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Topologically protected vortex knots and links
Toni Annala 1,2,3✉, Roberto Zamora-Zamora 1 & Mikko Möttönen 1

In 1869, Lord Kelvin found that the way vortices are knotted and linked in an ideal fluid

remains unchanged in evolution, and consequently hypothesized atoms to be knotted vor-

tices in a ubiquitous ether, different knotting types corresponding to different types of atoms.

Even though Kelvin’s atomic theory turned out incorrect, it inspired several important

developments, such as the mathematical theory of knots and the investigation of knotted

structures that naturally arise in physics. However, in previous studies, knotted and linked

structures have been found to untie via local cut-and-paste events referred to as recon-

nections. Here, in contrast, we construct knots and links of non-Abelian vortices that are

topologically protected in the sense that they cannot be dissolved employing local recon-

nections and strand crossings. Importantly, the topologically protected links are supported by

a variety of physical systems such as dilute Bose-Einstein condensates and liquid crystals.

We also propose a classification scheme for topological vortex links, in which two structures

are considered equivalent if they differ from each other by a sequence of topologically

allowed reconnections and strand crossings, in addition to the typical continuous transfor-

mations. Interestingly, this scheme produces a remarkably simple classification.
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Mathematically, knots and links are closed loops and
configurations thereof in a three-dimensional space,
respectively1,2. There are numerous physical systems

that support knotted structures. Examples include the disclination
lines of liquid crystals3–5, the cores of vortices in water6, in
superfluids7, and in optical8,9 and acoustic fields10, strands of
DNA (deoxyribonucleic acid)11, Skyrmion cores in classical field
theory12, and the quantum knot in the polar phase of a spin-1
Bose–Einstein condensate13. In addition, there are deep connec-
tions between the mathematical theory of knots and statistical
mechanics, topological quantum computing, and quantum field
theories14–16. In mathematics, knots play a significant role, for
example, in the surgery theory of three-dimensional manifolds17.

A non-trivially knotted loop tied from a physical string, or
more generally a link tied from several loops, cannot be untied
without cutting at least one string; the knot and link structures are
robust. Similarly, knots and links tied from vortex lines in a
frictionless ideal fluid remain forever knotted18, leading to a
conserved quantity, helicity19, which measures the total knott-
edness and linkedness of a vortex configuration. However, it has
been observed that even a small amount of dissipation is enough
to cause spontaneous untying of knotted vortices owing to local
reconnection events7,20. In addition, another local modification,
namely strand crossing21, may promote the untying process of
vortex knots. These observations naturally lead to the following

fundamental question: is it possible to tie a vortex knot, or a link,
for which decay through local reconnection events and strand
crossings is prohibited by the fundamental properties of the knot-
supporting substance?

Here, we propose a class of knotted structures, tied from non-
Abelian topological vortices, that have exactly this property. We
refer to such a structure as being topologically protected against
untying. In order to rigorously investigate this property, we
introduce invariants of links colored by the elements of the
quaternion group Q8= {±1, ±i, ±j, ±k}, the group law of which is
governed by the multiplication rule of quaternions.

Topological vortices are codimension-two defects in an ordered
medium where the winding of the order parameter field about the
vortex core corresponds to a non-trivial element of the funda-
mental group π1. The elements of the fundamental group π1(M,m)
correspond to oriented loops in the order parameter space22M that
begin and end at the basepoint m∈M, considered up to continuous
deformations that keep the endpoints fixed. Here, the group law is
provided by the concatenation of loops. The basepoint m is often
omitted from the notation.

Topological vortices are non-Abelian if the fundamental group
π1(M) is a non-Abelian group, such as the quaternion group Q8.
Non-Abelian vortices are known to exhibit peculiar behavior, when
they interact with each other. For instance, two vortices corre-
sponding to non-commuting elements in π1(M) cannot strand
cross, i.e., freely pass through each other. Instead, one concludes on
topological grounds alone that a vortex cord, corresponding to the
commutator of the crossing vortices in π1(M), forms to connect
them21. Precisely such phenomena are responsible for the robust-
ness of the structures discovered in this work.

Fig. 1 Wirtinger presentation of the fundamental group of the link
complement and colored link diagrams. a, b Link complement R3nL (area
outside the purple line which denotes L) and loops denoted by the arrows.
After fixing a basepoint x0 2 R3nL above the plane of the picture (a), each
arrow describes a loop in R3nL based at x0, the homotopy equivalence
class of which is denoted by αi (b). Every loop that can be continuously
deformed into each other without passing through L and always fixed at x0
are equivalent. c Each crossing of the link diagram in (a) corresponds to a
relation in the fundamental group π1ðR3nL; x0Þ ¼ fαig, one of which is
presented in (c). The Wirtinger presentation of π1ðR3nL; x0Þ describes it as
the group, the elements of which are words on symbols αi and α�1

i , modulo
the relations associated to the crossings of the diagram, with the group
operation corresponding to concatenation of words. d Group
homomorphism ψ : π1ðR3nL; x0Þ ! G may be described by specifying the
images gi≔ ψ(αi) as shown above. Such a picture is regarded as a (G-)
colored link diagram43. In order for the colored diagram to correspond to a
well-defined homomorphism, the elements gi must satisfy the analogue of
the Wirtinger relations, e.g., g3g1= g1g2 in (d).

Fig. 2 Diagrams for Q8-colored links, I. Instead of labeling the arcs of a Q8-
colored link diagram by arrows and elements of Q8, this information is
expressed graphically in terms of three types of bicolored arcs (a–c) and
one type of colored arc (d). An example of the winding of the tetrahedral
order parameter field about the core of a topological vortex corresponding
to each type of (bi)color is depicted as well. The colored spheres at the
vertices of the tetrahedra are not physical data; their purpose is to clarify
the winding of the tetrahedral field. The basepoint is marked by a red
tetrahedron, and the winding direction is anticlockwise. Clockwise winding
corresponds to the inverse element in the group Q8.
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Knots and links tied from topological vortices have been stu-
died before23–25. However, the previous efforts focus on the iso-
topic evolution of the vortex structure, which does not account
for the possibility of the vortex cores crossing or reconnecting.
Thus, our approach differs decisively from the previous investi-
gations. By allowing evolution by events, in which the vortex
cores cross each other or reconnect, we aim to arrive at an
extended description for the stability of the system. Consequently,
the results derived from our model, such as the classification of
vortex structures, should be physically more relevant than ana-
logous results up to isotopic evolution.

Results
We begin by identifying topological vortex configurations for
certain, physically relevant, order parameter spaces, with colored
link diagrams (Fig. 1). Then, we identify the rules governing the
core-topology-altering evolution of such structures. In the special
case of Q8-colored link diagrams, which describe topological
vortex configurations in certain physical systems, the colored link
diagrams and the evolution rules admit a simple graphical
depiction (Figs. 2 and 3). Using invariants of Q8-colored links, we
identify examples of linked structures that are robust against local
reconnections and strand crossings (Fig. 4). Interestingly, we also
classify all the Q8-colored links up to reconnections and strand
crossings, and find a topologically stable knot for a fundamental
group of permutations. In contrast to previous classification of
topological vortex configurations24,25 which do not consider core-
topology altering evolution, our classification of Q8-colored links
has only finitely many classes.

Q8-colored links and the evolution of the core topology. A
configuration of topological vortices is formalized as follows. The
spatial extent of the ordered medium is modeled by the three-
dimensional euclidean space R3. Homotopy theoretically, it
makes no difference if R3 is replaced by the unit ball in R3. The
cores of the vortices, i.e., the location where the order parameter
is not well defined, form a subset L � R3 consisting of loops. In
other words, the collection of cores forms a link in R3. The order
parameter field is modeled by a continuous map Ψ : R3nL ! M,
where M is the order parameter space. The induced homo-
morphism between the fundamental groups ψ : π1ðR3nL; x0Þ !
π1½M;Ψðx0Þ� may be described by a π1(M)-colored link diagram
as illustrated in Fig. 1. If the second homotopy group
π2[M,Ψ(x0)], i.e., the group defined analogously to the funda-
mental group but with spheres instead of loops, is trivial, then the
group homomorphism ψ retains all the information about the
homotopy class26,27 of Ψ. In fact, the homotopy classes of con-
tinuous mapsR3nL ! M are in one-to-one correspondence with
group homomorphisms π1ðR3nLÞ ! π1ðMÞ up to change of
coordinates, or conjugacy, defined as follows: homomorphisms

Fig. 3 Diagrams for Q8-colored links, II. a In a Q8-colored diagram, the
direction of the bicoloring is flipped when passing under a strand of a
different color, unless it is purple. When passing under a strand of the same
color, the bicoloring remains unchanged. b Core-topology-altering local
modifications. The modifications marked by dashed arrows are strand
crossings, which can occur only between strands of the same color, or if at
least one of the strands is purple21. The other modifications are local
reconnections. They can also take place only between strands of the same
color. Moreover, they are further restricted by the continuity of the
bicoloring away from the undercrossings.

Fig. 4 Examples of topologically protected and unprotected colored knots
and links. a Three non-trivial Q8-colored links and the values of the linking
invariant l and the Q-invariant for each of them. Interestingly, the
topological protection the defect at the center, which is a Q8-colored
version of the Borromean rings, cannot be detected using the linking
invariant l. It is established in the supplementary material that, up to
topologically allowed reconnections and strand crossings, each Q8-colored
link with a nontrivial Q-invariant is equivalent to either one of the defects
depicted above, or the disjoint union of one of the above defects, and a
purple loop. b Q8-colored link that is not topologically protected. Even
though no nontrivial modifications can be applied on the crossings, the link
may be unlinked by deforming one of the arcs, and then performing a local
reconnection. The end result, the rightmost link diagram, is an unlink.
Accordingly, the link has trivial invariants l and Q. Note that a red loop and a
blue loop could not be form the Hopf link because such a configuration
does not admit a valid bicoloring. c Topologically protected knot colored by
the elements of the permutation group S3. Each color corresponds to one of
the three transpositions, as indicated. Transpositions are their own
inverses, and therefore the direction does not matter.
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ψ;ψ0 : π1ðR3nLÞ ! π1ðMÞ correspond to the same homotopy
class if and only if there exists h∈ π1(M) such that, for all
g 2 π1ðR3nLÞ, ψ0ðgÞ ¼ hψðgÞh�1. In terms of π1(M)-colored link
diagrams, this relation considers two colored diagrams equivalent
if one of them can be obtained from the other by replacing all gi
with hgih−1. The rules for Q8-colored link diagrams admit a
purely graphical presentation, as illustrated in Fig. 2a, b.

For the stability of such structures, we make the following
assumption: the core topology changes only in topologically
allowed local reconnections and topologically allowed strand
crossings. Even though such processes require energy23, the cost
should be very small due to the local nature of the modifications,
and indeed, such events have been observed both in experiments
and in simulations6,7,28. Nevertheless, there are several processes
which we do not consider in our model, as we explain below.

Firstly, we forbid the possibility of vortex loops disappearing by
shrinking into a point, because no structure consisting of vortex
loops would be protected against decaying in this fashion. This is
not a physically unrealistic assumption: in the polar phase of a spin-
1 Bose–Einstein condensate, a vortex loop is energetically favorable
to a point defect29. Hence, for some physical systems, vortex loops
have a non-zero optimal length, and in such systems the loops are
protected against decaying by shrinking by an energy barrier.

Secondly, we do not consider vortex crossings between vortices
that correspond to non-commuting elements in the fundamental
group, as a vortex cord connecting the crossing vortices is formed

in such a process21. We justify this assumption by noting that the
energy cost associated of the formation of the vortex chord is,
roughly speaking, linearly proportional to its length, rendering
the formation of vortex cords long enough to be relevant for the
evolution of the physical system rare at low temperatures.

Thirdly, in the spirit of the previous assumption, we do not
consider the possibility of vortices splitting along a significant
distance, because any configuration of topological vortex loops
can decay into a simple loop via such processes, as we show in
Fig. 5. We justify this restriction by considering systems where the
splitting of the vortices of interest is energetically unfavorable,
rendering the splitting of the vortex along a meaningful distance
rare at low temperatures. This assumption is violated in some
systems, such as cholesteric liquid crystals, where the splitting of
singularities in the nematic director is energetically favored30.
However, for certain biaxial nematic liquid crystal systems,
splitting is energetically expensive, and is not observed in
simulations31, which indicates that there exists physical systems
where spontaneous splitting does not occur.

Verifying the existence of physical systems that satisfy the
above three assumptions requires either extensive numerical
simulations or experimental efforts, and is left for future work.

A vortex reconnection is topologically allowed if it does not lead
to discontinuities in the coloring. A strand crossing is topologically
allowed21 if the two strands correspond to commuting elements
in π1(M). It is a consequence of the Wirtinger relations2 that this
is equivalent to assuming that the coloring does not change in
the undercrossing. Hence, strand crossing is allowed only if no
discontinuities in the coloring occur after the crossing has taken
place. For Q8-colored link diagrams, the local reconnection and
strand-crossing rules admit a simple description in terms of the
graphical presentation mentioned above (Fig. 2c).

Let us consider physical systems that consist of the cyclic or
biaxial nematic phases of a spin-2 Bose–Einstein condensate, or
of the biaxial nematic phase of a liquid crystal. The corresponding
order parameter spaces—MC,MBN, and MBNLQ, respectively—
have trivial second homotopy groups; importantly, the funda-
mental group of MBNLQ is Q8, whereas in π1(MC) and π1(MBN),
Q8 is the subgroup corresponding to topological vortices with no
scalar-phase winding about the core (Methods). Hence, in each
case, at least some of the topological vortex configurations admit
descriptions as Q8-colored link diagrams. Moreover, the evolution
of these structures under strand crossings and local reconnections
may be analyzed using the rules outlined in Fig. 2c.

Topologically protected Q8-colored links. Next, we establish the
the topological stability of the knotted structures by means of
invariants of Q8-colored links. The linking invariant l is an ele-
ment of Z2 that is the number of times a blue strand crosses over
a red strand, modulo 2. Equivalently, it is the total Gauss linking
number2 between the red and the blue loops, modulo 2. In order
for the bicoloring flips to lead to a consistent bicoloring, each red
loop is overcrossed an even number of times by a strand of either
gray or blue color. Hence, the number of times a red loop is
crossed over by a blue strand is equivalent, modulo 2, to the
number of times it is crossed over by a gray strand. In fact, one
argues in a similar fashion that the linking invariant l is inde-
pendent of the pair of colors used to compute it. The invariant is
conserved in topologically allowed local reconnections and strand
crossings (Fig. 2c), since these modifications do not alter cross-
ings that are relevant for l. For a diagram of disjoint and
untangled loops, this invariant is clearly zero. Hence, a config-
uration with a non-trivial linking invariant cannot be unknotted
by topologically allowed local reconnections and strand crossings.

Fig. 5 Decay of colored links via local and global vortex splitting. Any Q8-
colored link may be unlinked using topologically allowed reconnections,
strand crossings and vortex splittings. a Decay of the Q8-colored
Borromean ring configuration, corresponding to Q= [2]. b Decay of the Q8-
colored looped chain of length three, corresponding to Q= [3]. Defects
with Q= [1] can be unlinked in a similar fashion. c Any crossing of a colored
link diagram can be eliminated by local vortex splittings and reconnections,
which turns the link into a planar vortex network. The bicolorings represent
elements of a general group G. A desired factor can always be split off of a
vortex, since groups are closed under taking inverses and products.
d Arbitrary planar vortex network is transformed into a simple loop by local
vortex amalgamations. Hence, there exists no topological vortex links that
are topologically protected against decaying via vortex splittings along a
significant distance, in addition to topologically allowed strand crossings
and local reconnections.
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There exists a more refined invariant, the Q-invariant, which
is computed, roughly speaking, by multiplying all the elements of
Q8 obtained from the undercrossings of loops of a specified color.
The precise definition is explained in Fig. 6. The Q-invariant is
valued in Z4, and it recovers to the linking invariant when
reduced modulo 2. Thus, the linking invariant l is redundant, but
we have included it in the article due to its simplicity. In
Methods, it is verified that the Q-invariant is conserved in
topologically allowed strand crossings and local reconnections,
and therefore can be used as a marker of topological protection.
Remarkably, up to topologically allowed local reconnections
and strand crossings, there are only six non-trivial Q8-colored
links, two for each value Q= [1], [2], and [3], respectively
(Fig. 4(a)). Moreover, there are 24= 16 defects that have Q= [0],
each of which is equivalent to a disjoint union of loops of a
subset of the four possible colors. Examples of topologically
protected and unprotected vortex configurations are illustrated
in Fig. 4a, b.

These results on the invariants imply that a system, the
fundamental group of which is described by the quaternion
group, cannot support topologically protected vortices composed
of a single loop, i.e., there exists no topologically protected Q8-
colored knots. However, this behavior is particular to the group
Q8: there is no mathematical obstruction for the existence of
topologically protected knots in general, as is illustrated by the
tricolored trefoil knot (Fig. 4c). The tricolored trefoil arises as a
topologically protected knot colored by the elements of the
permutation group S3. The fundamental group of the trefoil
complement is the braid group B3, and the homomorphism
B3→ S3 corresponding to the tricoloring coincides with the
standard surjective homomorphism. The rigorous justification of
its topological protection is left for future work due to the
mathematically demanding nature of the argument. To date, we
have not found a physically accessible system that supports
topological vortices described by the group S3. However, such a
system may exist in addition to many other systems supporting
topologically protected knots described by other groups such as
the tetrahedral group for the cyclic phase of spin-2 Bose–Einstein
condensates. The discovery of these exciting structures is left for
future work.

Discussion
We expect our results to inspire a wide range of theoretical and
experimental investigations. In addition to observing experi-
mentally the proposed vortex links in nematic liquid crystals or
spin-2 Bose–Einstein condensates, analogous topologically pro-
tected vortex structures can be studied both theoretically and
experimentally in a wide variety of condensed-matter systems,
which may stimulate the development of invariants for other
types of colored links. Another interesting aspect of our work is
the simplicity of the classification: instead of the infinitude of
different link types, there is only a small number of Q8-colored
links up to strand crossings and reconnections. It is appealing to
obtain similar classifications for physically relevant groups other
than the quaternion group Q8.

In future work, we aim to use numerical simulations to
investigate the dynamics of the structures proposed in this article
to verify their stability properties and provide insight how they
can be prepared and observed in experiments. The preparation of
topologically protected vortex structures is a challenging issue,
because, due to their topologically protected nature, they cannot
be created by local tailoring, which is a method that has been
previously employed in the creation of vortex knots4. A potential
solution is provided by generating random vortex structures using
a rapid phase transition5. However, at least for biaxial nematic
liquid crystals, the vortex structures formed in this way seem to
be networks rather than links, and these networks are prone to
decaying via vortex amalgamation and annihilation of small
vortex loops31. Thus it may be that controlled tailoring of the
electromagnetic or other fields is needed to bring the knotted
structure into the physical system from out side its spatial extent,
in the spirit of previously experimentally realized monopole
creation in Bose–Einstein condensates32–34.

Methods
Order parameter spaces for spin-2 biaxial nematic and cyclic phases. Here, we
study the order parameter spaces of spin-2 biaxial nematic and cyclic phases,
and identify the quaternion group Q8 as the subgroup of the fundamental group
corresponding to topological vortices with no scalar-phase winding about
the core.

We begin by analyzing the order parameter space of the spin-2 biaxial nematic
phase MBN. It is known that MBN≅ [S1 × SO(3)]/D4, where the S1 accounts for the
scalar complex phase, and D4 is the symmetry group of a square lying in the xy-
plane35,36. The dihedral group D4 is realized as a subgroup of S1 × SO(3) in such a
way that the 90∘ and the 270∘ rotations along the z-axis, and the 180∘ rotations
along x+ y and the x− y axis are supplemented with a phase shift by π. In other
words, the elements of the Klein four-group K4, corresponding to the subgroup of
180∘ rotations along the x-, y- and the z-axis as well as the identity, are not
accompanied by phase shifts, and therefore [S1 × SO(3)]/K4≅ S1 × [SO(3)/K4].
Since the inverse image of K4 under the two-fold covering SU(2)→ SO(3) is the
quaternion group Q8, we deduce that π1ðS1 ´ ½SOð3Þ=K4�Þ ffi Z ´Q8. Moreover,
since D4=K4 ffi Z2, the order parameter space MBN is homeomorphic to the
quotient S1 ´ ½SOð3Þ=K4�

� �
=Z2. Applying the long exact homotopy sequence37, we

obtain a short exact sequence of groups

1 ! π1ðS1 ´ ½SOð3Þ=K4�Þ ! π1ðMBNÞ ! Z2 ! 1 ð1Þ

leading us to conclude that Z ´Q8 is a subgroup of π1(MBN). The elements of
π1(MBN) that do not belong to Z ´Q8 correspond to paths between different points
in a Z2-orbit of S

1 × [SO(3)/K4]37. As the Z2-action identifies points that have
scalar phase α with points that have scalar phase α+ π, no path connecting such a
pair has phase winding that is an integer multiple of 2π. Therefore, the subgroup
Z ´Q8 � π1ðMBNÞ corresponds to those vortices that have integer phase winding,
and {0} ×Q8⊂ π1(MBN) corresponds to exactly those vortices that have no scalar
phase winding.

Next, we analyze the order parameter space of the spin-2 cyclic phase in detail.
The order parameter space MC is [S1 × SO(3)]/T, where the S1, again, accounts for
the complex phase, and where T is the group of rotational symmetries of a regular
tetrahedron38. To realize it as a subgroup of S1 × SO(3), we employ the
presentation of SO(3) as the group of 3 × 3 orthogonal matrices with determinant
1. Then, the elements corresponding to the Klein four-group K4⊂ T, namely
I, diag(−1,−1, 1), diag(− 1, 1,−1) and diag(1,−1,−1) are not accompanied by
any phase shifts, and the tetrahedral group is generated by the above elements in

Fig. 6 Definition of the Q-invariant. The Q-invariant is computed using
loops of a single color, the choice of which does not affect the result. The
computation uses the α-invariants of loops. For a red loop L, α(L) is obtained
by specifying a basepoint on L, traversing through the loop starting in the
direction that has the black color of the bicoloring on the right, and
multiplying all the elements of Q8 obtained from undercrossings from right
to left, after which a correction term i−ω is added. Above, ω is the self writhe
of L, which is the signed count of the self crossings of L (Fig. 7). The α-
invariant of a red loop is always a power of i, and if there exists only a single
red loop L in the diagram, then the Q-invariant is defined as exponent of
α(L), which is well defined modulo 4. In general, the Q-invariant is the
exponent of (−1)lα(L1)⋯ α(Ln), where L1,…, Ln are the red loops of the
diagram, and l is the sum of the pairwise (modulo 2) linking numbers
between red loops. It is verified in Methods that the Q-invariant is
independent from the choices of color and the basepoints, and that it is
conserved in topologically allowed strand crossings and reconnections.
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{0} × SO(3)⊂ S1 × SO(3), and by

2π
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As in the previous paragraph, [S1 × SO(3)]/K4≅ S1 × [SO(3)/K4] and its
fundamental group is isomorphic to Z ´Q8. The Klein four-group is a normal
subgroup of T of index 3 and the quotient T/K4 is the cyclic group Z3. Applying
the long exact homotopy sequence to the three-fold covering S1 × [SO(3)/
K4]→MC

37, we obtain a short exact sequence of groups

1 ! π1ðS1 ´ ½SOð3Þ=K4�Þ ! π1ðMCÞ ! Z3 ! 1: ð3Þ
The elements of π1(MC) that do not belong to Z ´Q8 correspond to paths

between different points in a Z3-orbit of S
1 × [SO(3)/K4]37. As the Z3-action

identifies points that have scalar phase α with points that have scalar phase α+ 2π/
3 and α+ 4π/3, no path connecting such a pair has phase winding that is an integer
multiple of 2π. Therefore, the subgroup Z ´Q8 � π1ðMCÞ corresponds to those
vortices that have integer phase winding, and {0} ×Q8⊂ π1(MC) corresponds to
exactly those vortices that have no scalar phase winding.

The Q-invariant and the classification of Q8-colored links. Here, we define the
Q-invariant of Q8-colored links, establish its basic properties, and use it to classify
Q8-colored links. The invariant is Z4-valued, and it recovers the linking invariant l
when reduced modulo 2. The definition of Q requires focusing on loops of either
red, gray, or blue color, and therefore one ends up with three colored invariants
Qred,Qgray, and Qblue, the equivalence of which is established later. After defining
the colored invariants of a Q8-colored link diagram, we establish their indepen-
dence from the specific diagram chosen to present a Q8-colored link, after which
we prove that these invariants are conserved in topologically allowed strand
crossings and reconnections. Subsequently, we employ the classification of three-
component links to classify Q8-colored links up to strand crossings and recon-
nections and establish the equivalence of the three colored invariants. The Q-
invariant is thus defined as the value of any of the colored invariants. Moreover, we
establish a relationship of Q with Milnor’s triple linking number.

Suppose L is a Q8-colored link represented by a Q8-colored link diagram. Let
L1,…, Lr be the components of L enumerated in some order. For each non-purple
Li choose a basepointbi at one of the arcs of the loop Li in the diagram. We will use
the following orientation convention for bicolored loops with a basepoint: the loop
Li is oriented in such a way that when moving from the basepoint bi according to
the orientation, the black color of the bicoloring is on the right. It will not be
necessary to choose basepoints or specify orientations for the purple loops.

Definition 1. Let (Li, bi) be a pointed loop of color c∈ {red, gray, blue} in a Q8-
colored link diagram. We define the α-invariant of (Li, bi) as

αðL; bÞ :¼ χ�ω
c q; ð4Þ

where χc is i, j or k if c is red, gray or blue, respectively; ω is the self-writhe of the
loop L, i.e., the signed count of self crossings of L in the diagram, where the sign of
a crossing is decided using the right-hand rule, see Fig. 7; and q∈Q8 is obtained by
multiplying the quaternions, corresponding to the crossings of Li under non-purple
strands, in order from right to left, when Li is traversed from the basepoint bi
according to the orientation specified above. Concrete examples are presented in
Fig. 8.

We record the following useful properties of the α-invariant.

Lemma 2. The α-invariant satisfies the following properties:

1. α(Li, bi) is a power of χc;
2. α(Li, bi) does not depend on the basepoint bi.

Proof. Throughout the proof, we ignore all the purple strands since they do not
affect the invariant. In order for the bicoloring to be consistent, each loop is
overcrossed by a strand of different color an even number of times. For instance, if
the loop Li is red, then, in the expression of α(Li, bi), the combined number of
occurrences of j and k is even. After reordering, which contributes only a sign, the
occurrences of j and k can be replaced by a single power of i, which proves the
first claim.

For the proof of the second claim, we investigate the effect on α caused by
moving the basepoint through an undercrossing to an adjacent arc in the diagram.
As the self-writhe does not depend on the orientation of Li, we only need to
consider how this process affects q. There are two cases to consider, depending on
the color c0 of the strand crossing over Li.

1. Case c0 ¼ c: the basepoint moves, but the orientation is not altered. If the
undercrossing through which the basepoint is moved is the first under-
crossing according to the orientation, then q ¼ q0χ ±1

c is replaced by χ ±1
c q0 .

However, since q0 ¼ qχ�1
c is a power of χc, it commutes with χc, so q does

not change. The other case is proved in a similar fashion.
2. Case c0≠ c: the basepoint moves and the orientation is altered. If the

undercrossing is the first undercrossing according to the orientation, then

q ¼ q0χ ± 1
c0 is replaced by ðχ ± 1

c0 q0Þ�1 ¼ q0�1χ�1
c0 . However, since q0χ ± 1

c0 is a
power of χc, q0=2f1;�1g, and therefore q0�1 ¼ �q0 . Hence, q0�1χ�1

c0 ¼ q0χ ± 1
c0 ,

and consequently q does not change in the process. The other case is proved
in a similar fashion. □

Below, we define the colored invariants.

Definition 3. Let c∈ {red, gray, blue}. Then the colored invariant Qc 2 Z4 of a Q8-
colored link diagram is defined as

χQc
c :¼ ð�1Þlc

Y
Liof colorc

αðLiÞ; ð5Þ

where lc is the sum of the pairwise linking numbers between loops of color c,
modulo 2. The product on the right side is well defined, since α(Li) does not
depend on the choice of a basepoint of Li and since the α(Li) commute with each
other as they are all powers of χc. The invariant is well defined since the exponent of
χc is well defined modulo 4. Concrete examples are illustrated in Fig. 8.

The next result establishes a relationship between the invariants Qc and the
linking invariant l.

Proposition 4. When reduced modulo 2, the colored invariant Qc is equivalent to
the linking invariant l.

Proof. The linking invariant is the number of times a strand of color c0 passes
over a strand of color c″, modulo 2, where c0 and c″ are two different non-purple
colors. Let c be color that is different from c0 and c″. As there are an even
number of crossings between different loops of color c, these contribute an
even number of multiplicative factors of ±χc to

Q
Li
αðLiÞ, where Li ranges

over all loops of color c. Moreover, the same is true for each self crossing of a
loop of color c, as each self crossing contributes both to terms χ�ω

c and q in
Eq. (4). In other words, χQc

c is a product of quaternions, an even number of
which are ±χc.

If l= 1, then, in the expression of χQc
c , there are an odd number of factors of

form ± χc0 and an odd number of factors of form ± χc00 . Reordering the expression,
we conclude that χQc

c ¼ ±χc , i.e., Qc≡ 1 modulo 2. Similarly, if l= 0, then, in the
expression of χQc

c , there are an even number of factors of form ± χc0 and an even
number of factors of form ± χc00 . Reordering the expression, we conclude that
χQc
c ¼ ±1, i.e., Qc≡ 0 modulo 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .□
There are various diagrams representing the same abstract link in R3, and they

are related to each other by Reidemeister moves2,39,40. Similarly, there are many
Q8-colored link diagrams representing the same abstract Q8-colored link, and they
are related to each other by Reidemeister moves. Given an initial coloring, there
exists a unique Q8-coloring for the link diagram after a Reidemeister move has
taken place; we refer to such moves, endowed with the data of a Q8-coloring, as Q8-
colored Reidemeister moves. Examples are presented in Fig. 9. Next we prove that
the invariants Qc are invariants of the Q8-colored link rather than the particular
link diagram chosen to present it.

Lemma 5. The invariants Qc are conserved in Q8-colored Reidemeister moves.

Proof. We consider each type of Reidemeister move separately. The essential cases
to consider are presented in Fig. 9. We again ignore the purple strands of the
diagram in the proof, because they have no effect on the invariants.

1. Reidemeister move of type I: such a move has the potential to alter the
invariant only if it is applied to a loop Li of color c. Let L0i be the loop after
the move has been performed. Choosing a suitable basepoint, one obtains
expressions αðLiÞ ¼ χ�ω

c q and αðL0iÞ ¼ χ�ω0
c q0 ¼ χ�ω�1

c χ ± 1
c q, proving that

αðL0iÞ ¼ αðLiÞ. As the operation does not alter the linking numbers between
loops of color c, the invariant Qc remains unchanged.

2. Reidemeister move of type II: such a move does not alter the self-writhe, the
α-invariant of any loop or the linking numbers between loops, so the
invariant remains unchanged.

3. Reidemeister move of type III: such a move does not alter the self-writhe, the
α-invariant of any loop or the linking numbers between loops, so the
invariant remains unchanged.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .□

Next, we prove the conservation of the colored invariants Qc in topologically
allowed strand crossings and local reconnections. As a disjoint union of Q8-colored
unknotted loops has trivial Qc-invariants, they may therefore be regarded as
obstructions for the unlinking of a Q8-colored link using local reconnections and
strand crossings.

Lemma 6. The invariants Qc are conserved in topologically allowed strand crossings.

Proof. The proof is presented in Fig. 10. □

Lemma 7. The invariants Qc are conserved in topologically allowed reconnections.

Proof. If the reconnection takes place between two different loops, they will merge
into one loop as a result. As it is enough to establish the conservation of Qc in the
inverse process of such an event, we may assume that the reconnection takes place
between points x and y on the same loop Li. Moreover, since any knot can be
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unknotted by crossing changes, Lemma 6 implies that we may assume that Li is an
unknot. Hence, we may choose a Q8-colored link diagram representing the link L
where the loop Li has no self-crossings, and where no extra arcs appear in the
imminent neighborhood of the location where the reconnection takes place.
Visualization is provided by Fig. 11.

Let q1 and q2 be the quaternions defined much like q in Definition 1, but where
q1 accounts for the undercrossings occurring when traversing from x to y according
to the orientation convention at x, and where q2 accounts for the undercrossings
occurring when continuing from y back to x. By hypothesis, α(Li)= q2q1. There are
two cases to consider.

1. q1 is a power of χc: i.e., on the path from x to y, Li crosses under an even
number of strands than of color other than c. In this case, the reconnection
splits the loop Li into two loops L0i and L00i . Moreover, as αðL0iÞ ¼ q2 and
αðL00i Þ ¼ q1, and as the process does not affect lc modulo 2, the invariant Qc

remains unchanged.
2. q1 is not a power of χc: by rotating the diagram, by rotating the loop Li

around an axis in the plane of the diagram, and by swapping the labels of x
and y if necessary, we may assume that the strands are horizontal around the
point of reconnection, that x is below y in the picture, and that the
orientation at x points to right. There are two possible reconnections which

Fig. 7 Sign of a crossing and self writhe. a Right-hand rule for the sign of the oriented crossing. b, c The self-writhe of an oriented loop is the sum of the
signs of the self-crossings in the diagram. In order to compute it, an orientation must be chosen for the loop; however, the end result does not depend on
this choice. d Self writhe of a loop with four self-crossings.

Fig. 8 Examples of α-invariants and colored invariants Qc of Q8-colored links. a–d Loops of interest Lk and the corresponding basepoints bk together with
their α and Qc invariants. According to the orientation convention, a loop is oriented in such a way, that when moving from the basepoint according to the
orientation, the black color of the bicoloring is on the right.
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are related by a topologically allowed strand crossing. By Lemma 6, it is
enough to investigate only one of these; we focus on the one in which, after
traversing the path corresponding to q1 in the modified loop L0i , the loop
crosses under itself. As the self writhe of L0i is −1, by definition
αðL0iÞ ¼ χcq

�1
2 χ�1

c q1. As q1 is not a power of χc but q2q1 is, q�1
2 ¼ �q2

and q2 anticommutes with χc, and therefore χcq
�1
2 χ�1

c q1 ¼ q2q1. In other
words, αðL0iÞ ¼ αðLiÞ. As the reconnection does not affect the total modulo-
two linking number between loops of color c, the invariant Qc remains
unchanged. □

Using the previous results, it is possible to classify all the Q8-colored links
up to strand crossings and local reconnection events (we refer to this, in short,
as the classification of Q8-colored links), and to prove the equivalence of the
colored invariants Qred, Qgray and Qblue. Given a Q8-colored link, one can
perform local reconnections in order to connect loops of the same color. After
doing so and ignoring the potential purple loop, we have a link of at most three
components, and each component is labeled with either red, gray or blue color.
We will momentarily forget the bicoloring, and choose an orientation for
each loop.

Milnor has classified oriented links of at most three components up to link
homotopy41,42, i.e., up to such continuous deformations of the link where the
different components are not allowed to meet, but where self intersections are
allowed. Such deformations may be expressed in terms of Q8-colored Reidemeister
moves and topologically allowed strand crossings, and therefore Milnor’s
classification provides an intermediate step in the classification of Q8-colored links.
If there is only one loop, then there is only one link up to link homotopy. If there
are two loops, L1 and L2, then the link is completely characterized by the Gauss
linking number μ(12) of L1 and L2. In case of three loops, the third loop L3
corresponds to a canonical element of form α1α

�μð123Þ
2 α�1

1 αμð123Þ2 αμð23Þ2 αμð13Þ1 in the
fundamental group π1ðR3nðL1 ∪ L2ÞÞ, where αi is an element of π1ðR3nðL1 ∪ L2ÞÞ
that corresponds to a loop that winds once about Li in the positive direction. A
concrete example is provided in Fig. 12. Above, μ(ij) is the linking number between
Li and Lj, and μ(123) is the triple linking number, which is an integer that is well
defined up to the greatest common divisor d of μ(12), μ(13) and μ(23). The link is
completely classified by μð12Þ; μð13Þ; μð23Þ 2 Z and ½μð123Þ� 2 Zd .

There are three non-trivial cases to consider.

1. The link has only two loops. The bicoloring cannot be consistent unless μ(12)
is even. Applying the surgery operation depicted in Fig. 13a, it is possible to
achieve μ(12)= 0. In other words, such a Q8-colored link is in the trivial
class.

2. The link has three loops and μ(12) is odd. In order for the bicoloring to be
consistent, also μ(13) and μ(23) have to be odd. Applying the surgery operation

depicted in Fig. 13a, it is possible to achieve μ(12)= μ(13)= μ(23)= 1. These
numbers classify the link up to link homotopy as their greatest common divisor
is 1; such a link is homotopic to a looped chain of length three. There are 8
possible bicolorings for such a link. It is possible to “flip” any two bicolorings
simultaneously, as depicted in Fig. 13c, leaving exactly two classes, which
correspond to values Qc= [1] and Qc= [3].

3. The link has three loops and μ(12) is even. In order for the bicoloring to be
consistent, also μ(13) and μ(23) have to be even. Applying the surgery
operation depicted in Fig. 13a, it is possible to achieve μ(12)= μ(13)=
μ(23)= 0 and that μ(123) is either 0 or 1, depending on the parity of μ(123)
in the original link. If μ(123)= 0, then the loops are not linked, so this case
corresponds to the trivial class. If μ(123)= 1, then the link is homotopic to
the Borromean rings. There are again eight possible bicolorings for such a
link. Moreover, it is possible to “flip” any single bicoloring, as depicted in
Fig. 13d, so all of the possible bicolorings are in the same class which
corresponds to Qc= [2].

The above discussion has several immediate consequences. First we consider the
equivalence of the colored invariants.

Proposition 8. The invariants Qred, Qgray and Qblue are equivalent.

Proof. According to the above discussion, any nontrivial Q8-colored link diagram
can be reduced to one of the three links depicted in Fig. 13b by applying topolo-
gically allowed strand crossings and reconnections. Hence, one has to check the
desired equality Qred=Qgray=Qblue only in these cases. . . . . . . . . . . . . . . . . .□

The Q-invariant is defined as the common value of the colored invariants Qc.
The following result establishes a connection between it and Milnor’s triple linking
number.

Proposition 9. If L is a Q8-colored link with at most one component of each color
and the linking invariant l of L is zero in Z2, then Q ¼ ½2μð123Þ� 2 Z4, where
μ(123) is Milnor’s triple linking number.

Proof. This was established in the third case of the above discussion. . . . . . . .□
Finally, we classify Q8-colored links.

Theorem 10. (Classification of Q8-colored links). Up to topologically allowed strand
crossings and reconnections, there are only the following classes of Q8-colored links:

1. 16 classes of trivial links, corresponding to untangled disjoint unions of loops
of different colors;

2. 2 classes each (with and without a purple loop) for which the invariant Q
obtains the values [1], [2] and [3] in Z4.

Fig. 9 Examples of Q8-colored Reidemeister moves, and the conservation of the colored invariants Qc. The Reidemeister moves do not affect the
pairwise modulo-two linking numbers between loops of the same color, and therefore it is enough to verify that the α-invariant of the modified loop
remains unchanged.
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Proof. We prove the two cases separately.

1. A topologically unprotected link is equivalent to a disjoint union of
unlinked loops. Since there are four classes of topological vortices,
corresponding to the non-identity conjugacy classes of Q8, there exists

exactly 24= 16 classes of topologically trivial Q8-colored links, one of
them being the empty link.

2. According to the above discussion, a nontrivial Q8-colored link diagram
consisting of loops of classes {±i}, {±j}, and {±k}, can be reduced to one of
the three links depicted in Fig. 13b. In the presence of a purple loop,

Fig. 10 Conservation of the colored invariant Qgray in topologically allowed strand crossings. By rotating the picture if necessary, one can assume that
the black color of the bicoloring is on the right hand side when moving upwards along either of the strands of the crossing. The pictures (a), (b) and (c)
depict the cases that can occur. In (a) and (b) the strands partaking in the crossing change are parts of the same loop Li; note that the self-writhes of Li and
L0i differ by ±2. The difference between the two cases is that in (a), the quaternion q1 anticommutes with j, because the path corresponding to q1 passes
under an odd number of red and blue strands in total, whereas, for analogous reasons, in (b), q1 commutes with j. The crossing change in (a) and (b) does
not alter the linking number of Li with other gray loops, so Qgray remains unchanged. In (c), the strands are part of loops Li and Lj. Note that
αðL0iÞαðL0jÞ ¼ �αðLiÞαðLjÞ, but the introduced sign is canceled as the total modulo-two linking number between gray loops is altered by 1, so Qgray remains
unchanged.

Fig. 11 Conservation of the colored invariant Qgray in topologically allowed reconnections. a, b The cases to consider. The difference between them is the
total number of times Li crosses under a red or a blue strand, modulo 2, when traversing from the point x to y. a In the case of an even number, the loop Li
splits into two loops L0i and L00i . b In the case of an odd number, the quaternions qi anticommute with j and q�1

i ¼ �q1, which are important facts used to
deduce the conservation of the invariant Qgray.
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Fig. 12 Classification of three-component links. The bicoloring is ignored for simplicity. a The linking number between L1 and L2 is −2, and the loop L3
corresponds to an element of form α1α

3
2α

�1
1 α�3

2 α�2
2 α�4

1 in π1ðR3nðL1 ∪ L2ÞÞ. b The same link after applying the surgery operation depicted in Fig. 13a several
times. For the resulting link, the pairwise linking numbers are 0, and the triple linking number μ(123) is 1, so the link is homotopic to the Borromean rings.

Fig. 13 The classification of Q8-colored links. a A surgery operation that can be employed to alter the linking number between two loops by an integer
multiple of two. b The nontrivial classes of Q8-colored links, and the values of the invariant Q they correspond to. c In a looped chain configuration, it is
possible to flip two of the three bicolorings by letting one of the loops go around the other two. d In a Borromean rings configuration, it is possible to flip
any single bicoloring. In the picture, the blue loop is split into two loops, one of which goes around the red loop, resulting in the flipping of the red
bicoloring. The two blue loops cross each other during this process.
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corresponding to the element −1 which commutes with all elements of the
group Q8, a nontrivial Q8-colored link diagram can be reduced to the
disjoint union of one of the three links depicted in Fig. 13b and a purple
loop. □
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