse the evolution of the relative phase between the EOM and
the SP signal along the Arnold tongue, avoiding the quasi-sync
regions placed at its extremes18. These results are displayed in
Fig. 2b–g for different values of fmod, where the right subpanels
represent the time traces of the modulation and transmission
signals (black and coloured respectively). Both traces are taken
simultaneously using the first one as a trigger signal in the
oscilloscope. The left subpanels display the transmission signal in
a polar representation suitable to avoid self-intersections and to
superimpose all the full cycles recorded in the transmission
temporal trace. The radius is associated to the limit-cycle optical
transmission trace and the angle to the relative phase of the
harmonic modulation signal with respect to its maximum, i.e., we
express the reference signal as cos(2πfmodt), where 2πfmodt is the
polar angle of the plot. This is equivalent to the stroboscopic
technique described above but using the whole temporal trace
instead of sampling only one phase point. To better illustrate this,
the transmission curves have been plotted in both subpanels with
a common colour scale linked to each phase point. Taking the
position of the fast transmission minimum as reference (green

dashed line), which happens between points 1 and 2 of the limit-
cycle displayed in Fig. 1d, there is an overall phase shift along the
Arnold tongue greatly exceeding π. The latter magnitude has been
measured for different values of Pmod and there is an overall π
phase shift for Pmod < 2.4% while, for Pmod > 2.4% it increases to
more than 3π for the largest Pmod value (details in Methods). This
is at odds with what is stated and measured in the literature for
standard phase-locking based systems, where if the synchroniza-
tion region is “crossed” along the line of constant ε the phase shift
varies by π1–3,18–21,23. Moreover, when analysing this feature in
the numerical simulations, the overall phase shift is also π even
for large Pmod values. This experimental result is likely related
again with the anharmonic nature of both the SP and the
perturbation at high modulation values, which, as we show later,
leads to very efficient injection-locking even between higher
harmonics. This pinpoints the fact that locking between the
fundamental harmonic of both SP and the RF tone may not
dominate throughout the Arnold tongue, thus leading to distinct
cycling of ψ across the tongue.

When expanding the modulation frequency range, we have
observed that SP can also be locked to the external reference by
means of higher harmonics of the SP signal, i.e., when fmod

≈mυSP. This is a consequence of the anharmonicity of the SP
limit-cycle, which largely overcomes that of other standard
nonlinear oscillators such as the Van der Pol or the Duffing24.
Figure 3 reports a set of data recorded both with the SA (panel a)
and with the VNA (black curve of panel b) using a modulation
frequency range between 10 and 500MHz for Pmod= ±1.1%,
which shows synchronization to the external signal for m values
up to 11 (see Supplementary Note 3, where time traces up to
m= 5 are showed in Supplementary Fig. 7). Indeed, the VNA
magnitude spectrum shows a plateau as long as the mth harmonic
of the SP is synchronized with the external signal at fmod, the
spectral widths of which define the Arnold tongues. A
comparison with the PSD spectrum of the SP without modulation
measured with the SA (red curve of Fig. 3b) confirms that S21
plateaus appear around SP harmonics and that their intensity
decays with a similar trend although the noise of the PSD
measurement masks the presence of SP harmonics larger than
m= 4. Unexpectedly, the spectral width of the Arnold tongues
measured in S21 increases with m up to m= 3 and υSP is
frequency pulled by a larger extent for m= 2, 3 than for m= 1.
This feature gives a hint to explain the previous observation
displayed in Fig. 2b–e of overall phase-shifts exceeding π along
the Arnold tongue as discussed above, given that at large
modulation amplitudes the perturbation becomes anharmonic
and the SP could lock to the external signal by means of higher
harmonics, i.e., mth harmonic of the external signal with mth

harmonic of the SP. It is noteworthy that the minima observed in
S21 above 200MHz are likely associated to destructive inter-
ference between a contribution of direct modulation, which also
decays with frequency, and the locked-SP signals. Also, a small
drift of the SP natural frequency is observed in Fig. 3a since the
set of data required hours of acquisition time.

Exploitation of injection locking to reach elusive dynamical
attractors. To illustrate a possible application of the wide
frequency-locking range of the SP dynamics, in the following we
mechanically liberate the OMC by removing its physical contact
with the fiber, hence adding to Eq. (2) two equations associated to
a mechanical harmonic oscillator driven by radiation pressure
forces. The full system is governed by the set of four first-order
nonlinear differential equations coupled through no described
extensively in our previous works16,17. If a mechanical mode with
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eigenfrequency fmec is partially resonant with one of the harmo-
nics of the SP, it can be driven into mechanical lasing provided
that the OM coupling rate is sufficiently large. Moreover, by
means of the OM coupling strength, the mechanical motion
frequency-locks the SP so that υSP is forced to be a simple fraction
of the mechanical eigenfrequency, which is a feature that
resembles what occurs when the external modulation is on and
the SP locks to it. Indeed, once the mechanical mode is in a high
amplitude state, it can be also understood as an anharmonic
modulator of no through the OM coupling mechanism. The
largest amplitude mechanical lasing oscillation can be obtained by
using the main harmonic so that υSP ¼ fmec. Here, it is interesting
to remark that, as a consequence of the robustness of fmec in
comparison with the SP natural frequency, OM systems driven to
a mechanical lasing state display injection-locking bandwidths
about three orders of magnitude narrower19,25,26 than that of the
SP limit-cycle reported above for similar modulation amplitudes.

Figure 4a shows a schematic of the performed experiment, in
which the system is initialized in a SP limit-cycle with υSP far
from a mechanical mode with eigenfrequency fmec (left panel).
The modulation is then switched on so that SP is locked to it and
fmod is increased until being close to fmec (central panel). The
modulation is finally switched off and the system can be left in a
mechanical lasing state at fmec (right panel). Figure 4b shows a 2D
colour plot of the PSD spectra in the absence of external
modulation as a function of the wavelength of L1 (λL1). Below the
dashed yellow line, several thermally activated mechanical modes
can be optically transduced, among which the in-plane flexural
mode with three antinodes (fmec= 99.3 MHz) shows the largest
OM coupling rate, which is dominated by the moving interface

contribution27. The dashed yellow line also indicates the
wavelength threshold above which the SP limit-cycle is activated.
As described above, υSP corresponds to the frequency of the first
harmonic of the signal and varies with λL1, reaching a maximum at
υSP = 54MHz (Fig. 4b), which is far from fmec. Under these
conditions, mechanical lasing can be achieved only using the third
or the second harmonic of the optical force, i.e., for υSP ¼ fmec=3
and υSP ¼ fmec=2, respectively. The mechanical lasing dynamics
appears in Fig. 4b as frequency plateaus where the specific
harmonic of the SP is locked to the coherent oscillation of the
mechanical mode. In a similar fashion to what is shown in Fig. 2a,
by switching on the external modulator with Pmod values on the
order of ±13% it is possible to synchronize the SP on a wide spectral
range reaching more than 60% its natural value (Fig. 4d, e).
Therefore, it is possible for υSP to reach fmec and activate the
coherent oscillation of the mechanical mode of interest, the
signatures of which appear in the PSD spectrum in the form of
weak sidebands around the main RF peak at fmec and at 2*fmod-fmec.
This particular region has been studied by us in a previous work19.

Figure 4f illustrates the final dynamical state of the system after
switching off the modulation using a 2D colour plot of the PSD
spectra as a function of the modulation frequency when it was on
(red dashed line). Thus, each spectrum of Fig. 4f can be directly
compared to its counterpart when the modulation was on in
Fig. 4e. Our results indicate that there is a range of fmod above and
below fmec where, after the modulation is switched off, the system
ends up in a stable mechanical lasing state in which the
mechanical mode is oscillating at large amplitudes at and the
SP is frequency-locked so that υSP ¼ fmec. This means that there
is a stable attractor of the system that was not possible to achieve

Fig. 3 Injection locking to higher self-pulsing harmonics. a Colour contour plot of the power spectral density (PSD) spectra as a function of the
modulation frequency covering a range between fmod= 10MHz and 500MHz to for a modulation amplitude of Pmod= ±3.4%. The PSD power is quantified
in dBm in the colour scale. b Coherent frequency response of the reflected optical signal (S21) measured in the vector network analyzer (VNA) as a function
of the modulation/detection frequency (black curve, left axis) and PSD spectra measured in the spectrum analyzer (SA) when the modulation is off (red
curve, right axis).
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just by modifying the laser parameters. The spectral range of
fmod � fmec leading to stable mechanical lasing presents a clear
asymmetry towards positive values that is highlighted in Fig. 4f with
a longer red arrow on the right side than on the left. On the left side
the system is attracted towards opposite directions by the lasing and
the SP attraction basins so that the final state depends on the overall
strength. On the other hand, on the right side both basins attract the
system towards lower frequencies, thus intersecting the lasing
attraction basin in its way. This reasoning could lead to expect an
absence of a cut off on the high modulation frequency side, but the
decay rate at which the system intersects the lasing state basin
increases with the modulation frequency, so that after some point the
system just cuts across without giving enough time for the
mechanical coherent oscillation dynamics to build up and lock the
SP there. In that case the system dynamics continues its way towards
the natural SP state. We have also observed these features in our
numerical simulations (see Supplementary Figures 5 and 6). It must
be noted that the liberated OMC can also be locked to a fraction of
fmod by synchronizing higher harmonics of the SP signal to the
external reference as in Fig. 3, which was demonstrated by us19 and
by other groups in silicon nitride optomechanical microdisks26.

Conclusions
We have studied the synchronization to an external signal of a
thermal/free-carriers SP limit-cycle occurring in a silicon opto-
mechanical crystal cavity. This is a system with unique features
when compared to other self-sustained nonlinear systems subject
to external periodic perturbations, the most obvious one being

that it does not own a robust natural oscillation frequency
explicitly appearing in the equations. We have identified that the
synchronization mechanism is of the phase-locking type, instead
of suppression of the natural dynamics. Synchronization of the SP
at subharmonics of the external signal has revealed as a very
effective mechanism, in some cases even more than at the main
harmonic, thus suggesting the possible use of this system for
frequency division purposes28,29, which often demand low-power
consumption and wide-band operation30.

For modulation amplitudes exceeding 10% we have measured
Arnold tongues with a spectral width greatly exceeding half of the
natural frequency of the oscillator. This feature opens the possi-
bility of exploring usually inaccessible dynamical attractors of the
system by tailoring the SP frequency externally. Indeed, we have
experimentally pulled the SP frequency more than 60% its natural
value in a mechanically-free optomechanical crystal cavity so that
it fell in the vicinity of the mechanical lasing attraction basin of a
mechanical mode of interest. Under these circumstances the
system can remain in a mechanical lasing stable state after the
modulation has been switched off. This is a very appealing feature
for nano-electro-opto-mechanical-system (NEOMS) coherent
mechanical signal generators, since a specific mechanical mode of
interest (because of its frequency and/or spatial shape) could be
chosen to remain in a lasing state. On the other hand, we have
observed that sub- and super-harmonic synchronization also
appears in the liberated OMC, which also paves the way of
developing NEOMS frequency converters for applications in
integrated microwave photonics.

Fig. 4 Exploitation of injection locking to reach a mechanical lasing state. a Scheme of the experiment. b Colour contour plot of the power spectral
density (PSD) spectra as a function of the laser (L1) wavelength (λL1) when the modulation is off. The horizontal dashed line denoted by 1 (yellow) indicates
the threshold for the self-pulsing activation, while that denoted by 2 (cyan) refers to the configuration associated to rest of the panels of this figure. The
PSD power is quantified in dBm with the same colour scale as in Fig. 3a. c, d PSD spectrum when the modulation is off (b) and on at about 99MHz and
Pmod= ±13% (c). Colour contour plot of the PSD spectra as a function of the modulation frequency when the modulation is on (e) and after it has been
switched off (f). The dashed line in (f) indicates the frequency of the state when the modulation was on. The PSD power of (b), (e) and (f) is quantified in
dBm in the colour scale.
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Methods
Design and fabrication of the optomechanical crystal cavity. The geometry of
the Optomechanical Crystal Cavity (OMC) is based on a unit cell consisting of a
parallelogram with a cylindrical hole in the center and two symmetric stubs on the
sides as shown in the scanning electron microscope (SEM) image of Fig. 1a. The
cavity region in the center of the nanobeam consists of 12 cells with the pitch (a),
the radius of the holes (r) and the length of the stubs (d) decreasing quadratically
towards the center of the beam. Periodic mirrors are placed on both sides of the

central region. The nominal geometrical values of the cells of the mirror are
a= 500 nm, r= 150 nm and d= 250 nm. The ratio of the geometrical parameters
of the central cell with respect to that of the mirror cells is 0.85. The five outer cells
at each side of the crystals are clamped to the silicon frame, so that the in-plane
flexural modes are decoupled from the frame and confined to the central region of
the OMCs. The fabrication process of the OMCs uses standard silicon-on-insulator
nanofabrication processes described in detail elsewhere22. After patterning, the
nanobeam is released by removing the oxide layer beneath the beam.
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Fig. 5 Arnold tongue for a modulation amplitudes of Pmod = ±1.9%. a Colormap of the power spectral density (PSD). b Time traces of the
transmission signal in a polar representation, where the distance to the center is the transmission value and the angle is the phase difference
with respect to the maximum of the modulation signal. Each panel corresponds to a different modulation frequency, covering the spectral width
of the Arnold tongue.
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Experimental measurements of the overall phase shift along the Arnold
tongue. We have measured the overall phase shift between the SP limit-cycle and
the reference modulation signal along the Arnold tongue for several modulation
values. As explained in the main text, these measurements were registered with an
oscilloscope by using the reference signal as trigger signal. In the present case, the
used oscilloscope owns a bandwidth of 500MHz instead of 4 GHz, which was the
case of Fig. 2 of the main text. By comparing Figs. 5a with 6a we can observe the

enlargement of the Arnold tongue by increasing Pmod reported in Fig. 2. On
Figs. 5b and 6b we observe that the characteristic shape depicted by the optical
transmission when it is synchronized with external reference indeed rotates
counter clockwise. At Pmod= ±1.9% (Fig. 5b) the overall rotation is around π, but
at Pmod= ±3.5% (Fig. 6b) this magnitude clearly exceeds π. We have done the
same study for various Pmod values between ±1% and ±13% and summarized the
results in Fig. 7. We observe an overall π phase shift for Pmod < 2.4% while, for
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Pmod > 2.4%, it monotonously grows up with Pmod to more than 3π for the largest
Pmod value.

Dependence of the optical losses with the number of intracavity photons. The
overall optical losses of the cavity depend on the number of intracavity pho-
tons, which, as explained in the text, create free-carriers that increase free-
carrier absorption (FCA). Optical losses are directly related with N, which adds
complexity to Eq. (2), since this impacts both to no,m and to the total linewidth
of the resonance Δλ1. Hence, along the limit-cycle both magnitudes change
their value in a periodic way with frequency υSP when the SP limit-cycle is
active.

We have experimentally verified the impact of FCA by using a pump and
probe technique similar to that employed elsewhere19. L2 is used now to

introduce a large number of photons in the second mode of the cavity, while L1
is scanned with very low power to measure the optical linewidth of the first
cavity mode without introducing any dispersive effect associated to temperature
or free-carriers. To filter out the contribution of L2 to the detected signal we
have used a lock-in technique at low frequency (10 KHz) to modulate and
detect the signal associated to L1. To increase no we gradually enter the second
cavity resonance as the L2 wavelength is increased. As a consequence, there are
both dispersive and dissipative effects that impact the first mode as well, the
former leading to a red-shift of the resonance due to the dominance of thermo-
optic effects (inset to Fig. 8) and the latter to the widening of Δλ1 (main panel of
Fig. 8). We have fitted the observed trend with a saturating function (red curve
of main panel of Fig. 8) reading:

Δλ1 ¼ AN ¼ A
NoαSPAno=ΓFC
1þ αSPAno=ΓFC

; ð5Þ

Fig. 10 Layout of the Mach Zehnder modulator. The DC voltage (VDC) sets
the quadrature point of the modulator at Vπ/2 so that, if the maximum
voltage of the RF modulation signal (Vmax) is small, the output light power
(Pout) responds linearly to the RF modulation signal. Notice that the overall
voltage applied to the modulator is given by VDC+ Vmaxsin(2πfmodt).
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which is consistent with a SPA model in which we drain the intragap states
from carriers as stated in Eq. (2) of the main text, A being a proportionality
constant relating N and Δλ1.

Moreover, the number of intracavity photons in perfect resonance reads:

no;m ¼ 2Pinλ1;0κe=κ
2hc; ð6Þ

where Pin is the input laser power, and κ and κe are the overall and extrinsic loss
rates, respectively. By introducing the identity κ ¼ λ21Δλ1=2πc in Eqs. (5) and ((6))
we get the relation between no,m and N:

no;m ¼ 8π2Pinλ1;0κec

,
λ21A

NoαSPAno
ΓFC

1þ αSPAno
ΓFC

 !2

h ð7Þ

Phase noise of the injection-locked self-pulsing. The phase noise spectrum of
the injection-locked SP reaches values around −100 dBc Hz−1 at 10 kHz (black
curve of Fig. 9) along the phase-locking bandwidth, which is on the same range of
what we observed elsewhere19 in an injection-locked OMC oscillator. However, the
injection-locked OMC oscillator displayed much better phase-noise figures below
10 kHz. The phase noise of the free running SP oscillator (red curve of Fig. 9) is
several orders of magnitude larger.

Mach-Zehnder modulator output power. A scheme of the Mach Zehnder
modulator that we use in our experimental setup is displayed in Fig. 10, where, in
one of the arms, we apply a DC voltage (VDC) to operate in a quadrature point and
a RF harmonic signal.

The output power can thus be written as:

Pout ¼
Pin

2
1þ cos π

Vmax sin 2πfmodt
� �þ VDC

� �
Vπ

� �� �
ð8Þ

If VDC= 0.5Vπ, then the expression reduces to:

Pout ¼
Pin

2
1� sin π

Vmax sin 2πfmodt
� �
Vπ

� �� �
ð9Þ

Data availability
All the data that support the plots and the other findings of this study are available from
the corresponding author upon reasonable request.
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