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A regime beyond the Hall–Petch and inverse-
Hall–Petch regimes in ultrafine-grained solids
Huijun Zhang 1✉, Feng Liu 1, Goran Ungar1,2, Zhongyu Zheng3, Qingping Sun4 & Yilong Han 5,6✉

The strength of polycrystal increases as the grain diameter l decreases, i.e. the Hall–Petch

behaviour. This trend reverses at about 3 < l < 15 nm, i.e. the inverse-Hall–Petch behaviour.

How the grain size affects material’s strength at l < 3 nm (~12 particles) remains unclear. Here

our simulations use mixtures of soft and hard particles so that compression can continuously

reduce l to merely a few particles, resulting in ultrafine-grained solids termed as glass-crystal

composites. Beyond the conventional Hall–Petch strengthening and inverse-Hall–Petch

softening, we observe a power-law strengthening at l < 14 particles as a result of the blockage

of shear-banding by crystalline grains. Amorphous and crystalline regions accommodate

shear strains via bond-breaking and collective rotation, respectively. Moreover, a

polycrystal–glass transition occurs at l= 14 particles featured with peaks of various quan-

tities, which deepens the understanding on softening–strengthening transition.
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Polycrystals are usually deformed via dislocation motion and
grain boundary (GB) sliding. The former dominates when
GB density is low, and the latter dominates in fine-grained

polycrystals. Consequently, the flow stress σf increases as the
mean grain diameter l decreases for large-grained polycrystals
because GBs impede the dislocation-mediated plasticity. This
Hall–Petch behaviour1–3 gives way to inverse Hall–Petch beha-
viour when grain size is reduced to around 10–15 nm, where the
GB sliding dominates the plasticity and softens the materials4,5.
Recently, GBs are stabilised through relaxation and segregation6

or through high pressure7 so that the inverse Hall–Petch soft-
ening effect is staved off, and the Hall–Petch behaviour can
extend to 3 nm7. However, the effect of grain diameter on
material strength at l < 3 nm has been rarely explored because
ultrafine-grained polycrystals are usually unstable and undergo
grain coarsening8.

We expect that the inverse Hall–Petch softening4–6,9 breaks
down, and a Hall–Petch-like strengthening restores in the
ultrafine-grained regime (Fig. 1) because polycrystals will become
amorphous solids (i.e. glasses) when grains are small enough9,10

and glasses usually exhibit higher strength than their poly-
crystalline counterparts11–13. In contrast to polycrystal whose
plasticity is controlled by dislocation motion (Hall–Petch) or GB
sliding (inverse Hall–Petch)4, glass deforms and flows in the form
of nanoscale shear band14–16, which is due to the propagation of
localised shear transformation zones (STZs)17–19. To search for
the expected strengthening regime and investigate its mechanism,
solids with ultrafine crystalline grains are needed.

In recent years, nanocrystallites embedded in an amorphous
matrix have attracted considerable interest because these mate-
rials possess advantages of both polycrystal and glass. For
example, such structure can produce ultrahigh strength20 and
world-record fatigue resistance21 and thereby shows promising

applications21,22. These materials are known as the dual-phase
glass-crystal structure20 or nanocomposite21, and lack of a stan-
dard terminology. Here, we call them glass-crystal composites
(GCCs). How the grain size affects the strength of such material
and whether the inverse Hall–Petch softening gives way to a
strengthening behaviour in ultrafine-grained materials remain
unclear.

Polycrystals and GCCs with mean grain diameter l < 3 nm are
difficult to fabricate. In the previous study, we found that the
grain size of a polycrystal composed of hard and soft particles
(Fig. 2a–c) can be continuously reduced to a few particles by
compression (Fig. 2d and Supplementary Figs. 1 and 2)10. This
system provides an ideal platform to study whether the inverse
Hall–Petch strengthening breaks down and a Hall–Petch-like
strengthening restores in the finer-grained regime. The micro-
structure change in solids is difficult to resolve in situ because of
the fast dynamics and localised nature of STZs11,15,23, and thus it
has primarily been studied by simulations24,25.

Here, we perform the event-driven molecular dynamics
simulation26 on binary mixtures of hard and soft particles in two
dimensions (see details in “Methods”) for which the continuously
tunable grain size has been achieved10. The system is compressed
from a single crystal to polycrystals and to GCCs with con-
tinuously decreasing of l (Supplementary Figs. 1, 2c), which
enables us to study the strength of the ultrafine-grained regime
and its microstructure change and mechanism. The grain dia-
meter is usually in unit of particle number in simulations and
nanometer in experiments. The diameter of a typical metallic
atom, e.g. Cu or Ni4,7, is about 0.25 nm. The measured
stress–strain curves at different packing fraction ϕ and mixing
ratio x, the flow stress σf and shear modulus K as a function of
crystalline grain size all show not only the conventional
Hall–Petch strengthening and inverse-Hall–Petch softening, but
also a power-law strengthening in the ultrafine-grained regime.
The mechanisms of the mechanical behaviours are analysed from
the microstructural deformations upon shear. The observed
softening–hardening transition in Fig. 1 coincides with the
polycrystal–glass transition identified in the previous work10.

Results
Structures of the GCCs. The area fraction ϕ increases with
pressure (see “Methods” and Supplementary Fig. 2a). At ϕ= 0.62,
a random mixture of soft and hard particles with the mixing ratio
x: (1− x) forms a single crystal (Supplementary Fig. 1) because
their sizes are the same. As pressure increases, more soft particles
are compressed and more size mismatches are produced, which
leads to amorphisation (Fig. 2d, e) with the reduced crystallinity
X (Fig. 2f) and grain size Ng (Fig. 2g, h). X is the fraction of
crystalline particles, and Ng is the mean number of particles per
crystalline grain (see the definition in “Methods”). Figure 2e
shows that hard particles are highly apt to participate in crys-
talline grains. For systems with large x, less hard particles are
available for grain formation, thereby decreasing the crystallinity
(Fig. 2f). The crystalline order of particle i is characterised by its
bond-orientational order parameter ψ6i (see details in “Meth-
ods”). ∣ψ6i∣= 1 for a perfect hexagonal lattice and is close to zero
for a disordered structure. As ϕ increases (i.e. the grain size
decreases in Fig. 2h), 〈∣ψ6∣〉 gradually decreases for hard particles
but maintains constant for soft particles (Fig. 2i), demonstrating
that the structure primarily changes near hard particles.

For binary systems, the chemical short-range order (SRO) is
characterised by the Warren-Cowley parameter27,28

αAB ¼ 1� ZAB

xBZA
; ð1Þ

Fig. 1 Three regimes of flow stress σf(l). As grain diameter l decreases, σf
exhibits the Hall–Petch relationship (green curve) and the inverse
Hall–Petch softening (grey line) in polycrystal regime1–6,10, and a power-law
strengthening (magenta curve) in the glass-crystal composite (GCC)
regime. Symbols refer to the measured results at mixing ratio x= 0.5. The
fitted lc= 1.89 ± 0.01. The boundary (dashed line) between the inverse
Hall–Petch softening and power-law strengthening coincides with the
polycrystal–glass transition (see Supplementary Note 1 for the details). The
mechanisms of the three regimes: dislocation motion, grain boundary (GB)
sliding, and grain blocked shear transformation zone (STZ) are shown in
the bottom.
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where ZA is the coordination number of A-type particle; ZAB is
the number of B-type particles neighbouring surrounding A, and
xB is the fraction of B-type particles. αAB= 0, >0 and <0
correspond to random mixture, favoured, and unflavoured AB
bonds, respectively. Δα of four types of bonds relative to the
values at ϕ= 0.79 (Fig. 2j) show that the same type particles have
a higher affinity, which increases with ϕ. This demixing in binary
solid can enhance the local packing efficiency29 and result in a
stable GCC.

Mechanical behaviours. The stress-strain curves at different ϕ in
Fig. 3a exhibit a linear increase (i.e. elastic regime) at strain
γ < 0.025 (Supplementary Fig. 3), a nonlinear increase (i.e. strain-
hardening) at 0.025 < γ < 0.2, and a plateau (i.e. steady flow) at
γ > 0.2. The plateau height, which refers to the flow stress σf,
increases as the grain size decreases at Ng < 170, i.e. l ’

ffiffiffiffiffiffiffi
170

p ’
14 particles. This behaviour is qualitatively different from the
inverse Hall–Petch behaviour, and can neither be fitted by the
Hall–Petch relationship1,2 (Fig. 3b). Instead, σf(Ng) satisfies a
power law,

σf ðNgÞ / ðNg � Ng1Þ�η1 ð2Þ
with the fitted η1= 0.63 ± 0.09 and Ng1= 3.24 ± 0.17 (Fig. 3b).

The shear modulus exhibits a similar power law

KðNgÞ / ðNg � Ng2Þ�η2 ; ð3Þ

with the fitted η2= 0.72 ± 0.14 and Ng2= 3.07 ± 0.27 (Fig. 3c).
The σf and K diverge at Ng≃ 3, indicating that the minimum
grain size is at least 3 particles, which is consistent with the
extrapolated Ng value at the random close-packing density in
Fig. 2h where the stress diverges30. The divergence is caused by
the hard-core interactions between particles which render the
system incompressible when the shells of soft particles collapse.
Systems composed of soft-core particles can be infinitely com-
pressed. In real systems, atoms exhibit hard cores under high
pressures.

σf(Ng) and K(Ng) derived from the plastic and elastic regimes
are strikingly similar. Thus σf(K) is linear (Fig. 3c inset). This
indicates that the solids with different grain sizes yield at the same
strain, as confirmed in Supplementary Fig. 3 in which the slope of
σf(γ) always changes around γ= 0.025. The linear behaviour of
σf(K) is often observed in glasses28,31.

The data for x= 0.5 in Fig. 3b and d are from different trials of
simulation, and both well fit Eq. (2). σf(Ng) at other mixing ratios
can also be well fitted by Eq. (2) (Fig. 3d) and can collapse well
onto the master line after being rescaled by the fitting parameters

Fig. 2 Compression reduces the grain size in the glass-crystal composites (GCCs). a The interaction potentials for hard and soft particles. Soft particle
has a square-shoulder potential with an outer diameter of 1.3 and inner hardcore diameter of 1. b Compressed bonds between soft–soft (SS) and soft–hard
(SH) particles. c Example local packing structures for crystal (packing fraction ϕ= 0.65) and glass (ϕ= 0.82) without and with compressed bonds,
respectively. d GCCs at different ϕ and mixing ratio x= 0.5. Each crystalline particle is coloured according to its angle of the bond-orientational order
parameter ψ6 as shown by the colour wheel. Disordered particles are in white. e The enlarged views of the dash-boxed regions in d. Crystallites (as
coloured in d) are primarily composed of hard particles (black-rim circles). f, g The contour plots of crystallinity X and grain size Ng in the ϕ–x plane,
respectively. Their colour bars are shown in the right. Three structural quantities at x= 0.5 are shown in (h–j). h Ng decreases with ϕ. Ng≈ 3 when ϕ is
extrapolated to the random close-packing density ϕRCP= 0.842 for binary-disk systems66. i 〈∣ψ6∣〉 averaged over hard and soft particles.
j Δα= α(ϕ)− α(0.79) for four types of bonds, which reflect particles' aggregation propensity (Eq. (1)). The changes in slope at ϕ= 0.80 in (h, j)
correspond to a glass–glass transition (see Supplementary Note 2 for the details).
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(Fig. 3e). K(Ng) at other mixing ratios also exhibit similar results
as Fig. 3c. The minimum grain sizes Ng1,2 fitted from σf(Ng) and
K(Ng) are very close and can be reduced to three particles when
the fraction of soft particles x ≥ 0.5 (Fig. 3f).

This power-law strengthening holds at Ng < 170 particles
(Fig. 3b), i.e. l < 3.5 nm for typical alloys. At l > 3.5 nm, we
observe the conventional inverse Hall–Petch behaviour, see
section “Polycrystal-glass transition” for details. A similar inverse
pseudo Hall–Petch to pseudo Hall–Petch transition has been
recently reported at 3.1 nm in nanocrystalline graphene32, but
there are only two data points at < 3.1 nm which can hardly
provide a quantitative fitting.

Microstructure changes under shear. The structural deformation
around particle i is characterised by the mean squared nonaffine
displacement17,33,

D2
i ¼

1
Ni

∑
Ni

j¼1
jdij � Fid

0
ijj2 ð4Þ

which describes its neighbours’ average deviation from the linear
strain field. dij= rj− ri is the distance vector between atom i and its
neighbour j in the current state, d0ij is for the initial undeformed
state, and Fi is the transformation matrix for all distances between
particle i and its Ni neighbours in a strain interval. Under shear
(Fig. 4a–f), particles whose D2 > 0.6 usually signature local plastic
deformations33, i.e. STZs, which are labelled in yellow in Fig. 4h–k.
These yellow particles are mainly found in amorphous regions and
anti-correlate with crystalline regions (Fig. 4o). The Pearson cor-
relation coefficients between quantities A and B is defined as

CðA;BÞ ¼ ∑N
i ðAi�hAiÞðBi�hBiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i ðAi�hAiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ðBi�hBiÞ2
p , where 〈〉 averages over all the

N particles. In the elastic regime γ < 0.025, plastic flows are absent
(Fig. 4g). In the strain-hardening regime (0.025 ≤ γ ≤ 0.2), the high-
D2 yellow particles form small stripes with a typical thickness of
2–4 particles. These localised plastic flows, i.e. STZs, homo-
geneously occur in space (Fig. 4h–j) because scattered crystallites
interrupt their growth (Fig. 4a–f and Supplementary Fig. 4b). By
contrast, the plastic flows in normal glasses usually form extreme
localised shear bands because no crystallite blocks the growth of
STZs (Supplementary Fig. 4a). The extremely localised plastic flows
in normal glasses often cause strain softening and even catastrophic
failure, which limit their applications11,12. By contrast, the homo-
geneous distribution of STZs in GCCs prevents the extreme loca-
lisation of plastic flow and leads to strain-hardening and associated
strengthening effect (Fig. 3a, b)34. As γ increases, the yellow
deformation zones grow and percolate the whole sample (Fig. 4k
and Supplementary Fig. 4c) in the steady flow regime γ > 0.25.
Crystalline grains rotate (Fig. 4l), split (Fig. 4m), and rebuild
(Fig. 4n) during the deformation process (see Supplementary
Movies 1–3), which continuously affect the plastic flow.

Crystallites (high-∣ϕ6∣ regions) not only spatially anticorrelate
with strong-local-rearrangement (large D2) regions (Figs. 4o and
5a, b), but also tend to rotate clockwise, leading to more red
clusters than blue clusters in Fig. 5c. This rotation is consistent
with the shear direction. The long-live neighbour particles can
characterize the local structural rearrangement and reflect the
macroscopic rheological response of glasses from the microscopic
structure35. Such analysis has been applied in colloidal gel36 and
glass35, but rarely in GCCs or polycrystals. We find that plastic
flows with high D2 (Fig. 5a) strongly correlate with particles
having less long-lived neighbours (Fig. 5b). Crystalline particles
have more long-lived neighbours than amorphous particles

Fig. 3 Mechanical properties. a Stress–strain curves for glass-crystal composites (GCCs) with 50% soft particles at different packing fraction ϕ,
corresponding to different grain size Ng. b The flow stress σf averaged over the strain range 0.3 < γ < 0.4 in (a). Black curve: the fitting of Eq. (2) with
Ng1= 3.24 ± 0.17 (vertical dashed line) and η1= 0.63 ± 0.09. The Hall–Petch relation (green-dashed curve) cannot well fit the data. c The shear modulus K
measured from the slope of σ(γ) in the elastic regime of γ < 0.025 in (a). Black curve: the fitting of Eq. (3) with Ng2= 3.07 ± 0.27 and η2= 0.72 ± 0.14.
Inset: σf(K). d σf fitted by Eq. (2) (dashed curves) at different x. e Rescaling of (d) collapses all the data on a straight line. f The fitted minimum grain sizes
from σf(Ng) (solid symbols) and K(Ng) (open symbols) at different x.
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particularly at high γ (Fig. 5d), indicating that more bond
breakings occur in amorphous regions. Since the plastic
deformations mainly occur in amorphous regions, the yield
strain is a constant regardless of the crystalline grain size (Fig. 3a
and Supplementary Fig. 3).

The shear-induced structure changes are shown in Fig. 6. The
average crystalline order 〈∣ψ6∣〉 are nearly constant during plastic
deformation (Fig. 6a). The average 〈D2〉 of soft particles are greater

than that of hard particles (Fig. 6b) and their ratio is constant
in the plastic regime of γ > 0.08 (Fig. 6c), implying that a fixed
large portion of deformation is obtained from the soft
particles under shear. The deformation participation ratio

Pr ¼ 1
NS;H

∑
NS;H

i ΘðD2
i � 0:6Þ, where NS,H is the numbers of soft or

hard particles and Θ is Heaviside function, i.e., the fraction of
particles whose D2 > 0.6. Soft particles show larger Pr than hard

Fig. 4 Shear-induced deformations at packing fraction ϕ= 0.81 with 50% soft particles. a The initial state without a strain. Black arrows denote the
shear along the x direction. b–f The structures at γ= 0.02, 0.05, 0.1, 0.2, and 0.3, respectively. Crystalline particles are coloured in the same way as Fig. 2d.
g–k Mean squared nonaffine displacements D2 corresponding to (b–f), respectively. Particles strongly deviate from linear affine strain field are colour in
yellow. The black (1), blue (2), and red (3) ellipses in (a) show crystalline grain that rotates (l), divides (m), and rebuilds (n) under shear, respectively.
l The [01] lattice direction of the crystalline grain in the black ellipses 1 in (a–f) rotates from 30∘ to 9∘. This grain retains during the shear and impedes the
spreading of STZ as shown by the white ellipse in (j). m A crystalline grain in the blue ellipses 2 in (a–f) disintegrates into two grains. n A crystalline grain
becomes amorphous and then recrystallises into a new one in the red ellipses 3 in (a–f). o The Pearson correlation coefficients C between D2 and
crystalline order ∣ψ6∣ (squares) and between D2 and disorderness 1− ∣ψ6∣ (circles).

Fig. 5 Microstructure changes during plastic deformation at strain γ= 0.25. a The spatial distribution of nonaffine displacement D2. b The spatial
distribution of the number of long-lived neighbours of each particle nA,B normalised by the average number 〈nA,B〉, which anticorrelates with (a). c The
rotation angle of crystalline particles when γ increases from 0 to 0.25. Clockwise rotations (red) dominate. Amorphous particles are in black. The green
ellipses in (a–c) mark a crystalline grain that clockwise rotates (Fig. 4l) to accommodate the plastic flow. d The mean number of long-lived neighbours n for
crystalline and disordered particles.
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particles (Fig. 6d), which confirms their dominating contribution to
plastic flows. The spatially uniform distribution of soft particles
(Supplementary Fig. 1) accounts for the homogeneity of STZs
(Fig. 4e–k and Supplementary Fig. 4b, c) that mitigate the extreme
localisation of plastic flows (Supplementary Fig. 4a–c). The number
of long-lived neighbouring particles n(γ) at different ϕ or Ng are
almost the same for hard particles, but different for soft particles
(Fig. 6e). This finding is consistent with that shown in Fig. 5d,
indicating that the plasticity mainly occurs on the soft particles
distributed in amorphous regions (Fig. 2e). n(γ) of soft particles
decreases more rapidly in larger-grained GCCs (lower ϕ), implying
that their local cages can be easily broken, and the stress can be
effectively released. Therefore, large-grained GCCs show weaker
strain-hardening and strengthening effects (Fig. 3b, d).

In contrast to strain softening in normal glasses, rejuvenated
glasses exhibit strain-hardening similar to our GCCs because they
both exhibit uniform flow stresses. However, we find that their
underlying mechanisms are different. For rejuvenated glasses, the
stored strain reduces the activation energy of STZ and causes
uniform plastic flow with the decrease of energy34. For GCCs,
however, the crystallites block the shear banding, thereby
producing a uniform plastic flow (Supplementary Fig. 4c)
associated with a constant energy (Fig. 6f).

Polycrystal-glass transition. As grain size decreases small
enough, a polycrystal or a GCC will eventually become an
amorphous glass. It is not clear whether an ultrafine grained
polycrystal or GCC should be called as polycrystal or amorphous
glass, or it is just a matter of terminology without a clear dis-
tinction. This basic question has been rarely asked and poorly
explored. Crystal-glass transition has been observed in
colloidal37,38, granular39,40, and atomic systems41,42, but these
studies are neither about ultrafine-grained solids nor about the
polycrystal-glass transition. Nanoindentation in Ni-W alloy

shows that the deformation morphology becomes similar to those
in glasses when the grain size decreases to approximately 3 nm in
the inverse Hall–Petch regimes9. However, whether this differ-
ence in deformation morphology indicates a polycrystal-to-glass
transition remains unclear9. For the hard–soft binary systems,
surprisingly we find that polycrystal–glass transition occurs at a
sharp point rather than a gradual crossover10. Various quantities
peak at l≃ 14 particles, i.e. ϕ= 0.7 (Supplementary Fig. 5)10,
which indicates a sharp polycrystal-glass transition. Therefore,
GCCs with l < 14 particles can also be considered as dual-phase
glasses (Fig. 1). The polycrystal–glass transition coincides with
the transition between the inverse Hall–Petch softening and the
power-law strengthening regimes in Fig. 1. The maximum resi-
dual specific heat at l= 14 particles (Supplementary Fig. 5a)
implies the maximum fluctuation of compressed SS or SH bonds,
which is in accordance with the strongest fluctuations of structure
and dynamics (Supplementary Fig. 5b, c). The maximum fluc-
tuations of a structure parameter about crystallinity (Supple-
mentary Fig. 5b) and a dynamic parameter about vibration
amplitude (Supplementary Fig. 5c) at l= 14 particles imply the
maximum compressibility as confirmed in Supplementary
Fig. 5d, which is in accordance with the minimum strength at the
boundary between the inverse Hall–Petch softening and power-
law strengthening regimes (Fig. 1). Therefore, the features of the
polycrystal–glass transition10 can explain the transition between
the inverse Hall–Petch softening and the power-law strengthen-
ing. In turn, the transition provides an additional signature of the
poorly explored polycrystal–glass transition.

The system can be compressed into a glass when
ðx � 0:193Þð0:786� 1

λ2
Þ> 0:0210, i.e., the shoulder width λ and

fraction of soft particles x must be large enough to provide
sufficient size mismatches for glass formation. The power-law
strengthening regime (Fig. 1) can exists only in samples whose λ
and x satisfy the above inequality. For example, systems with
small λ or x do not exhibit the strengthening regime because it is

Fig. 6 Shear-induced changes for hard and soft particles at different packing fractions ϕ. a The average order parameter 〈∣ψ6∣〉 for hard and soft particles
remain constant during the deformation at each density. The legend in (a) is for panels (a–f). b The average nonaffine displacement 〈D2〉 for hard and soft
particles. c The ratio of 〈D2〉 for hard to soft particles. d Deformation participation ratios Pr67. e Mean number of long-lived neighbours n is insensitive to
density for hard particles and more sensitive for soft particles as shear increases. n for soft particles are lower than that of hard particles because some soft
particles are compressed smaller, and thus they have fewer neighbouring particles. f The average potential energy per particle under shear.
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a polycrystal instead of a glass even under the highest pressure
(i.e. ϕ= 0.83) in our simulation (see Supplementary Fig. 6).

The classical Hall–Petch strengthening and inverse Hall–Petch
softening indicate that the strongest strength occurs at their
boundary state. However, we observe the strength of GCCs can be
six times higher than the boundary state between the Hall–Petch
and inverse Hall–Petch regimes (Fig. 1). At l≃ 2, σf= 0.3 in the
reduced unit (Figs. 3b and 1) corresponds to σf= 125 GPa for
graphene, whose energy and distance units are U0= 525 kJ mol−1

and σ= 0.128 nm43, respectively. Such σf is higher than the
strength of polycrystal graphene32,44–46. Therefore, the ultrafine-
grained GCCs have the potential to achieve extremely high
strength.

Discussion
Our simple system can model binary experimental systems whose
components have different softness, such as alloys, granular and
colloidal particles with different stiffness. For instance in Al–Ce
alloy, the 4f-electrons of Ce atom are localised and thus Ce atoms
interact via shoulder potentials47, and their diameters can be
reduced by 20% using cutting edge high-pressure technologies48.
Such large deformation is sufficient to induce the
polycrystal–glass transition. In such binary systems, the grain size
can be continuously decreased to a few particles because the size-
mismatched particles, i.e. the compressed soft particles, are gra-
dually ‘added’ through the interior of the bulk by compression10.
It is well known that adding size-mismatched particles, i.e. solute
particles, can reduce polycrystalline grain size8, but adding
excessive solutes will produce glasses instead of ultrafine-grained
polycrystal49. By contrast, the solutes in our system are not added
to the solution all at once, but incrementally added to the interior
of the polycrystal, which hinders the glass formation. Thus, the
soft–hard binary system provides a full spectrum of grain size,
which bridges the polycrystal and glass and enables to explore
how the strength changes with grain size beyond the Hall–Petch
and inverse Hall–Petch regimes. We find that the inverse
Hall–Petch softening terminates at l≃ 14 particles, i.e. 3.5 nm in
typical alloys, and a strengthening regime develops at l < 14
particles. The power-law strengthening regime in GCCs com-
plements to the Hall–Petch and inverse Hall–Petch regimes for
the grain size effect on solid strength (Fig. 1).

We observe that the strain-hardening and power-law
strengthening arises from grain-mediated STZ, which is qualita-
tively different from the dislocation-mediated strengthening in
the Hall–Petch relationship (Fig. 1). The uniformly distributed
crystalline grains in the amorphous matrix impede the growth of
STZs, which suppress the formation of extreme localised shear
band. Therefore, GCCs avoid sudden stress drop that usually
exists in normal glasses, and exhibit dramatic strengthening and
strain-hardening which are absent in normal glasses. Moreover,
we find that plastic deformation arises from bond-breaking in the
amorphous regions and collective cluster rotation in the crystal-
line regions. Crystalline grain rotations often lead to good duc-
tility, which explains the observed high ductility in dual-phase
aluminium alloy22. This hardening mechanism avoids the inverse
Hall–Petch softening in nanocrystal and the shear-band softening
in glass, thereby providing a route to improve the strength of
materials.

Low-dimensional systems are much softer because there are
more long-wavelength fluctuations50 and particles have fewer
neighbour-provided constraints51. Consequently, the space
dimension could affect the nature of phase transition such as
crystal melting50,51 and glass dynamics52. For example, the
transient localization of particles on approaching the glass tran-
sition is absent in 2D, but very pronounced 3D52. Analysis based

on local coordinates can avoid long-wavelength fluctuations so
that the glassy behaviours are similar in 2D and 3D53–55. We
expect the strengthening beyond the inverse Hall–Petch (Fig. 1)
remains valid in 3D because a completely disordered solid has a
higher strength than the polycrystals in the inverse Hall–Petch
regime in 3D. This expectation is independent of the
dimensionality.

Various quantities of this binary system simultaneously peak at
the same ϕ (Supplementary Fig. 5), which indicates a sharp
polycrystal-to-glass transition point. In addition, we find that this
polycrystal-glass transition point coincides with the transition
between the inverse Hall–Petch softening and power-law hard-
ening. The features at the polycrystal-glass transition can quali-
tatively explains the softening–hardening transition, and in turn,
the softening-hardening transition provides an additional feature
for the polycrystal-glass transition. The thermally induced tran-
sition and the nonequilibrium shear-induced transition are qua-
litatively different and the shear could shift the transition point.
However, the polycrystal-glass transition without shear coincides
with the softening–hardening transition with shear, which sug-
gests deep connections between the material properties with and
without shear. These results provide insights into the poorly
explored polycrystal-glass transition and the discovered
softening–hardening transition.

Methods
Model and simulation details. The soft particle is described by square-shoulder
potential

UðrÞ ¼
1; r ≤ σ

U0; σ < r ≤ λσ

0; λσ < r

8><
>: ð5Þ

where σ and λσ are the diameters of the inner hard core and outer shoulder,
respectively. In this work, λ= 1.3. The energy unit U0 is the height of the shoulder.
The pair potential for hard particles is characterised as follows:

UðrÞ ¼ 1; r ≤ λσ

0; λσ < r:

�
ð6Þ

The square-shoulder potential has been used to describe cerium and cesium
atoms, water and silica molecules, micelle and granular particles, and to study self-
assembly, glasses, quasicrystals, and photonic crystals47,56–60.

We simulate N= 12,800 particles under periodic boundary conditions with the
fraction of soft particles x ranging from 0.35 to 0.6. The packing fraction ϕ is
defined as the area fraction of hard particles and the hard cores of soft particles:

ϕ ¼ Nπσ2

4A
½ð1� xÞλ2 þ x�; ð7Þ

where A is the area of the simulation box. Particles are randomly distributed in a
low-density fluid (ϕ= 0.5) state and then relaxed at temperature T= 2.0U0/kB. The
relaxed systems are then compressed into polycrystal and glass (Supplementary
Fig. 1) by using the Lubachevsky-Stillinger algorithm61. The resultant systems are
sufficiently equilibrated at T= 0.13U0/kB for a time period of 105t0, where kB is the
Boltzmann constant, t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=U0

p
is the mean time for a particle moving a

distance σ, and m is the unit of mass for hard and soft particles. All the results are
measured at T= 0.13U0/kB. After the system is compressed to the desired ϕ and its
corresponding Ng, a shear is applied along the x direction by using the Lees-
Edwards periodic condition in y direction with a strain rate of 10−5. All figure and
movies are about samples with 50:50 soft–hard mixing ratio. Samples with other
mixing ratios range from 35:65 to 60:40 exhibit similar results. Each simulation is
repeated ten times for sufficient statistics.

Identification of crystalline grains. The local hexagonal order of particle j is
characterised by the weighted bond-orientational order parameter62

ψ6j ¼
1
ltot

∑
Nj

k¼1
ljke

i6θjk ; ð8Þ

where θjk is the orientational angle of the bond between particle j and its neighbour
k. i2=− 1. The Voronoi polygon has Nj edges with perimeter ltot, and the length of
the edge between j and k is ljk. A higher ∣ψ6j∣ represents a higher 6-fold crystalline
order. A crystalline bond is defined as jψ6j � ψ�

6kj> 0:6. A particle with three or
more crystalline bonds is defined as a crystalline particle63,64. Two neighbouring
crystalline particles belong to the same grain if the difference between their
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orientational angle is less than 6∘. Non-crystalline particles and single isolated
crystalline particles are defined as disordered.

The weighted mean grain size10,65

Ng ¼ ∑
nss

2

Nx
; ð9Þ

where ns is the number of grains with s crystalline particles; Nx is the total number
of crystalline particles; and nss

Nx
is the probability that a particle belongs to the s-sized

grains. The grain diameter l ¼ ffiffiffiffiffiffi
Ng

p
.

Data availability
All the data used in this work are available on reasonable request from the corresponding
author.

Code availability
Computer codes used to generate the plots in this work are available upon reasonable
request via email to H.Z.
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