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Modulation instability—rogue wave
correspondence hidden in integrable systems
Shihua Chen 1,2✉, Lili Bu1, Changchang Pan1, Chong Hou1, Fabio Baronio 3✉, Philippe Grelu 4✉ &

Nail Akhmediev 5✉

The bulk-boundary correspondence is a key feature of topological physics and is universally

applicable to Hermitian and non-Hermitian systems. Here, we report a similar universal

correspondence intended for the rogue waves in integrable systems, by establishing the

relationship between the fundamental rogue wave solutions of integrable models and the

baseband modulation instability of continuous-wave backgrounds. We employ an N-com-

ponent generalized nonlinear Schrödinger equation framework to exemplify this modulation

instability-rogue wave correspondence, where we numerically confirm the excitation of three

coexisting Peregrine solitons from a turbulent wave field, as predicted by the modulation

instability analysis. The universality of such modulation instability-rogue wave correspon-

dence has been corroborated using various integrable models, thereby offering an alternative

way of obtaining exact rogue wave solutions from the modulation instability analysis.
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Rogue waves are a broad multidisciplinary subject of
research with areas spanning from oceanography1 to
hydrodynamics2,3, optics and photonics4–6, acoustics7,

Bose-Einstein condensation8, and artificial intelligence9,10. From
a microscopic perspective, they can be referred to as a class of
deterministic rational solutions of the integrable nonlinear partial
differential equations, which entail a doubly-localized peak on a
finite background11,12. The well-known Peregrine soliton is an
example of such deterministic rational solutions13, which pro-
vides an appealing paradigm to confront the mystique sur-
rounding realistic rogue waves14–19. So far, Peregrine soliton
events have been experimentally observed in such physical set-
tings as the water-wave tank2, deep-water flumes3, optical
fibres20, plasmas21, and irregular oceanic sea states22.

The relation of rogue wave states to integrable systems can be
virtually reminiscent of that of the topological edge modes to
Hermitian systems23,24. For instance, rogue wave states are exact
solutions of the integrable models obtained with inverse scatter-
ing transform25 or Darboux transformation12, while gapless edge
modes can be analytically obtained by solving the eigenproblem
of Hermitian Hamiltonian26,27. Although rogue waves and
topological edge modes are two different wave localization phe-
nomena, both of them are immune to perturbations (more pre-
cisely, the former always come with perturbations17, while the
latter are topologically protected against perturbations28), and can
exist for a broad range of system parameters24. Further, it has
been demonstrated, both theoretically and experimentally, that
rogue waves are seen in either integrable2,11,15 or non-
integrable4,5,29 systems as often as the topological edge modes
are in either Hermitian23,24 or non-Hermitian27,30 systems.
Interestingly, a direct application of topological concept into
rogue wave phenomena so as to realize topological control of
extreme waves has also been recently reported31. As is well
known, the basic principle behind the topological edge modes is
the bulk-boundary correspondence32,33, which relates the robust
edge states to the topological invariants of the bulk34–36. Now a
natural question arises: What is the genuine mechanism under-
lying the rogue wave formation? Or equivalently, is there a similar
correspondence principle intended for the rogue waves in
integrable systems? An affirmative answer to this question will be
provided in this paper.

In fact, there have been intense research activities on the
mechanisms or physics behind the rogue wave events in the past
decade. Numerous studies37–46 show that a possible mechanism
for such rogue formation is the modulation instability (MI)
(sometimes called Benjamin-Feir instability47), which traces the
growth of periodic perturbations on an unstable continuous-wave
(cw) background seeded by noises. In the initial stage of MI, the
spectral sidebands associated with the instability undergo expo-
nential growth, but subsequently a dramatic energy exchange may
occur among multiple spectral modes, resulting in a series of
high-contrast peaks of random intensity where Peregrine soliton
structures can be identified12,17. In addition to MI, there are also
emerging several other explanations for rogue wave generation,
e.g., integrable turbulence48,49, breather or soliton collisions50–52,
random superposition of Stokes waves53, and the spatial asym-
metry or inhomogeneity54,55. These investigations provide a good
perspective on the fundamental origin of rogue waves, but how to
clarify such a controversial issue is still an open challenge of this
emerging field.

In this work, we unveil, on an analytic level, a direct kinship
between the baseband MI39 of cw backgrounds and the rogue
wave solutions of integrable models, which goes beyond the
prediction of the domains of existence for rogue waves12,40. Here,
by baseband MI we mean the instability experienced by the cw

background in a region where the perturbations feature infinite-
simally small frequencies12. Such MI-rogue wave correspondence
is an analog of the bulk-boundary correspondence in topological
physics, with rogue waves corresponding to the boundary modes
and MI corresponding to the bulk topological invariant, respec-
tively. It applies universally to almost all integrable systems, even
to those whose rogue wave solutions can not be expressed in
terms of elementary functions. To support the universal scope of
our results, we consider a model of N-component generalized
nonlinear Schrödinger (GNLS) equation, which includes the
celebrated NLS56 and Manakov57–59 models as well as their N-
component versions60–62 as special cases. Within this framework,
we establish the one-to-one correspondence between the rogue
wave solutions and the MI baseband spectra, and numerically
confirm it by demonstrating the excitation of three coexisting
Peregrine solitons from a turbulent wave field63 for the specific
N= 3 case. Meanwhile, the universality of this MI-rogue wave
correspondence has been corroborated with various integrable
models. As is expected, aside from offering a way of obtaining
exact rogue wave solutions from the MI analysis, our work
unequivocally substantiates the insight that MI is the most fun-
damental mechanism underlying the rogue wave formation.

Results and discussion
GNLS model and MI evolution equation. For our studies, we
write the N-component GNLS model in dimensionless form

i
∂uj
∂z

þ σ

2

∂2uj
∂t2

þ ∑
N

m¼1
jumj2

� �
uj þ iγ

∂uj
∂t

� �
¼ 0; ð1Þ

where j= 1,...,N and uj(z, t) is the normalized complex envelope
of the jth-component wave field, with z and t the independent
variables. The real parameter σ represents the type of dispersion,
i.e., the anomalous dispersion for σ > 0 and the normal dispersion
for σ < 0. The third term combines the self- and cross-phase
modulation effect, whose coefficient has been normalized to unity,
and the self-steepening effect defined by the parameter γ64,65. In
quadratic nonlinear media, the self-steepening seen by ultrashort
pulses is controllable in both sign and magnitude and thus pro-
vides a new degree of freedom wherever shock formation is
significant66–68. We should emphasize that the multiple-
component model (1) is of considerable physical interest not
only because it includes the celebrated NLS56 and Manakov57–59

models as well as their integrable extensions46,69–71, but also
because it itself (N⩾ 3) may find applications in such fields as
wavelength division multiplexing72, Bose-Einstein condensation73,
and Davydov solitons in biophysics74. More fundamentally, the
model (1) owns complete integrability (also known as complete
solvability)75 and all complicated rogue wave signatures known so
far46, and is therefore appropriate for investigating the intriguing
MI-rogue wave correspondence.

Let us first derive the MI evolution equation based on the
plane-wave solutions of Eqs. (1),

uj0 ¼ aj expðiωjt � ikjzÞ; j ¼ 1; � � � ;N; ð2Þ
where the amplitudes aj∈ R, the wavenumbers kj∈ R, and the
frequencies ωj∈ R obey the dispersion relations:

kj ¼ Aυj þ
1
2
σω2

j ; υj ¼ γωj � 1; ð3Þ

with A ¼ ∑N
j¼1 a

2
j being the sum of background intensities. Then,

we add the small amplitude Fourier modes associated with rj and
wj (j= 1,...,N) to the plane-wave solutions (2) and express them as

uj ¼ uj0f1þ rj exp½iΩðκz þ tÞ� þ w�
j exp½�iΩðκ�z þ tÞ�g; ð4Þ
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where Ω∈ R denotes the frequency offset from the central
frequencies ωj, ϰ is a complex wavenumber induced by
perturbations, and the asterisk means complex conjugate. When
these perturbed plane-wave solutions are substituted into Eqs. (1),
followed by linearization, a system of 2N coupled linear equations
about rj and wj can be obtained, which will have a nontrivial
solution only when ℘= (ϰ+ Aγ)/σ satisfies the dispersion
relation (see Supplementary Note 1 for details):

∑
N

j¼1

a2j υj
ð}þ ωjÞ2 � Ω2=4

¼ σ: ð5Þ

It is seen that only if ϰ or ℘ is a complex number does the MI
occur. Therefore, we define the MI gain as γh= ∣Ωℑ(ϰ)∣=
∣σΩℑ(℘)∣, where the symbol ℑ means taking the imaginary part12.
It should be noted that the MI evolution Eq. (5) depicts the
instability of the cw backgrounds, not that of the solitons or other
localized entities allowed.

Closed-form Peregrine soliton solutions. On the other hand,
thanks to integrability, the GNLS model (1) can be solved by
means of Darboux transformation46,76,77 or the Hirota bilinear
method61,78. Its general fundamental rogue wave solutions are
expressed as, in an elegant closed form

uj ¼ uj0 1þ iGj

M

� �
; j ¼ 1; � � � ;N; ð6Þ

where the polynomials M and Gj are defined by

M ¼ τ2 þ σ2ν2z2 þ η2

4αν2
� iγ

α
ðσγν2z � ητÞ; ð7Þ

Gj ¼
2 ðμþ ωjÞτ � σν2z
h i
ðμþ ωjÞ2 þ ν2

þ 2γðσγν2z � ητÞ
α

� iηυj

α ðμþ ωjÞ2 þ ν2
h i ;

ð8Þ

with τ= t+ (σμ− γA)z, η= γμ+ 1, and α= γ2ν2+ η2. Here, the
parameters μ∈ R and ν∈ R are the real and imaginary parts of
the complex root ℘= μ+ iν of the 2N-degree polynomial equa-
tion:

∑
N

j¼1

a2j υj
ð}þ ωjÞ2

¼ σ: ð9Þ

We should point out that when N= 1, such fundamental rogue
wave solutions has been presented in ref. 71, and when N= 2,
they have just recently been reported in ref. 46, all obtained with
the Darboux transformation method.

We should point out that the closed-form solutions (6) can
reveal all forms of Peregrine soliton structures that are allowed by
the GNLS model (1), including those that can not be expressed in
terms of elementary functions, which always occur for N⩾ 3 (see
Supplementary Note 2). Therefore, for the latter circumstances,
one needs to first solve the characteristic polynomial Eq. (9)
numerically for μ and ν, which can easily be done by commercial
analytic tools. Then, the exactitude of the solutions (6) can be well
confirmed.

As one can see, the characteristic Eq. (9) is none other than the
MI evolution Eq. (5) in the baseband limit Ω= 0, although they
are derived in a different way. This implies that there is a direct
one-to-one relationship between the baseband MI and the rogue
wave solutions, namely, for every complex root ℘= μ+ iν (ν ≠ 0)
of Eq. (5) obtained with Ω= 0, the rogue wave solutions (6) are
uniquely determined, and if more pairs of complex ℘ exist, more
rogue wave states are allowed to occur. This is what we called MI-

rogue wave correspondence, which is a universal principle hidden
in integrable nonlinear equations not limited to the GNLS model
(1). In our Methods or Supplementary Note 3, we also
demonstrate its validity in the context of other integrable models.

MI-rogue wave correspondence and exemplification. Subse-
quently, to exemplify this interesting MI-rogue wave correspon-
dence, we examine below the three-component case (N= 3)
without loss of generality. In this situation, one needs to solve Eq.
(5) for ℘= μ+ iν in the baseband limit Ω= 0. Generally, it is a
sextic real-coefficient polynomial equation of ℘ and only a very
few cases do admit the analytic solutions (see Supplementary
Note 2). Let us cite here one example of such analytic solutions,
where ω3= (ω1+ ω2)/2= κ12/2 is taken. When δ12= ω1−ω2= 0
(i.e., the simple decoupled situation), it is easily found that there
is at most one pair of complex roots of ℘, given by

μ ¼ �ω1; ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Aυ1=σ

p
; for συ1 < 0: ð10Þ

When δ12 ≠ 0, this sextic equation can still be solved analytically
under the amplitude conditions

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� σδ212

3υ1

s
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� σδ212

3υ2

s
; a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� σδ212

3υ3

s
; ð11Þ

for συ1,2,3 < 0, yielding three pairs of complex roots:

ðIÞ μ ¼ � κ12
2

; ν ¼
ffiffiffi
3

p

6
jδ12j ϖ2 þ 1

ϖ2

� �
; ð12Þ

ðIIÞ μ ¼ δ12
4

ϖ2 � 1
ϖ2

� �
� κ12

2
; ν ¼

ffiffiffi
3

p

12
jδ12j ϖ2 þ 1

ϖ2

� �
;

ð13Þ

ðIIIÞ μ ¼ � δ12
4

ϖ2 � 1
ϖ2

� �
� κ12

2
; ν ¼

ffiffiffi
3

p

12
jδ12j ϖ2 þ 1

ϖ2

� �
;

ð14Þ
where ϖ ¼ ð ffiffiffi

2
p þ 1Þ1=3 � 1:3415. It should be noted that we

have dropped the ± sign from the above ν formulas, as the rogue
wave solutions depend on ν2 only.

Figure 1 a–c displays the landscapes of the positive imaginary
parts of ℘ versus ω1 and ω2 in the baseband limit (Ω= 0),
obtained numerically using a typical set of initial parameters
σ=− 1 (normal dispersion), γ= 1, a1≃ 1.1656, a2≃ 0.5693,
a3≃ 0.7234, and letting ω3= (ω1+ ω2)/2. The cross-sectional
profiles ℑ(℘j) with respect to ω1 or ω2 are illustrated in Fig. 1d–f.
Since in such a baseband limit, the real and imaginary parts of ℘
give the values of μ and ν, respectively, these maps clearly reveal
the rogue wave signatures in the phase space (ω1, ω2). To be
specific, as every points beyond the line δ12= 0 are completely
covered by these maps (Fig. 1a–c), the solutions (6) can therefore
exist in the whole domain of ω1 and ω2, apart from some
particular points on that line which exclude any rogue wave
solutions in both dispersion situations. It is also suggested that in
the top right domain defined by συ1,2,3 < 0 and δ12 ≠ 0, there
would occur three different rogue wave structures for given set of
initial parameters (Fig. 1f). In other domains, at most two
different structures are allowed, as indicated in Fig. 1d, e. Here we
should point out that although two curves of ℑ(℘)= ν may
coincide at some points in Fig. 1d–f, they still represent two
different rogue wave structures since the real parts ℜ(℘)= μ are
now different at these points.

We also calculate numerically ℑ(℘j)(⩾ 0) and the correspond-
ing MI gains γhj= ∣σΩℑ(℘j)∣ from Eq. (5) under the same
parameter conditions as in Fig. 1, but now allowing Ω to vary.
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The results corresponding to ω1= 0 (left column) and ω1= 1.4
(middle and right columns) are presented in Fig. 2. It is seen that
when ω1= 0, there exist only two symmetrically distributed
imaginary parts ℑ(℘1,2) for almost all ω2 values (Fig. 2a, b),
whereas when ω1= 1.4, there are three imaginary parts ℑ(℘1,2,3)
for ω2 > 1 (Fig. 2c–e). Each ℑ(℘j) involves a baseband part that
traverses the central line Ω= 0, but the main spectrum ℑ(℘1) is
usually more complicated, as it may possess several passbands as
well (Fig. 2a, c). At Ω= 0, these imaginary parts will take exactly
the same ω2-dependent profiles as shown in Fig. 1e, f, of course
when ω1 takes 0 and 1.4, respectively. Similarly, each MI map γhj
is symmetric with respect to Ω and in the Ω⩾ 0 domain it is
composed of one baseband part that has a limiting zero value at
Ω= 0 and some passbands that stand away from the central line
Ω= 0, as indicated in Fig. 2f, h. Generally, the appearance of
passbands is a precursor of multiple rogue wave structures that
could coexist on the same background46. It follows from Eqs.
(4)–(6) that only the baseband of each MI spectrum determines
the rogue wave domain39,40, but either its baseband or passband
may contribute to the rogue wave generation (Fig. 2l). In general,
due to competition, the rogue wave structure associated with
larger MI gain will be more prone to be excited, and hence occur
more frequently, than the one with smaller MI gain.

The three families of Peregrine soliton states corresponding to the
green crosses in Fig. 1f or 2k, which are denoted by I, II, and III, are
demonstrated in Fig. 3, using ω1= 1.4, ω2=ω1+ 2(ω1− 1/γ)(ϖ− 1/
ϖ+ 1)≃ 2.68, ω3= (ω1+ω2)/2≃ 2.04, and the same aj values as in
Fig. 1. This set of initial parameters has been made to strictly fulfil the
amplitude conditions (11) and hence the (μ, ν) values can be
determined by Eqs. (12) (Case I), (13) (Case II), and (14) (Case III),
respectively. It is exhibited that, in Case I (Fig. 3a), the u1 component
features the black rogue wave state whose amplitude falls to zero in

the dip center, while the u2 and u3 components manifest as the bright
states, one of which (i.e., u2) grows beyond the 3-fold amplitude.
However, for Cases II and III, these field components may take other
different structures, all localized in both space and time (Fig. 3b, c).
Analytically, all these different rogue wave families are obtained with
the same set of initial parameters, implying that they can coexist and
develop on the same continuous background63.

Numerical verification. We performed extensive numerical simu-
lations to check our analytic predictions, using the exponential time
differencing Crank–Nicolson (ETD-CN) and spectral method (see
Methods for more detail)79,80. We first demonstrate in Fig. 4a–c the
numerical solutions of the GNLS Eqs. (1) with N= 3, using the
profiles of our analytic solutions (6) in the far region (namely, using
uj(z=−3, t) for Case I rogue waves, and uj(z=−6, t) for the Case II
and Case III rogue waves) as initial conditions, given the same set of
system parameters as in Fig. 3. Note that, in Fig. 4a, a white noise of
the strength that equals 0.1%aj has been put on the initial profiles, in
order to excite MI waves earlier in a short distance. It is evident that
these numerical solutions for all Case I, Case II, and Case III rogue
waves exhibit excellent agreement with their analytic counterparts
seen in Fig. 3 over a wide propagation range. Intriguingly, in our
simulation results for Case III rogue waves (Fig. 4c), we also observe
that there would occur Case I rogue waves on the same background
(see arrows at around z= 8), which are not the outcome of input
profiles, but result from the spontaneous MI. This confirms definitely
the coexistence of two different types of rogue waves, for given set of
system parameters. Now one may further wonder whether it is
possible to see all three types of rogue waves on the same back-
ground, so as to conform to the MI-rogue wave correspondence
established above.

Fig. 1 Landscapes of the positive imaginary parts of ℘ in the baseband limit and cross-sectional profiles. a–c Landscapes of ℑ(℘j) as a function of the
frequencies ω1 and ω2. Here ℘j(j= 1,2,3) are the complex roots of Eq. (5) in the baseband limit Ω= 0, with ω3= (ω1+ω2)/2, and ℑ denotes the positive
imaginary part of these roots, if any. The other parameters are specified by σ=− 1 (normal dispersion), γ= 1, a1≃ 1.1656, a2≃ 0.5693, and a3≃ 0.7234.
The white dashed lines in a, b, c are auxiliary ones that can separate the maps into different regions and the colour bars on the top quantify the magnitude
of ℑ(℘j). d–f Cross-sectional profiles of ℑ(℘j) with respect to (d) ω1 or (e, f) ω2, given the ω2 or ω1 value on the top of each panel. Here, the blue dashed
line, red solid line, and cyan dash-dotted line represent ℑ(℘1), ℑ(℘2), and ℑ(℘3), respectively. The green crosses in (f) indicate the values of ν=ℑ(℘) for
Cases I, II, and III calculated respectively from Eqs. (12), (13), and (14), wherein ω1= 1.4 and ω2≃ 2.68.
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To confirm the latter issue, we then use in our numerical test
the plane-wave solutions (2) at z= 0 perturbed by strong
harmonic waves as initial conditions, which will soon develop
into a turbulent sea of different waves (Fig. 4d). We find that, in
this turbulent wave field, the three Peregrine solitons circled,
respectively, by the ellipses I, II, and III at around z= 2.52, 6.85,
and 2.93 can be identified as the corresponding ones shown in
Fig. 3. This is more evident in the right and left insets therein,
where a good agreement between the cross-sectional profiles
(solid curves) at z= 2.52 and 2.93 and the corresponding analytic
solutions (red dashed curves) can be seen. We should point out
that the Peregrine rogue waves denoted by II have been strongly
distorted by the surrounding waves, as compared to the patterns
shown in Fig. 4b. Besides, one can observe that the Peregrine

soliton structures like Case I can appear in many places, but those
like Cases II and III are much fewer (Fig. 4d). This is not
surprising because Case I has a much larger MI gain value than
the latter two, as seen by the bold curves in Fig. 2l, and naturally
dominates the rogue wave occurrence. When the value of ω2 is
increased from 2.68 to 3.25, while keeping the background
amplitudes aj unchanged, one can observe more easily the
coexistence of three types of rogue wave structures on the same
background (Fig. 5), since now the related MI gain profiles
become closer to each other, as seen by the thin dotted lines
in Fig. 2l. Noting that in Fig. 5, we used the initial profiles denoted
by ujðz ¼ 0; tÞ ¼ uj0½1þ iGð1Þ

j ðz � 4; tÞ=Mð1Þðz � 4; tÞ þ iGð2Þ
j

ðz � 4; t þ 20Þ=Mð2Þðz � 4; t þ 20Þ þ iGð3Þ
j ðz � 4; t � 20Þ=Mð3Þ

Fig. 2 Maps of ℑ(℘j) and γhj= ∣σΩℑ(℘j)∣ versus (ω2, Ω). a–e Numerical results of the positive imaginary parts ℑ(℘j) calculated from Eq. (5) with
respect to the central frequency ω2 and the frequency offset Ω, for given (a, b) ω1= 0 or (c, d, e) ω1= 1.4. The other parameter conditions are same as in
Fig. 1. f-j Maps of the corresponding modulation instability gains γhj with respect to (ω2,Ω), for (f, g) ω1= 0 or (h, i, j) ω1= 1.4. The BB and PB in (f, h) are
short for baseband and passband, respectively. In all maps, the colour bar on the bottom quantifies the magnitude of (a–e) ℑ(℘j) or (f–j) γhj. k Cross-
sectional profiles of ℑ(℘j) along the red dashed lines in c–e, for given ω1= 1.4 and ω2≃ 2.68. The green crosses in k indicate the values of ν for Cases I, II,
and III that are identical to those in Fig. 1f. l Cross-sectional profiles of γhj along the red dashed lines at ω2≃ 2.68 in h–j. In k, l, blue solid curves stand for
ℑ(℘1) and γh1, red solid curves for ℑ(℘2) and γh2, and cyan dashed curves for ℑ(℘3) and γh3. For the purpose of comparison, the cross-sectional gain
profiles along the green dashed lines at ω2= 3.25 in h–j are also illustrated in (l), denoted by thin dashed curves.
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ðz � 4; t � 20Þ�z¼0, where M and Gj are defined by Eqs. (7) and
(8), while the superscripts over them signify that the parameters μ
and ν in these functions take (1) μ≃− 2.3981, ν≃ 0.7674, (2)
μ≃−1.5515, ν≃ 0.5484, and (3) μ≃−3.0254, ν≃ 0.6778,
respectively. This implies that the input profiles are a super-
position of three well-separated yet low-amplitude rogue wave
profiles, and thus can be thought of as some kind of strong
perturbation to plane-wave solutions (2). Although the initial
profiles are not the analytic solutions of the model equation, we
observe that the rogue wave states numerically generated, as
indicated by red arrows in Fig. 5a–c, could agree well with our
analytic solutions (6). One can also notice that, for either set of
parameters used in Fig. 4 or 5, there appear three different
baseband MI spectra (Fig. 2h–j). Considering that three baseband
MI spectra have resulted in three different rogue wave structures,
our numerical results positively confirm the MI-rogue wave
correspondence.

Corollary: Rogue waves on periodic backgrounds. Finally, we
would like to point out that the GNLS model (1) owns an
inherent SU(N) symmetry and hence any SU(N) group trans-
formation of the solutions (6) will also give the new solutions upj
of the model, which can be expressed as

upj ¼ ∑
N

m¼1
αjmum; j ¼ 1; � � � ;N; ð15Þ

where um are the old rogue wave solutions (6), αjm are the
complex elements of the SU(N) matrix, A ¼ ðαjmÞN ´N

, which
should satisfy AA†=A†A= 1 and detðAÞ ¼ 1. Demonstrably,
the background fields, defined now by ubj ¼ ∑N

m¼1 αjmum0, could
cause interference fringes that depend not only on the temporal
beat frequencies δmn= ωm− ωn, but also on the entries αjm of A,
with the average background height

dj ¼ ∑
N

m¼1
jαjmj2a2m

� �1=2

: ð16Þ

In this regard, the solutions defined by Eq. (15) will represent the
rogue wave states developed on the periodic backgrounds, as
demonstrated in ref. 46 where N= 2.

For illustration, we still consider N= 3 case (see Supplemen-
tary Note 4 for detailed information) and demonstrate in Fig. 6
three families of rogue wave states sitting on the periodic
backgrounds, using the same set of initial parameters as in Fig. 3,
but with

A ¼

ffiffiffi
3

p
=4� ffiffiffi

6
p

=8 1=4þ 3
ffiffiffi
2

p
=8

ffiffiffi
6

p
=4

�3=4� ffiffiffi
2

p
=8 � ffiffiffi

3
p

=4þ ffiffiffi
6

p
=8

ffiffiffi
2

p
=4ffiffiffi

2
p

=4 � ffiffiffi
6

p
=4

ffiffiffi
2

p
=2

2
64

3
75: ð17Þ

It is seen that all backgrounds that support the rogue waves
become now periodic, owing to the constructive or destructive
interferences between three continuous waves. Despite their

Fig. 3 Analytic results of three coexisting Peregrine soliton families on the continuous backgrounds. a–c 3D surface (top) and contour (bottom) plots of
the analytic Peregrine soliton solutions (6) for three field components u1,2,3. The real parameters μ and ν in the solutions are given by Eq. (12) for a Case I,
by Eq. (13) for b Case II, and by Eq. (14) for c Case III, respectively. The same set of system parameters is used, which corresponds to the green crosses in
Fig. 1f or 2k. Here all the rogue wave components have been normalized by their background heights aj, denoted by ju0j j ¼ juj=ajj.
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multifarious patterns, however, the occurrence of such periodic
rogue waves are still governed by the MI evolution Eq. (5),
namely, by the MI-rogue wave correspondence.

Conclusion
In conclusion, we established an explicit universal one-to-one
correspondence between the baseband MI and the Peregrine rogue
wave solutions, with which complex rogue wave dynamics as well
as their signatures can be unveiled. Such MI-rogue wave corre-
spondence is an analog of the bulk-boundary correspondence in
topological physics, with rogue waves corresponding to the edge
modes and MI corresponding to the bulk topological invariant,
respectively. We exemplified this MI-rogue wave correspondence
with the specific three-component GNLS model and numerically
confirmed the excitation of three coexisting Peregrine solitons
from a turbulent wave field, which exactly occurs as predicted by
the MI analysis. In view of that MI is a particular feature of
nonlinear systems, whether they are integrable or not, we expect
the MI-rogue wave correspondence to be applicable to non-
integrable systems as well, just as the bulk-boundary correspon-
dence can work in non-Hermitian systems34–36. In that sense, our
work unequivocally substantiates the insight that MI is the most
fundamental mechanism underlying the rogue wave formation.

Given the MI-rogue wave correspondence established above,
our work also offers an alternative way of obtaining exact rogue
wave solutions from the MI analysis. In the Methods section, we
provide an example to expatiate how to figure out the exact
general fundamental rogue wave solutions of the three-wave
resonant interaction (TWRI) equation81–83 from the MI analysis
instead of from the complicated Darboux transformation or
Hirota bilinearization84. It should be mentioned that the closed-
form solutions thus obtained are much clearer in form than those
reported most recently in ref. 84.

Methods
The MI equation for GNLS model. Here we outline the derivation of the MI
evolution Eq. (5) within the multi-component GNLS equation framework. More
derivation details along with the obtainment of rogue wave solutions can be found
in Supplementary Note 1.

It is easy to check that this GNLS model admits the plane-wave solutions (2).
Because of MI induced by nonlinearity and noises, such cw backgrounds are highly
unstable and will eventually develop into a sea of waves, from which a series of
high-contrast peaks of random intensity can be identified. Basically, the MI gain
can be obtained via the linear stability analysis, which assumes the above plane-
wave solutions to be perturbed according to Eqs. (4), where the terms associated
with rj and wj represents the small-amplitude Fourier modes. Subsequently,
substitution of Eqs. (4) into Eqs. (1) followed by a collection of the linear terms

Fig. 4 Numerical simulations of three coexisting Peregrine solitons and their numerical excitation. a–c Numerical simulation results of Case I, Case II,
and Case III rogue wave states seen in Fig. 3. To produce them, we integrate Eqs. (1) (N= 3) using the exponential time differencing Crank--Nicolson
scheme armed with (3, 3)-order Padé approximation. The initial profiles for numerics are taken to be the analytical solutions at a z=− 3 and b, c z=−6,
respectively. It is exhibited that all rogue wave states can be numerically reproduced till the far trailing region where the periodic wave trains begin to
appear. The arrows in (c) indicate a wave state that takes after Case I rogue wave. d Numerical excitation of three coexisting Peregrine solitons from a
turbulent field. The initial condition is now supposed to be the plane-wave solutions (2) at z= 0 perturbed by strong harmonic waves, with other system
parameters the same as in Fig. 3. The ellipses I, II, and III have singled out these Peregrine soliton structures. The right and left insets show the comparison
of the cross-sectional profiles (solid curves) at z= 2.52 and 2.93 with the analytic solutions (red dashed curves) for Case I and Case III rogue waves,
respectively. In all panels, the colour bar on the right quantifies the magnitude of the normalized amplitude ju0j j ¼ juj=ajj, where aj is the background height.
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yields a system of 2N coupled linear equations about rj and wj:

σΩ
Ω

2
þ }þ ωj

� �
rj þ υj ∑

N

m¼1
a2mrm þ υj ∑

N

m¼1
a2mwm ¼ 0; ð18Þ

σΩ
Ω

2
� }� ωj

� �
wj þ υj ∑

N

m¼1
a2mrm þ υj ∑

N

m¼1
a2mwm ¼ 0; ð19Þ

where j= 1,..., N and ℘= (Aγ+ ϰ)/σ. This system of equations has a nontrivial
solution only when the determinant of the coefficient matrix of the vector
ðr1; � � � ; rN ;w1; � � � ;wN ÞT equals zero. By elementary transformations of the
coefficient matrix, one can easily obtain Eq. (5), which defines the evolution of
MI for any complex ℘ or ϰ.

Simulations. In our simulations for Figs. 4 and 5, an efficient, second-order
convergent, ETD-CN method was used79,80. Specifically, Eqs. (1) can be rewritten,
in the spectral domain, as

∂~uj
∂z

þ L~uj ¼ ~Fðz; ujÞ; ð20Þ

where ~uj is the fast Fourier transform, which we will denote by the symbol F
below, of the wave component uj with respect to time, namely, ~uj ¼ F ðujÞ,
L= iσω2/2 is the linear operator with ω being the transformed frequency
variable, and ~Fðz; ujÞ is the fast Fourier transform of the nonlinear term, i.e.,

~Fðz; ujÞ ¼ F ½ið∑N
m¼1 jumj2Þðuj þ iγ

∂uj
∂t Þ�. Then, let h= zn+1− zn be the spatial

step size, we arrive at the following recurrence formulas based on the ETD-

CN scheme79:

~bjn ¼ R1~ujn þR2
~Fðzn; ujnÞ; ð21Þ

~ujðnþ1Þ ¼ ~bjn þR3½~Fðzn þ h;F�1ð~bjnÞÞ � ~Fðzn; ujnÞ�; ð22Þ
where

R1 ¼ e�hL; R2 ¼ � e�hL � I
L

; R3 ¼
e�hL � I þ hL

hL2
; ð23Þ

with I being the identity operator. To achieve higher spectral (or equivalently,
temporal) accuracy, we now use (3, 3)-order Padé approximation for the
exponential matrix e−hL, i.e.,

e�hL ’ 120I � 60hLþ 12h2L2 � h3L3

120I þ 60hLþ 12h2L2 þ h3L3
� R1: ð24Þ

Then R2 and R3 can also be transformed into the rational polynomials via Eq.
(24). Basically, by using Eqs. (21)–(24), the coupled spectral Eqs. (20) can be
numerically solved with high accuracy. Finally, an inverse fast Fourier trans-
form of ~uj yields the numerical solutions uj of GNLS Eqs. (1).

Specifically, in our simulations, we used the simulation window of t in the range
[−800, 800], with the time step size Δt= 0.006. The spatial step size h should be
chosen smaller (here, h= 5 × 10−4) so that hπ/Δt < 1, which will ensure the (3, 3)-
order Padé approximation (24) for e−hL to be accurate enough over the whole spectral
domain. Despite the large simulation window, we only present what happens in the
central portion, say, in [−18, 18] in Fig. 4d. Basically, any numerical algorithms can
bring numerical errors, which will serve as intrinsic numerical noise to excite
spontaneous MI. In our numerics, we also imposed strong external perturbations
(e.g., white noise or harmonic waves) in order to excite MI as early as possible, so that
we can observe the occurrence of rogue waves within shorter propagation distance.

MI–rogue wave correspondence in other integrable systems. We now
demonstrate theMI-rogue wave correspondence in other different integrable systems,
i.e., the vector Kaup–Newell equation19 and the (2+1)-component long-wave short-
wave resonance equation63. Although the fundamental rogue wave solutions have
been reported for these models, their intimate relation toMI was not revealed therein.

(i) Kaup–Newell model. We first consider the vector Kaup–Newell model which
can be written as19

i
∂uj
∂z

þ σ

2

∂2uj
∂t2

þ 1þ iγ
∂

∂t

� �
½ðju1j2 þ ju2j2Þuj� ¼ 0; ð25Þ

where j= 1, 2, and the parameter γ accounts for the self-steepening effect often
seen by pulses with spectral widths comparable to the optical frequency. This two-
component model possesses the plane-wave solutions:

uj0 ¼ aj expðiωjt � ikjzÞ; j ¼ 1; 2; ð26Þ
where

kj ¼ Aðγωj � 1Þ þ 1
2
σω2

j ; A ¼ ∑
2

j¼1
a2j ¼ a21 þ a22:

We assume that these plane-wave solutions are perturbed by the same Fourier
modes as in Eqs. (4). A direct MI analysis of them results in a system of four linear
equations for r1,2 and w1,2. It is easy to show that this system of linear equations has
a nontrivial solution only when the dispersion relation (see Supplementary Note 3
for detailed derivation)

a21ð2γ}þ γω1 þ 1Þ
ð}þ ω1Þ2 �Ω2=4

þ a22ð2γ}þ γω2 þ 1Þ
ð}þ ω2Þ2 �Ω2=4

þ σ ¼ 0; ð27Þ

is satisfied. It is seen that the dispersion relation Eq. (27) has a more complicated
form than Eq. (5). This implies that the rogue wave solutions of the vector Eqs. (25)
will be quite different from those of the vector GNLS Eqs. (1).

In fact, it has been reported in ref. 19 that the general fundamental rogue wave
solutions can take the form

uj ¼ uj0 1þ Rj

M � iK

� �
M þ iK
M � iK

� �
; ð28Þ

where the polynomials M, K, R1,2 are defined by

M ¼ τ2 þ σ2ν2z2 þ η2

4αν2
; K ¼ γ

α
ðσγν2z � ητÞ; ð29Þ

Rj ¼
2i½ðμþ ωjÞτ � σν2z�

ðμþ ωjÞ2 þ ν2
� 2αþ ηðγωj � 1Þ

α½ðμþ ωjÞ2 þ ν2� ; ð30Þ

with τ= t+ (σμ− γA)z, η= γμ+ 1, and α= ν2γ2+ η2. The real parameters μ and
ν in Eqs. (29) and (30) are determined by the complex root ℘= μ+ iν of the
quartic equation:

a21ð2γ}þ γω1 þ 1Þ
ð}þ ω1Þ2

þ a22ð2γ}þ γω2 þ 1Þ
ð}þ ω2Þ2

þ σ ¼ 0: ð31Þ

Fig. 5 Numerical excitation of three Peregrine soliton families. Numerical
simulation results for the a u1, b u2, and c u3 field components, which
develop on the backgrounds that allow the modulation instability spectra
indicated by thin dashed lines in Fig. 2l. Different from Fig. 4d, we now
use the initial condition defined by a superposition of three well-
separated low-amplitude rogue wave profiles. The input frequencies are
given by ω1= 1.4, ω2= 3.25, and ω3 = (ω1+ ω2)/2= 2.325, while the
other parameters are kept the same as in Fig. 2. This set of system
parameters would yield: (1) μ ≃− 2.3981, ν ≃ 0.7674; (2) μ ≃− 1.5515,
ν ≃ 0.5484; and (3) μ ≃− 3.0254, ν ≃ 0.6778. All field components are
normalized by their respective backgrounds and the red arrows mark out
three Peregrine soliton structures that exhibit a good agreement with the
analytic solutions (6).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01076-x

8 COMMUNICATIONS PHYSICS |           (2022) 5:297 | https://doi.org/10.1038/s42005-022-01076-x | www.nature.com/commsphys

www.nature.com/commsphys


Once again, the characteristic Eq. (31) is the same as the dispersion relation
Eq. (27) in the baseband limit Ω= 0, although they are derived in a different way.

(ii) Long-wave short-wave model. We then demonstrate the MI-rogue wave
correspondence in the (2+1)-component long-wave short-wave model, which
describes the nonlinear interaction between two complex short-wave field
envelopes, u1,2, and the real long-wave field, ϕ. In dimensionless form, this multi-
component model reads63

i
∂uj
∂z

þ 1
2

∂2uj
∂t2

þ ujϕ ¼ 0; ð j ¼ 1; 2Þ;
∂ϕ

∂z
� ∂

∂t
ðju1j2 þ ju2j2Þ ¼ 0;

ð32Þ

where t and z are two independent variables. The plane-wave solutions of this
model can be easily found to be

uj0 ¼ aj expðiωjt � ikjzÞ; ð33Þ
where kj ¼ 1

2ω
2
j � b and b⩾ 0 defines the background of the real long-wave field.

In a similar fashion, substituting the following perturbed plane-wave solutions

uj ¼ uj0f1þ rj exp½iΩðκz þ tÞ� þ w�
j exp½�iΩðκ�z þ tÞ�g; ð34Þ

ϕ ¼ bþ p exp½iΩðκz þ tÞ� þ p� exp½�iΩðκ�z þ tÞ�; ð35Þ
into Eqs. (32) and collecting the linear terms, one can obtain a system of five
coupled equations. As noted in linear algebra, only when its coefficient matrix has a
zero determinant does the vector ðr1; r2;w1;w2; pÞT have a nontrivial solution. This
zero determinant condition can give rise to the following dispersion relation (see
Supplementary Note 3):

a21
ðκþ ω1Þ2 � Ω2=4

þ a22
ðκþ ω2Þ2 � Ω2=4

þ κ ¼ 0; ð36Þ

which is now a quintic equation of ϰ.

On the other hand, the general fundamental rogue wave solutions of Eqs. (32)
can be written as63

uj ¼ uj0 1� 2iν2z � 2iðμþ ωjÞðt þ μzÞ þ 1

½ðμþ ωjÞ2 þ ν2�½ðt þ μzÞ2 þ ν2z2 þ 1=ð4ν2Þ�

( )
; ð37Þ

ϕ ¼ bþ 2½ν2z2 � ðt þ μzÞ2 þ 1=ð4ν2Þ�
½ðt þ μzÞ2 þ ν2z2 þ 1=ð4ν2Þ�2

: ð38Þ

As demonstrated in the preceding example, the real parameters μ and ν in Eqs. (37)
and (38) are again determined by the dispersion relation Eq. (36) in the baseband
limit Ω= 0, that is, by the following quintic equation of ϰ= μ+ iν:

a21
ðκþ ω1Þ2

þ a22
ðκþ ω2Þ2

þ κ ¼ 0: ð39Þ

Another route to exact rogue wave solutions. Finally, let us demonstrate how to
figure out the exact rogue wave solutions from the MI analysis, based on the MI-
rogue wave correspondence established (see Supplementary Note 5 for more
detail). We limit our attention to the popular TWRI equation, which enjoys a
prominent status in nonlinear optics81. In dimensionless form, the TWRI model
reads81–83

∂u1
∂t

þ V1
∂u1
∂z

¼ u�2u
�
3 ;

∂u2
∂t

þ V2
∂u2
∂z

¼ �u�1u
�
3 ;

∂u3
∂t

þ V3
∂u3
∂z

¼ u�1u
�
2 ;

ð40Þ

where u1,2,3(z, t) are the slowly varying complex envelopes of three wave fields. The
coefficients Vj correspond to the relative group velocities of three waves and we
suppose V1,2 > V3. Without loss of generality, we set V3= 0, which implies that Eqs.
(40) are written in a reference frame comoving with u3.

Fig. 6 Peregrine solitons on the periodic backgrounds. a–c 3D surface (top) and contour (bottom) plots of the Peregrine soliton solutions (15) on the
periodic backgrounds characterized by the coefficient matrix (17), with system parameters all the same as in Fig. 3. This set of parameters could result in :
a μ≃−2.0384, ν≃ 0.8682; b μ≃−2.4355, ν≃ 0.4341; and (c) μ≃−1.6413, ν≃ 0.4341, exactly the same as indicated by green crosses in Fig. 1f or 2k.
Here all the rogue wave components are normalized as ju0pj j ¼ jupj j=dj , where dj is the average background height defined by Eq. (16).
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Hence, the initial plane-wave solutions that satisfy Eqs. (40) can be found to be

u10ðz; tÞ ¼ a1 exp �iðk1z � ω1tÞ
� �

;

u20ðz; tÞ ¼ a2 exp iðk2z � ω2tÞ
� �

;

u30ðz; tÞ ¼ ia3 exp iðk1 � k2Þz � iðω1 � ω2Þt
� �

;

ð41Þ

where

k1 ¼
ω1

V1
þ a22

δV1
; k2 ¼

ω2

V2
þ a21

δV2
; a3 ¼

a1a2
δ

; ð42Þ

with a1,2,3 being the background heights and δ= ω1− ω2. Subsequently,
substituting the perturbed plane-wave solutions

uj ¼ uj0f1þ rj exp½iΩðκz þ tÞ� þ w�
j exp½�iΩðκ�z þ tÞ�g; ð43Þ

where j= 1, 2, 3, into the TWRI equation followed by linearization, one can obtain
a system of six coupled equations. Under the condition that the system of equations
admits only nontrivial solutions, one can find the dispersion relation:

a21
V2κþ 1

þ a22
V1κþ 1

� �2

þ 2δ2
a21

V2κþ 1
� a22

V1κþ 1

� �
þ δ4 ¼ Ω2δ2: ð44Þ

Now, to find the rogue wave solutions, we first assume Ω= 0 in Eq. (44) and
rewrite it as

a21
V2κþ 1

þ a22
V1κþ 1

� �2

þ 2δ2
a21

V2κþ 1
� a22

V1κþ 1

� �
þ δ4 ¼ 0; ð45Þ

which can give the values of ϰ= μ+ iν for given set of system parameters. Then we
suppose the rogue wave solutions to take

u1 ¼ u10 1þ if 1ðt þ μzÞ þ ig1z þ e1
ðt þ μzÞ2 þ ν2z2 þ 1=α

� �
;

u2 ¼ u20 1þ if 2ðt þ μzÞ þ ig2z þ e2
ðt þ μzÞ2 þ ν2z2 þ 1=α

� �
;

u3 ¼ u30 1� if 3ðt þ μzÞ þ ig3z þ e3
ðt þ μzÞ2 þ ν2z2 þ 1=α

� �
;

ð46Þ

where the real parameters e1,2,3, f1,2,3, g1,2,3, and α are to be determined. Substituting
Eqs. (46) into the TWRI Eqs. (40) and equating the coefficients of zltm (l,m are
powers) to zero, one can readily find that

f 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘2 � V2μ� 1Þp

a1
; g1 ¼ � ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘2 þ V2μþ 1Þp

a1
; ð47Þ

f 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘1 þ V1μþ 1Þp

a2
; g2 ¼

ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘1 � V1μ� 1Þp

a2
; ð48Þ

‘j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVjμþ 1Þ2 þ V2

j ν
2

q
; ð j ¼ 1; 2Þ; ð49Þ

α ¼ 16ν2g21
ð f 21ν2 þ g21Þ

2 ¼
16ν2g22

ð f 22ν2 þ g22Þ
2 ; ð50Þ

e1 ¼ � f 21
4
� g21

4ν2
; e2 ¼ � f 22

4
� g22

4ν2
; ð51Þ

f 3 ¼ f 1 þ f 2; g3 ¼ g1 þ g2; e3 ¼ f 1f 2 � ðe1 þ e2Þ �
f 1 þ f 2

δ
: ð52Þ

It is seen that all these coefficients have been uniquely determined by the real
parameters μ and ν, and hence, according to Eqs. (46), the resultant fundamental
rogue wave solutions of the TWRI equation are obtained.
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