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Oscillations of highly magnetized non-rotating
neutron stars

Man Yin Leung® "2® Anson Ka Long Yip!, Patrick Chi-Kit Cheong'3* & Tjonnie Guang Feng Li*©

Highly magnetized neutron stars are promising candidates to explain some of the most
peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and
superluminous supernovae. Pulsations of these highly magnetized neutron stars are also
speculated to produce detectable gravitational waves. In addition, pulsations are important
probes of the structure and equation of state of the neutron stars. The major challenge in
studying the pulsations of highly magnetized neutron stars is the demanding numerical cost
of consistently solving the nonlinear Einstein and Maxwell equations under minimum
assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation
modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of
101517 G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics
simulations. We show that stellar oscillations are insensitive to magnetization effects until
the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode fre-
quencies are strongly suppressed. We further show that this is the direct consequence of the
decrease in stellar compactness when the extreme magnetic fields introduce strong defor-
mations of the neutron stars.
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collapse supernovae. Due to field amplification in the

violent formation processes, most NSs are endowed with
strong magnetic fields of 1011713 GL. In some extreme cases, the
magnetars can harbour even stronger magnetic fields of
1014-16 G, about 1000 times stronger than usual pulsars (for
comparison, the magnetic field of a sunspot is 103 G?). Younger
magnetars may carry even higher magnetic fields since they have
been subjected to dissipative processes for shorter times>. Tt is
widely believed that highly magnetized NSs are sources of some
peculiar astronomical phenomena, including fast radio bursts,
gamma-ray bursts, and superluminous supernovae*-11,

Extreme magnetic fields affect the structure and evolution of
NSs. For instance, strong magnetic fields can deform NSs>!2, A
direct consequence of structural deformations of NSs could be
significant gravitational wave emissions!3-1°. The geometry of
magnetic fields of the NSs is a crucial factor governing the physics
of NSs. However, the field configuration inside the NS is
unknown. Studies of equilibrium models with simple field con-
figurations suggest that a purely toroidal field makes NSs
prolate!®-18 while a purely poloidal field forces the stars to
become oblate!-21. Nevertheless, these simple geometries are
expected to be unstable?2-26. Numerical simulations suggest that
the magnetic fields of the NSs are rearranged rapidly due to these
instabilities, leading to a mixed configuration of toroidal and
poloidal fields, which is roughly axisymmetric2’-30. This mixed
geometry is usually called “twisted torus".

Pulsations of NSs could be excited by various astrophysical events,
such as core-collapse supernova and giant flares!. These pulsations are
potential sources of gravitational waves, the spectra of which may serve
as a sensitive probe of the structure and the equation of state (EoS) of
NSs. Oscillation modes of non-magnetized NSs have been well studied
using either perturbative calculations or dynamical simulations with or
without spacetime evolutions>2~42. Magnetic fields are also considered
in studies based on either Newtonian approaches®~47 or general-
relativistic approaches with Cowling approximation (evolving matter
equations only while keeping the spacetime fixed)*8->>. However, it
has been shown that simulations using the Cowling approximation can
overestimate the oscillation frequency up to a factor of 2°6°7. There-
fore, it is important that, when computationally feasible, simulations
with dynamical spacetime are conducted.

The major difficulties in studying magnetized NSs come from
the non-linear nature of Einstein equations, and with Maxwell
equations fully coupled, analytical calculations are generally
impossible. Hence, numerical computations are inevitable to
solve all the involved physics with a minimum number of
assumptions. Until recently, due to breakthroughs in general-
relativistic  magnetohydrodynamics (GRMHD) simulations,
dynamical studies of magnetized NSs have become
possible!>30:58-63 Nonetheless, there is still no accurate eigen-
frequency determination for oscillation modes in highly
magnetized NSs.

A more rigorous approach to compute strongly magnetized equi-
librium models is recently presented and demonstrated by an open-
source code XNS>%4-74 Moreover, the GRMHD code Gmunu’>~78
allows us to robustly evolve NSs in dynamical spacetime even with
extreme magnetic fields of 1015717 G. With these powerful tools in
hand, we are now in a much better position to systematically inves-
tigate the oscillation modes of magnetized NSs.

In this work, we numerically study the oscillations of highly
magnetized non-rotating axisymmetric (two-dimensional) NSs.
Specifically, we first construct 12 equilibrium models with dif-
ferent magnetic to binding energy ratios /%" using XNS,
including one non-magnetized reference model named ‘REF" and
11 magnetized models in ascending order of 5/ named T1K1,
TI1K2, .., T1K11 (see the “Methods” section). Next, we utilize

N eutron stars (NSs) are compact objects formed by core-

Gmunu to perturb and evolve the equilibrium models in dyna-
mical spacetime, where we try three different initial fluid per-
turbations for excitation of stellar oscillations, namely /=0,
¢ =2, and / = 4 perturbations (see the “Methods” section). After
that, we perform a Fourier analysis of the simulation results to
examine how the eigenfrequencies of oscillation modes vary with
H /W of the NS (see the “Methods” section), and we discuss
possible reasons behind our results.

Results

Magnetization effects on oscillations of NSs. In total, six domi-
nant oscillation modes are observed in our numerical study, namely
the fundamental quasi-radial (/ = 0) mode F and its first overtone Hj,
the fundamental quadrupole (/ = 2) mode %fand its first overtone 2p,,
as well as the fundamental hexadecapole (/ = 4) mode %f and its first
overtone 4p; (we follow the notations in the work from Dimmelmeier
et al”’). Each mode is predominantly excited under the initial per-
turbation with the corresponding 7 index, and each eigenfunction
qualitatively agrees with the spherical harmonic in the corresponding
perturbation function, as shown in Fig. 1. The measured eigen-
frequencies of the six modes in the 12 different NS models are sum-
marized in Table 1, where the undetermined eigenfrequencies denoted
by ‘N/A’ in different columns stem from different reasons below. For
the column of F mode, the missing eigenfrequencies are due to
unsatisfactory data quality in Gmunu simulations of T1K8 and T1K11
models under / = 0 perturbation. On the other hand, for the columns
of 4f and 4p; modes, some eigenfrequencies are missing because the
hexadecapole (/ =4) modes are masked by the quadrupole (/ =2)
modes and are no longer the dominant modes in Gmunu simulations
of the most magnetized models under / =4 perturbation. To better
illustrate the results in Table 1, we plot in Fig. 2 the eigenfrequencies f.;
of the six modes as functions of the magnetic to binding energy ratio
H [ W of the NS model.

We have observed an # /" threshold for stellar magnetiza-
tion to start affecting the oscillations of NSs. For NSs with
H W $1072, stellar oscillations are insensitive to magnetization
effects. This can be seen from Table 1 that f;; of every oscillation
mode is nearly the same for the first six models (REF-T1K5) even
though these models span a few orders of magnitude in # /%"
and can achieve a maximum field strength of 101°~17 G; this can
also be seen from Fig. 2 that the data points at # /%" ~ 0 show a
nearly horizontal trend. On the other hand, for NSs with
H/W 21071, stellar oscillations are significantly suppressed by
stronger magnetization. Refer to the data points at #° /% >10"!
in Fig. 2, f.q decreases with /%" in general, and all the
oscillation modes are pushed towards the low-frequency region,
leading to the near-degeneracy of H; and 2p; modes. Moreover,
as afore-explained about the undetermined eigenfrequencies,
/=4 perturbation excites the quadrupole (/=2) modes
preferentially over the expected hexadecapole (/£ =4) modes in
the most magnetized models, hinting at suppression or even
disappearance of higher-order oscillation modes in a more
magnetized NS for # /% 2 107!. To summarize, magnetization
effects start to hinder stellar oscillations if #/#" of the NS passes
the threshold somewhere between 1072 and 10~1.

Compactness as an underlying factor. The magnetization effects
on NS oscillations discussed above may be understood by
studying the compactness M/R.,. of the NS, where M is the
gravitational mass and Ry, is the circumferential radius. As
shown in the work from Hartle and Friedman’?, the eigen-
frequencies of the fundamental quasi-radial and quadrupole
modes are related to the stellar compactness for non-magnetized
NSs, and we suspect this correlation also holds for highly mag-
netized NSs. Thus, based on our NS models, we plot in Fig. 3 the
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Fig. 1 Visualizations of eigenfunctions of the six dominant oscillation modes using the data of three equilibrium models (T1K1, T1K3 and T1K7). The
fundamental quasi-radial (/ = 0) mode F and its first overtone H; are predominantly excited under # = O perturbation; the fundamental quadrupole (/ = 2)
mode 2f and its first overtone 2p; are predominantly excited under Z = 2 perturbation; the fundamental hexadecapole (# = 4) mode 4f and its first overtone
4p, are predominantly excited under / = 4 perturbation. Each polar colour plot shows the spatial map of FFT amplitude at the eigenfrequency of the mode,
where the radial axis is normalized to the equatorial radius r. of each model. On top of each colour plot, there is a polar line plot visualizing the 6-part of the
spherical harmonic in the corresponding perturbation function, where the distance from the origin to the line measures the magnitude of the spherical

harmonic in that 8-direction, while the solid and dotted portions represent the positive and negative parts of the spherical harmonic, respectively. Each line
plot is scaled arbitrarily for clearer illustration. It can be seen that the eigenfunctions of the higher-order quadrupole (/ = 2) and hexadecapole (7 = 4)

modes have more nodes in the @-direction compared to the quasi-radial (/ = 0) modes, while the eigenfunction of each first overtone has more nodes in
the r-direction compared to its fundamental mode. Furthermore, each eigenfunction qualitatively agrees with the spherical harmonic in the corresponding

perturbation function.

compactness M/R;. against the magnetic to-binding energy ratio
A/ W. We find that M/R., remains nearly unchanged for
H /W <1072 but decreases dramatically for # /% >107!, which
agrees with the trends of f;,(#"/#") shown in Fig. 2 and indeed

reveals a correlation between eigenfrequencies of oscillation
modes and stellar compactness. We also plot in Fig. 4, f.;; against
M/Rj.. For all the modes, f;; decreases together with M/R ;. in
an almost linear way. Therefore, we found a quasilinear relation
between fi; and M/Rg,. for magnetized NSs. The complete
physical interpretation of our results is that a strong toroidal field
can cause deformation of the NS? and alter the stellar compact-
ness, so the propagation of seismic activities inside the NS is
affected. In consequence, the eigenfrequencies of oscillation
modes are correspondingly modified.

Discussion

In this work, we systematically investigate how a strong purely
toroidal magnetic field with a field strength of 101°~17 G affects
the oscillations of non-rotating NSs via two-dimensional axi-
symmetric simulations. We carefully extract the eigenfrequencies

of the excited oscillation modes and construct the corresponding
eigenfunctions from the simulated data. We have found that
stellar oscillations are insensitive to magnetization effects for NSs
with magnetic to-binding energy ratio #/% <1072, even
though the maximum magnetic field strength B,  can reach
0(10'7) G in the star. However, stellar oscillations are suppressed
significantly by stronger magnetization if # /% 2107!. This
behaviour can be understood by the decrease in stellar com-
pactness due to strong magnetic fields. We show that the com-
pactness has the same dependence on #/# as the
eigenfrequencies and demonstrate that the correlation between
eigenfrequencies and compactness exists not only in non-
magnetized NSs7? but also in highly magnetized NSs.

We compare our results with previous Newtonian studies?3-4,
These studies considered either perturbative or self-consistent
MHD to construct the equilibrium models in the Newtonian
regime. Both approaches found that the magnetic distortion and
frequency shift in oscillation modes due to toroidal fields are
minor corrections approximately proportional to B2 (or roughly
A /W in this work). However, in our GRMHD simulations, the
equilibrium models are constructed by solving self-consistent
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Table 1 Measured eigenfrequencies of the six dominant
oscillation modes in the 12 NS models.

Model F H 2f 2p, 4 4p,

REF 132 395 163 375 250  5.00
TIKI 132 395 163 375 250  5.00
TIK2 132 395 163 375 250  5.01
TIK3 132 3.93 1.63 3.78 2.51 5.01
TIK4 131 390 163 3.70 250 491
TIKS 130 3.81 1.61 3.61 240 480
TIK6 1.01 2.91 1.49 290 208 399
TIK7 090 250 132 2,50 1.80 3.48
TIK8 N/A 2,10 118 210 1.49 2.91

TIK9 060 170 098 170 N/A 240
TIK10 049 133 078 130 N/A 184
TIKTI N/A 077 060 099 N/A N/A

The six modes are the fundamental quasi-radial (/= 0) mode F and its first overtone H, the
fundamental quadrupole (/= 2) mode 2f and its first overtone 2p;, as well as the fundamental
hexadecapole (/ = 4) mode 4f and its first overtone 4p,, all predominantly excited under the
perturbation with the corresponding I index. All eigenfrequencies are in kHz and rounded off to
two decimal places. The undetermined eigenfrequencies in specific models are denoted by ‘N/
A'. The missing eigenfrequencies in the column of F mode are due to unsatisfactory data quality
in Gmunu simulations of T1K8 and T1K11 models under # = O perturbation, while the missing
eigenfrequencies in the columns of 4f and 4p; modes are due to the hexadecapole (/ = 4)
modes being masked by the quadrupole (/= 2) modes in Gmunu simulations of the most
magnetized models under /=4 perturbation.

general-relativistic magnetohydrostatic equations in the code
XNS304-74 'When # /% 2 107!, the magnetic deformations are
far from small corrections, and thus the stellar compactness is
significantly reduced. Therefore, the effect of decreasing com-
pactness dominates and results in the suppression of oscillation
modes. Besides, we compare our results with those under the
Cowling approximation and we corroborate what has been shown
in the literature®®>7, namely that the Cowling approximation can
lead to errors of factors of 2 (see Supplementary Note 1).

The strongest magnetic field strength of 1017 G in this work is not
expected to be observed in the exterior of ordinary pulsars and
magnetars. Nevertheless, since the toroidal fields are enclosed inside
the NSs, this ultra-high field could exist in the interior regions.
Moreover, such field strength could also be generated during the
formation of a proto-NS3, and binary neutron star mergers®0, The
excited oscillation modes in these scenarios are potential sources for
gravitational waves, and they could be detected with the next-
generation detectors, such as the kamioka gravitational wave
detector (KAGRA)3!, the Einstein telescope (ET)$2, and the Neutron
Star Extreme Matter Observatory (NEMO)83,

This work presents the first step to understanding how mag-
netic fields with different geometries affect the oscillations of NSs.
Since stellar models with purely toroidal fields are generally
unstable?3, the instability is only suppressed due to the restriction
to 2D axisymmetry in this work. Therefore, a natural extension
considers strong purely poloidal fields and the more realistic
twisted torus configuration. Since these field configurations
extend to the regions outside NSs, an accurate and robust resistive
GRMHD solver could be used to model these regions. This solver
has already been implemented into Gmunu’® for future studies. In
addition to different configurations of magnetic fields, the rota-
tion should also be taken into account to work towards a more
realistic problem, as the observed NSs are suggested to be rotat-
ing. Furthermore, introducing realistic EoSs is essential since one
of the most important purposes of oscillation studies is to probe
the structure and the EoSs of NSs.

Methods

Equilibrium models. Equilibrium models of NSs are constructed by the code
XNS364-74 XNS is a branch of the X-ECHO code®* developed to compute
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Fig. 2 Effects of magnetization on eigenfrequencies of oscillation modes.
Eigenfrequencies fgg of the excited oscillation modes are plotted against the
magnetic to binding energy ratio # /" of the NS model, if /=0 @), / =2
(b), and / =4 (c) perturbations are applied respectively. The FWHMSs in the
parabolic interpolations of FFT peaks are taken as the error bars for fgg. For all
the modes, the data points at H/W ~ O (corresponding to REF-T1K5 models)
show a nearly horizontal trend, even though these models span a few orders of
magnitude in # /%" and can achieve a maximum field strength of 10>~ G.
This implies magnetization has negligible effects on stellar oscillations for NSs
with # /% <1072, However, feig Noticeably decreases with J# /%" for
]{’/%/210’1 in general, and as explained in the caption of Table 1, the
expected higher-order hexadecapole (/ = 4) modes are suppressed or even
disappear in the most magnetized models under # = 4 perturbation. Hence, we
can see that stellar oscillations are significantly suppressed by stronger
magnetization for NSs with /#2107

equilibrium models of highly magnetized axisymmetric NSs with rotations. Dif-
ferent magnetic field configurations?, uniformly and differentially rotating
profiles®, and polytropic and non-polytropic tabulated equations of state’> are
admitted. XNS enforces the 3 + 1 formulism, the conformal flatness condition, and
the assumption of axisymmetric and stationary space-time so that the line element
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Fig. 3 Effect of magnetization on stellar compactness. Compactness
M/R is plotted against the magnetic to binding energy ratio #/#" of the
NS model, where M is the gravitational mass and R is the circumferential
radius. M/R.ic remains nearly unchanged for yf/“ﬂ/”ﬂO’z but decreases
dramatically for #/# >107". This agrees with the trends of feg(H /)
shown in Fig. 2 and reveals a correlation between eigenfrequencies of
oscillation modes and stellar compactness for magnetized NSs.
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Fig. 4 Quasilinear correlation between eigenfrequencies of oscillation
modes and stellar compactness. Eigenfrequencies f.;; of the excited
oscillation modes are plotted against compactness M/Rg;.. of the NS model,
where M is the gravitational mass and R is the circumferential radius.
The FWHMs in the parabolic interpolations of FFT peaks are taken as the
error bars for fe. All data points show that f.;; decreases together with
M/R¢irc in an almost linear way. Hence, this demonstrates a quasilinear
relation between eigenfrequencies of oscillation modes and stellar
compactness for magnetized NSs.

can be written as
ds? = —a2df + y* [dr® + A6 + rsin?6(dg + ﬁ¢dt)2}, )

where a(r, 6) is the lapse function, y(r, 6) is the conformal factor, and p9(r, 6) is the
shift vector (3¢ = 0 for non-rotating configurations).

We assume a polytropic EoS p = Kp? for the stellar fluid, where p is the
pressure, K is the polytropic constant, p is the density, and y is the adiabatic index;
as well as a polytropic expression By, = a 'K, (ph@*)™ for the toroidal field, where
K., is the toroidal magnetization constant, h is the specific enthalpy,

@ = o?y*r’sin*0, and m > 1 is the toroidal magnetization index. Although the
field configuration of an isolated NS is expected to be a mixture of toroidal and
poloidal fields, it is important first to assess how a simpler field geometry would
affect the oscillations of NSs before we move on to the more complicated "twisted
torus" case.

In total, 12 equilibrium models are computed with XNS, where one of them is a
non-magnetized reference model named ‘REF’, and the remaining 11 models are
magnetized. All 12 models share the same rest mass M, = 1.68M, and the same
K=16x10°cm®g~!s72 and y =2 in the fluid EoS. The 11 magnetized models
have the same m =1 but different values of K., in the By expression, and they are
arranged in ascending order of magnetic to binding energy ratio #°/#", where the
one with the lowest ratio is named ‘T1K1’, and the one with the second-lowest ratio
is named ‘T1K2’, so on and so forth. (‘T1” specifies the toroidal magnetization

index being 1 and K’ stands for Ky,). The detailed properties of all 12 models are
summarized in Table 2.

Initial perturbations to excite oscillations. Consulting a similar study on rotating
non-magnetized NSs done by Dimmelmeier et al.>’, we try the following three
types of initial fluid perturbations for exciting oscillations in the equilibrium
models.

First, we have the / =0 perturbation on the r-component of the three-velocity
field,

&' = asin [n L] )
r(6)]’

where r,(6) locates the surface of the NS, and the perturbation amplitude a (in unit
of ¢) is chosen to be 0.001.

Second, we have the / = 2 perturbation on the 6-component of the three-
velocity field,

Y = asin [nTsTr@} sin 6 cos 6, 3)
where a is chosen to be 0.01.
Lastly, we have the / = 4 perturbation on the §-component of the three-velocity
field,

8v? = asin [ ] sin 0 cos 8(3 — 7cos>6), (4)

.

r,(6)
where a is again set to be 0.01.

All three perturbation functions comprise a sine function of r and the 6-part of

a spherical harmonic with the corresponding # index. The sine function of  has its
nodes at the centre and on the surface of the NS to avoid initial perturbations on
sensitive boundaries of the problem and minimize any potential numerical errors.
On the other hand, spherical harmonics are a natural choice for exciting
oscillations on a sphere-like object. Moreover, for the higher-order / =2 and / =4
perturbations, the perturbation amplitude a has to be larger to induce any
observable oscillations.

Simulations. Simulations are performed with our code Gmunu”>~78. For each of the 12
equilibrium models, we execute Gmunu three times, once for each initial perturbation
function. Hence, 12 X 3 = 36 simulations are carried out in total. In all 36 simulations, the
models evolved over a time span of 10 ms with the polytropic EoS p = Kp?, under the
same setting as in the computation of equilibrium models, namely, y=2 and K= 110.
The lowest allowed rest mass density (‘atmosphere’) is set to be

Patmo = P (t = 0)x 1071, and the ratio of pymo to threshold density pyy i Paumo/
P = 0.99. For completeness, we also perform simulations under the Cowling approx-
imation, with other settings unchanged. For the simulation results under the Cowling
approximation, we plot the eigenfunctions and eigenfrequenices of the excited oscillation
modes in Supplementary Figs. 1 and 2, respectively, and we list the numerical values of
the eigenfrequencies in Supplementary Table 1. Furthermore, we provide in Supple-
mentary Table 2 the relative differences in eigenfrequencies between the simulations with
and without the Cowling approximation.

The two-dimensional computational domain covers 0 <r <60, 0 < 6 < 7 with
the resolution N, x Ng= 64 x 16 where each block has 82 cells, thus allowing 4
AMR level (an effective resolution of 512 x 128). The grid refinement used in
this study is identical to the GR simulations in a previous work about Gmunu”’.
In particular, we define a relativistic gravitational potential ® :=1—a. As ® is
almost proportional to M/R, we can use ®~! as a measure of the characteristic
length-scale””. For any @ larger than the maximum potential @, (which is set
as 0.2 in this work), the block is set to be the finest. While for the second-finest
level, the same check is performed with a new maximum potential which is half
of the previous one, so on and so forth. To avoid the rigorous
Courant-Friedrichs-Lewy (CFL) condition at the centre of the star, the grids are
enforced to be coarsened for keeping rA6 ~ Ar when r is smaller than 0.5.
(Unless otherwise specified, all quantities in this subsection are in dimensionless
units c=G=Mg=1.)

Extraction of eigenfrequencies and eigenfunctions. We analyse the data from a
Gmunu simulation in the following three steps. For the first step, we extract the
time evolutions of the initially perturbed component of the three-velocity field at
361 (r, 6)-points in the NS model and compute the fast Fourier transform (FFT) of
the temporal data at each (r, 6)-point. Hence, 361 FFT spectra, plots of magnitude
of the complex FFT in the frequency domain, are obtained altogether. According to
Dimmelmeier et al.”’, our initial perturbation amplitudes are small enough such
that the overall evolution of the input model in a Gmunu simulation can be
described as a superposition of a few global oscillation modes. We verify this by
observing that the FFT spectra obtained at different spatial points show discrete
peaks and agree well on the peak positions.

For the second step, we extract the eigenfrequencies of the excited oscillation
modes. Usually, the FFT spectrum at a spatial point where the initial perturbation
function has a large magnitude can reveal FFT peaks loud enough for further
analysis (e.g. at (r, 0) ~ (r./2, 1/2), (r./2, n/4), and (r./2,2n/15) for / =0,/ =2,
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Table 2 Stellar properties of the 12 equilibrium models constructed by the XNS code.
Model Pe M Reirc re rp/re HW Bnax
10 gem—3) Mo) (km) (km) (107 G)
REF 8.56 1.55 14.25 11.85 1.00 0.00 0.00
TIK1 8.56 1.55 14.25 11.85 1.00 3.97x10°6 3.45x1072
TIK2 8.56 1.55 14.25 11.85 1.00 1.58 x 105 6.89 x102
TIK3 8.57 1.55 14.25 11.85 1.00 3.95x10~4 3.44 x107"
TIK4 8.63 1.55 14.32 11.92 1.01 6.21x10-3 1.36
TIK5 8.81 1.56 14.54 1215 1.02 235x102 2.63
TIK6 9.10 1.58 16.79 14.43 1.09 1.23x107! 552
TIK7 8.81 1.59 18.55 16.21 112 1.69 x 101 6.01
TIK8 8.27 1.60 20.97 18.64 115 214 %1071 6.14
TIKS 7.53 1.61 24.28 21.97 117 2.58 x101 5.96
T1K10 6.64 1.62 28.92 26.62 1.21 3.02x107" 553
TIKN 5.69 1.63 35.48 33.19 1.24 3.44x1071 4.93
All numerical values are rounded off to two decimal places. p. is the central density, M is the gravitational mass, R is the circumferential radius, r. is the equatorial radius, r,/r. is the ratio of polar
radius r,, to equatorial radius r. (a purely toroidal field elongates the NS along the z-axis), # /% is the ratio of total magnetic energy # to total binding energy #", and B, ,, is the maximum field strength
achievable inside the star. These quantities are defined according to the work from Pili et al.3. All the 12 models share the same rest mass Mo = 1.68M, polytropic constant K = 1.6 x 105 cm®g~"s~2, and
adiabatic index y = 2. The 11 magnetized models also share the same toroidal magnetization index m=1.
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Fig. 5 Single-point FFT spectrum obtained from the Gmunu simulation of
T1K6 model under /7 = O perturbation. The FFT data are computed from
the time evolution of the r-component of three velocity fields at the spatial
point (r, @) ~ (ro/2, n/2). The parabolic interpolations of the prominent
peaks are shown as an example. The FFT spectrum at a single spatial point
usually shows peaks that are sharp enough for analysis.

/ = 4 perturbations, respectively). Nevertheless, occasionally, we may have to
integrate the FFT spectra along a radial line for sharper FFT peaks (along 0 = /2,
/4, and 271/15 for / =0, / = 2, / = 4 perturbations, respectively). Since our study
here is in the ideal GRMHD regime with no physical damping of the oscillations,
we apply parabolic interpolation instead of Lorentzian fitting to the peaks in the
single-point or integrated FFT spectrum for simplicity (see Fig. 5 as an example).
We then take the interpolated peak positions as the measured eigenfrequencies feig
and the full-width-at-half-maximums (FWHMs) of the parabolic interpolations as
the uncertainties in eigenfrequency extraction.

For the third step, we extract the eigenfunctions of the excited oscillation
modes. According to some previous studies®’-84, the eigenfunction of a mode is
correlated to the spatial map of FFT amplitude at the eigenfrequency of the
mode, where FFT amplitude is the magnitude of the FFT multiplied by the sign
of its real part. Using our FFT data computed at the 361 points, we spatially map
the FFT amplitude at the frequency to which the measured eigenfrequency is the
closest in the discretized frequency domain of our FFT analysis for simplicity.
The eigenfunction visualized by such a spatial map can serve as a unique
trademark to help us identify the same oscillation mode excited in different
Gmunu simulations so that we can investigate the dependence of eigenfrequency
feig of a particular mode on the magnetic to binding energy ratio # /%" of the
input model.

In the end, we can obtain the curves of f eig(]/ /W) for different oscillation
modes to examine the magnetization effects on oscillations of NSs. Lastly, we
determine the correspondence between the modes found in our study and the

modes in the literature by comparing the eigenfrequencies at zero magnetic
energy, f (# /%" = 0), of the modes we found here with the mode frequencies
previously reported for a non-magnetized non-rotating NS model with a similar
gravitational mass>”.

Data availability

The data generated and analysed during this study, including both the main text and the
supplementary information, are available from the corresponding author on reasonable
request.

Code availability

The open-source XNS code can be accessed via https://www.arcetri.inaf.it/science/ahead/
XNS/download.html. The Gmunu code is available from the corresponding author by
request.
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