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Topological bulk solitons in a nonlinear photonic
Chern insulator
Rujiang Li 1✉, Xiangyu Kong1, Dongkai Hang1, Guoyi Li1, Hongyu Hu1, Hao Zhou2, Yongtao Jia1, Pengfei Li3,4 &

Ying Liu 1✉

Nonlinearities in lattices with topological band structures can induce topological interfaces in

the bulk of structures and give rise to bulk solitons in the topological bandgaps. Here we

study a photonic Chern insulator with saturable nonlinearity and show the existence of

topological bulk solitons. The fundamental bulk solitons exhibit as semi-vortex solitons,

where only one pseudospin component has a nonzero vorticity. The bulk solitons have equal

angular momentum at different valleys. This phenomenon is a direct outcome of the topology

of the linear host lattice and the angular momentum can be changed by switching the sign of

the nonlinearity. The bulk solitons bifurcate from the linear bulk band edge and terminate

when their powers saturate. We find that these bulk solitons are stable within the whole

spectrum range. Moreover, these bulk solitons are robust against lattice disorders both from

on-site energies and hopping amplitudes. Our work extends the study of Chern insulators into

the nonlinear regime and highlights the interplay between topology and nonlinearity.
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Topology is a branch of mathematics which is concerned
with integer-valued quantities that are preserved under
continuous deformations. Different objects are topologi-

cally equivalent as long as they have the same topological
invariant. By describing the global structure of the wave function
in momentum space over the Brillouin zone (BZ) as a topological
invariant, the concept of topology was introduced into condensed
matter physics with the advent of topological insulators, which
are insulating in the bulk but conducting on their surfaces even in
the presence of impurities1,2. Shortly after the discovery of
topological insulators, the photonic analogs of topological insu-
lators based on quantum Hall effect, namely the photonic Chern
insulators were proposed and realized3–5. Later, based on the
photonic Chern insulators which are characterized by the integer-
valued Chern numbers, photonic Floquet topological
insulators6,7, photonic spin-Hall insulators8–12 and photonic
valley-Hall insulators13–20 were reported successively, and the
field of topological photonics has flourished21–24. Among all these
two-dimensional (2D) photonic topological insulators, photonic
Chern insulators are the most reliable designs to date that provide
truly unidirectional and backscattering-immune wave transport
due to the genuine breakdown of time-reversal symmetry25. They
have been reported experimentally in gyromagnetic photonic
crystals at microwave frequencies5 and active resonator networks
at optical frequencies26.

The investigation of photonic topological insulators has been
extended into the nonlinear regime with the inclusion of the
interparticle interactions27. By combining topology with non-
linearity, a kind of solitons dubbed “bulk solitons” are found
(without the linear counterpart) in the bulk topological
bandgap28. Unlike the nonlinear edge states or edge
solitons29–36, the bulk solitons reside in the bulk of materials.
Meanwhile, these bulk solitons are also different to the con-
ventional lattice solitons37. Lattice solitons are formed as a
result of the balance between coupling (commonly referred as
diffraction) and nonlinearity. Bulk solitons occur at the non-
linearity induced topological interfaces. Until now, 1D bulk
solitons have been demonstrated in Su–Schrieffer–Heeger
(SSH) chains38–41, and 2D bulk solitons have been demon-
strated in both photonic Floquet insulators28,42,43 and photonic
valley-Hall insulators38,44.

In this paper, we extend the photonic Chern insulators into
the nonlinear regime and study the bulk solitons under a
saturable nonlinearity, since the properties of static Chern
insulators are fundamentally different from that of driven Flo-
quet insulators7,45. In contrast to the photonic Floquet insula-
tors which are driven lattice systems with time-reversal
symmetry breaking replaced by z-reversal symmetry
breaking28,42, our photonic Chern insulator is a non-driven
lattice and the actual time-reversal symmetry is broken. We find
that the bulk solitons bifurcate from the linear bulk band edge
of the energy spectrum (rather than the quasi-energy spectrum
of a photonic Floquet topological insulator28,42), and terminate
when their powers saturate. The fundamental bulk solitons
exhibit as semi-vortex solitons, where only one pseudospin
component has a nonzero vorticity. Due to the topology of the
photonic Chern insulator in the linear limit, the bulk solitons
have equal angular momentum at different valleys. This phe-
nomenon is a direct outcome of the topology of the linear host
lattice. The angular momentum of the bulk soliton is changed
when the self-focusing nonlinearity is switched to the self-
defocusing nonlinearity. Finally, we also demonstrate the sta-
bility and robustness of the bulk solitons. Our results extend the
study of Chern insulators into the nonlinear regime and high-
light the interplay between topology and nonlinearity.

Results
Model. We study a photonic Chern insulator based on the cele-
brated Haldane model. It is described by a tight-binding
Hamiltonian with a real nearest-neighbor (NN) hopping (black
lines), a complex next-nearest-neighbor (NNN) hopping (red and
blue arrows) and on-site staggering energies (white and black
circles), as shown in Fig. 1a. The wave functions at sublattice sites
A (white circles) and B (black circles) can be treated as two
pseudospins. The length of the nearest-neighbor bonds is a0 and
the lattice period is a ¼ ffiffiffi

3
p

a0. Two reciprocal lattice vectors are
b1 ¼ ð2π=a; 2π= ffiffiffi

3
p

aÞ and b2 ¼ ð0; 4π= ffiffiffi
3

p
aÞ, where

bi � aj ¼ 2πδij. In the Brillouin zone (BZ) shown in Fig. 1b, K and
K′ are the two valleys.

We define two sets of vectors e1;2;3 and v1;2;3 for the NN
hopping and NNN hopping, respectively. Based on the
Hamiltonian for the Haldane lattice, we add the saturable
nonlinear terms to the on-site energies. Then the coupled
equations for the two pseudospin components ψA;B are

i
∂ψAðr; tÞ

∂t
¼ ðωA þ NAÞψAðr; tÞ þ t1 ∑

i¼1;2;3
ψBðrþ ei; tÞ

þ t2e
iϕ ∑

i¼1;2;3
ψAðrþ vi; tÞ þ t2e

�iϕ ∑
i¼1;2;3

ψAðr� vi; tÞ;
ð1Þ

i
∂ψBðr; tÞ

∂t
¼ ðωB þ NBÞψBðr; tÞ þ t1 ∑

i¼1;2;3
ψAðr� ei; tÞ

þ t2e
iϕ ∑

i¼1;2;3
ψBðr� vi; tÞ þ t2e

�iϕ ∑
i¼1;2;3

ψBðrþ vi; tÞ;
ð2Þ

where t1 is the real NN hopping, t2e
± iϕ are the complex NNN

hoppling, ωA;B are the on-site energies, and NA;B ¼ g
jψA;Bðr;tÞj2

1þσjψA;Bðr;tÞj2

characterizes the saturable nonlinearity with the nonlinear
parameter g and saturation coefficient σ. Equations (1), (2) are
the discrete nonlinear Schrödinger equations with two compo-
nents. In the absence of optical losses, the normalized power
P ¼ ∑

r
ðjψAðrÞj2 þ jψBðrÞj2Þ is conserved.

For simplicity, we assume that t2>0 and ϕ = π/2, since we are
focusing on a photonic Chern insulator. In the linear limit with
g= 0, due to the time-reversal symmetry breaking, the bulk bands
split and lead to a complete bandgap with K and K′ valleys (See
Supplementary Note 1). Specifically, the bulk bands are
characterized by Chern numbers, implying the presence of chiral
edge modes. In the nonlinear regime, we are interested in the
modes near the valleys, where the bands have linear dispersions.
We substitute ψA;Bðr; tÞ ¼ ψ1;2ðr; tÞ expðiK± � rÞ into Eqs. (1), (2),
where K± correspond to K and K′ valleys, respectively.
Expanding the wave functions around r and neglecting the

(b)

Γ KK'

(a)

Fig. 1 Schematic and Brillouin zone (BZ) of the Haldane model.
a Schematic of the Haldane model with a real nearest-neighbor (NN)
hopping (black lines), a complex next-nearest-neighbor (NNN) hopping
(red and blue arrows), and on-site staggering energies (white and black
circles). The rhombus with green lines is the unit cell. b BZ of the Haldane
model, where K and K′ are the two valleys.
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higher-order terms, we get

i
∂ψ1

∂t
¼ ðd0 þ d3 þ N1Þψ1 ± ivF

∂ψ2

∂x
þ vF

∂ψ2

∂y
; ð3Þ

i
∂ψ2

∂t
¼ ðd0 � d3 þ N2Þψ2 ± ivF

∂ψ1

∂x
� vF

∂ψ1

∂y
; ð4Þ

where d0 ¼ ωAþωB
2 is the frequency shift, d3 ¼ ωA�ωB

2 ± 3
ffiffiffi
3

p
t2 is the

effective mass that opens the linear bulk bandgap, vF ¼
ffiffi
3

p
2 t1a is the

group velocity, and N1;2 ¼ g
jψ1;2j2

1þσjψ1;2j2
. These equations are valid as

long as
∂ψ1;2ðrÞ

∂r � e1;2;3
��� ���� ψ1;2ðrÞ

��� ��� and ∂ψ1;2ðrÞ
∂r � v1;2;3j � jψ1;2ðrÞ

��� ���
which require that ψA;B should be smoothly distributed in the
lattice and the length of the nearest-neighbor bonds should be
small enough38. Note that Eqs. (3), (4) reduce to the continuous
linear Dirac equations when d3= g= 046. Besides, unlike the 2D
nonlinear Dirac equations where nonlinearity is equivalent to a
mass term44, in our model nonlinearity changes both the effective
frequency shift and effective mass (see Supplementary Note 2).

The solutions for bulk solitons can be found by solving Eqs.
(3), (4) using Newton-conjugate-gradient method47. With the
harmonic time dependence e�iωt , we have

L0Ψ ¼ 0; ð5Þ
where

L0 ¼
d0 þ d3 � ωþ N1 vF ± i ∂

∂x þ ∂
∂y

� �
vF ± i ∂

∂x � ∂
∂y

� �
d0 � d3 � ωþ N2

0
B@

1
CA ð6Þ

and Ψ ¼ ðψ1;ψ2ÞT . We iteratively update the solution as
Ψnþ1 ¼ Ψn þ ΔΨn, and the updated amount ΔΨn is computed
from the linear Newton-correction equation

Ly1L1ΔΨn ¼ �Ly1L0Ψn; ð7Þ
where

L1 ¼
d0 þ d3 � ωþ gN 0

1 vF ± i ∂
∂x þ ∂

∂y

� �
vF ± i ∂

∂x � ∂
∂y

� �
d0 � d3 � ωþ gN 0

2

0
B@

1
CA; ð8Þ

N 0
1;2 ¼

2jψ1;2j2þψ2
1;2C

1þσjψ1;2j2
� σjψ1;2j2ψ1;2

ψ*
1;2þψ1;2C

ð1þσjψ1;2j2Þ
2 ; and C is the

complex conjugate operator.

Bulk solitons. For simplicity, we let ωA ¼ ωB ¼ 10, and thus we
have d3 ¼ ± 3

ffiffiffi
3

p
t2 for K and K′ valleys, respectively. The other

parameters are a ¼ 1; t1 ¼ 2=
ffiffiffi
3

p
; t2 ¼ 1=3

ffiffiffi
3

p
, and σ= 1. In the

linear limit, the bulk bands create a bandgap where the central
frequency is ω ¼ d0 ¼ 10 and the bandgap half-width is jd3j ¼ 1.
In the nonlinear case, we only study the fundamental modes
because the higher-order solitons are usually unstable48. Figure 2
shows the bulk solitons for the self-focusing nonlinearity with
g= 1 and the frequency is ω= 9.1. For the bulk soliton at K valley
(Fig. 2a, b), the pseudospin component ψ2 decreases mono-
tonously from a finite value to zero along the radial direction, but
the amplitude of ψ1 features a hump at a nonzero radius. This
single hump behavior with a ring shape is different with the
soliton profile for a nonlinear Dirac equation44. From the phase
distributions shown in the insets, the phase of the pseudospin
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Fig. 2 Bulk solitons under the self-focusing nonlinearity with g= 1. a, b The amplitudes of the two pseudospin components ψ1;2 of the bulk soliton at K
valley. c, d The amplitudes of the two pseudospin components of the bulk soliton at K′ valley. The color bars in a–d denote the amplitudes and the insets in
a–d are the phases. The frequencies of the bulk solitons are ω= 9.1.
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component ψ1 increases clockwise by 2π and thus has a vorticity
with l1 ¼ �1 around r= 0. The component ψ2 has a zero vor-
ticity with l2 ¼ 0. The vorticity is defined as l1;2 ¼
1
2π

H
L∇½arg ðψ1;2Þ� � dl with the time dependence dropped49. Since

only one component has a nonzero vorticity, the bulk soliton at K
valley is a semi-vortex soliton.

The semi-vortex soliton is not a direct outcome of the
nonlinearity-induced localization of the linear bulk states. The linear
bulk states exhibit sublattice polarizations at the K and K′ valleys, and
have nonzero vorticities induced by the phase terms expðiK � rÞ and
expðiK0 � rÞ (see Supplementary Note 1). While for the bulk soliton
here, it exhibits the vorticity in the absence of the phase terms.
Similar to the bulk solitons in photonic Floquet insulators28,42 and
photonic valley-Hall insulators38,44, our bulk soliton in the photonic
Chern insulator can also be understood as the topological edge state
residing in the bulk. Nonlinearity induces a mass inversion and
creates a topological domain wall in the bulk (see Supplementary
Note 2). Along the domain wall, the localized state known as the
Jackiw–Rebbi Dirac boundary mode exists50. The bulk soliton shown
in Fig. 2a, b can be directly obtained from the Jackiw–Rebbi mode by
smoothly changing the parameters σ and ω.

We also would like to note that the bulk soliton is topologically
protected from two aspects. First, the bulk soliton is protected by
the topology of the linear host lattice in momentum space. The
nonzero Chern number of the linear bulk band implies the
existence of a bulk topological bandgap. As long as the linear bulk
bandgap is open, nonlinearity can create a topological domain
wall and support the existence of the bulk soliton. Second, the
bulk soliton is also topologically protected in real space because
one of its components has nonzero vorticity.

Similarly, from Fig. 2c, d, the bulk soliton at K′ is also a semi-
vortex soliton. The difference is that, the pseudospin component
ψ1 has a zero vorticity with l1 ¼ 0 and the component ψ2 has a
nonzero vorticity with l2 ¼ �1. Such behavior is related to the
topology of the linear host lattice. In the linear Haldane model,
time-reversal symmetry is broken but inversion symmetry is
preserved. Since d3 has opposite signs at the K and K′ valleys, we
have equal Berry curvatures with ΩðKÞ ¼ ΩðK0Þ and non-zero
Chern numbers for the bulk bands25. Due to the inversion
symmetry with d3ðKÞ ¼ �d3ðK 0Þ, according to Eqs. (3), (4), if we
make transformations ψ1 ! �ψ2 and ψ2 ! ψ1 to the equations
at K valley, we can get the equations at K′ valley. Thus, the bulk
solitons at K and K′ valleys both rotate clockwise with a phase
difference of π. In other words, the bulk solitons at different
valleys have equal angular momentum. Note that for a photonic
valley-Hall insulator, the bulk solitons at K and K′ valleys rotate
in opposite directions (see Supplementary Note 3). Figure 3
shows the bulk solitons for the self-defocusing nonlinearity with
g=−1 and the frequency is ω= 10.9. The bulk solitons at K and
K′ valleys are also semi-vortex solitons and they rotate counter-
clockwise with a phase difference of π. Compared with the bulk
solitons in Fig. 2, the rotating direction is switched by the sign of
nonlinearity. This implies that the self-defocusing nonlinearity
can also be used to induce the topological interface and create
bulk solitons in photonic topological insulators.

To give more insights into the bulk solitons, we transform Eqs.
(3), (4) into polar coordinate system and get

i
∂ψ1

∂t
¼ vFe

�iφ ± i
∂

∂r
þ 1

r
∂

∂φ

� �
ψ2 þ ðd3 þ N1Þψ1; ð9Þ
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Fig. 3 Bulk solitons under the self-defocusing nonlinearity with g=−1. a, b The amplitudes of the two pseudospin components ψ1;2 of the bulk soliton at
K valley. c, d The amplitudes of the two pseudospin components of the bulk soliton at K′ valley. The color bars in a–d denote the amplitudes and the insets
in a–d are the phases. The frequencies of the bulk solitons are ω= 10.9.
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i
∂ψ2

∂t
¼ vFe

± iφ ± i
∂

∂r
� 1

r
∂

∂φ

� �
ψ1 � ðd3 � N2Þψ2: ð10Þ

Here the term d0 is dropped by a gauge transformation
ψ1;2ðr; tÞ ¼ ψ1;2ðr; tÞ expð�id0tÞ. We seek for 2D bulk solitons
with harmonic time dependence and radial symmetry. First, we
study the equations at K valley. If d3 > 0, we substitute

ψ1

ψ2

� �
¼ iue�iðmþ1Þφ

ve�imφ

 !
e�iωt ð11Þ

into Eqs. (9), (10) and get the following equations

vF
d
dr

þmþ 1
r

� �
uþ ðd3 þ ω� NðvÞÞv ¼ 0; ð12Þ

vF
d
dr

�m
r

� �
v þ ðd3 � ωþ NðuÞÞu ¼ 0; ð13Þ

where Nðu; vÞ ¼ g ju;vj2
1þσju;vj2. These equations can be numerically

solved and admit the existence of solutions for semi-vortex
solitons38. If d3 < 0, we substitute

ψ1

ψ2

� �
¼ ueimφ

iveiðmþ1Þφ

� �
e�iωt ð14Þ

into Eqs. (9), (10) and get the following equations

vF
d
dr

�m
r

� �
uþ ð�d3 � ωþ NðvÞÞv ¼ 0; ð15Þ

vF
d
dr

þmþ 1
r

� �
v þ ð�d3 þ ω� NðuÞÞu ¼ 0: ð16Þ

These equations are equivalent to Eqs. (12), (13) and also have
semi-vortex soliton solutions. Then we study the equations at K′
valley. If d3>0, we substitute

ψ1

ψ2

� �
¼ �iueiðmþ1Þφ

veimφ

 !
e�iωt ð17Þ

and get the same equations as Eqs. (12), (13). If d3 < 0, we
substitute

ψ1

ψ2

� �
¼ ue�imφ

�ive�iðmþ1Þφ

� �
e�iωt ð18Þ

and get the same equations as Eqs. (15), (16).
In our model, we have d3>0 and d3 < 0 at K and K′ valleys,

respectively. For the bulk solitons at K valley, the solutions with
m= 0 and m=−1 in Eq. (11) are the fundamental modes for self-
focusing nonlinearity with g > 0 and self-defocusing nonlinearity with
g < 0, respectively. The solution for the bulk soliton in Fig. 2a, b is
ðψ1;ψ2ÞT ¼ ðiue�iφ; vÞT , and the bulk soliton in Fig. 3a, b can be

written as ðψ1;ψ2ÞT ¼ ðu;�iveiφÞT . Similarly, for the bulk solitons at
K′ valley, the solutions with m= 0 and m=−1 in Eq. (18) are the
fundamental modes for self-focusing nonlinearity with g > 0 and self-
defocusing nonlinearity with g < 0, respectively. The solution for the
bulk soliton in Fig. 2c, d is ðψ1;ψ2ÞT ¼ ðu;�ive�iφÞT , and the bulk

soliton in Fig. 3c, d can be written as ðψ1;ψ2ÞT ¼ ðiueiφ; vÞT . Thus,
we validate the fact that the bulk solitons at different valleys have the
equal angular momentum and the rotating direction can be changed
by the sign of nonlinearity. Similar discussion can also be carried out
for the bulk solitons in a photonic valley-Hall insulator (See
Supplementary Note 3).

We discuss the mode distributions of the bulk solitons. As an
example, we consider the bulk solitons at K valley under the self-
focusing nonlinearity (Fig. 2a, b) and Eqs. (12), (13) with m= 0
are their governing equations. In the limit of r→ 0, we have u

(r= 0) = 0 and v’ (r= 0) = 0. In the limit of r=∞, mode
localization requires that u (r=∞) = v (r=∞) = 0. The
contribution from the nonlinear terms is small and Eqs. (12), (13)
are reduced to the linear differential equations. Since the bulk
solitons reside in the bulk bandgap with jωj< jd3j51, the solutions
are

uðrÞ ¼ CKmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d23 � ω2

q
vF

r

0
@

1
A; ð19Þ

vðrÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3 � ω

d3 þ ω

s
Km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d23 � ω2

q
vF

r

0
@

1
A; ð20Þ

with m= 0. Considering these limiting values, the pseudospin
component ψ1 exhibits a hump at a nonzero radius and the
component ψ2 decreases monotonously from a finite value to
zero along the radial direction. These results agree well with the
soliton distribution in Fig. 2a, b.

Existence. We study the existence of the bulk solitons. We only
show the results for the bulk solitons at K valley since the results
at K′ valley can be obtained from the transformations ψ1 ! �ψ2
and ψ2 ! ψ1. Figure 4a, b shows the radial distributions of the
bulk solitons, where the parameters are a= 1, ωA ¼ ωB ¼ 10,
t1 ¼ 2=

ffiffiffi
3

p
, t2 ¼ 1=3

ffiffiffi
3

p
, g= 1, and σ= 1. Under the self-

focusing nonlinearity, the amplitudes of both the two compo-
nents increase when the frequency ω approaches the central
frequency of the bandgap. We define P1;2 ¼

R jψ1;2ðrÞj2d2r as the
optical powers for the pseudospin components ψ1;2. From Fig. 4c,
both the curves for P1 and P2 are monotonic. The bulk solitons
bifurcate from the lower band edge at ω= 9 and reside in the
topological bandgap. When the optical powers are large enough,
the bulk soliton terminates and its frequency saturates near
ω= 10, which corresponds to the center of the bandgap. To
quantify the degree of localization of the bulk solitons as a
function of frequency, we plot the inverse participation ratios

(IPRs) which are defined as IPR1;2 ¼
R

jψ1;2ðrÞj4d2rR
jψ1;2ðrÞj2d2r

� 	2, as a measure

of the localizations of the bulk solitons. From Fig. 4d, the size (i.e.,
spatial extent) of the bulk solitons decreases to a minimum near
the center of the existence range. In other words, bulk solitons
closer to the linear band edge and bandgap center have larger
spatial extents. This quantitative result agrees with the amplitude
distributions in Fig. 4a, b. We also show the power and IPR of the
bulk solitons under the self-defocusing nonlinearity with g=−1
in Fig. 4e, f, respectively. In contrast to the bulk solitons under the
self-focusing nonlinearity, the bulk solitons under the self-
defocusing nonlinearity bifurcate from the upper band edge at
ω= 11. Thus, the sign of nonlinearity can also change the
bifurcation and existence range of the bulk solitons.

Stability. We study the stability of the bulk solitons. As an
example, we only show the results for the bulk solitons at K valley
under the self-focusing nonlinearity, where the parameters are
a= 1, ωA ¼ ωB ¼ 10, t1 ¼ 2=

ffiffiffi
3

p
, t2 ¼ 1=3

ffiffiffi
3

p
, g= 1, and σ= 1.

First, we perform the linear stability analysis by following a
standard linearization procedure. The solution is sought at the
frequency δ in the form of

ψ1 ¼ e�iωt ϕ1 þ ε1e
�iδt þ μ*1e

iδ*t
� �

; ð21Þ

ψ2 ¼ e�iωt ϕ2 þ ε2e
�iδt þ μ*2e

iδ*t
� �

; ð22Þ
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where ϕ1;2e
�iωt are the unperturbed soliton solution, ε1;2 and μ1;2 are

the infinitesimal amplitudes of the perturbations. Obviously, the bulk
solitons are linearly stable if δ is real. They are linearly unstable if the
imaginary part of δ, namely the growth rate, is positive. Substituting
the perturbed solutions into Eqs. (3), (4), we get the linearized
equations regarding to ε1, μ1, ε2, and μ2. The linearized equations can
then be numerically solved using Fourier collocation method com-
bined with Newton-conjugate-gradient method47.

Figure 5a shows the growth rates Im(δ) for the bulk solitons at
different frequencies. In the whole frequency range, the growth
rates are in the order of 10�6. Note that the perturbations may
come from both the amplitudes and phases. For the perturbation
eigenmode with a certain vorticity q, the solution can be written
as

ψ1

ψ2

� �
¼ ½

~ϕ1
~ϕ2

 !
þ ~ε1

~ε2

� �
e�iqφe�iδt þ ~μ*1

~μ*2

 !
eiqφeiδ

*t� e�iφ

1

� �
e�iωt : ð23Þ

We show the perturbation eigenmodes ε1;2 with ω= 9.35 in
Fig. 5b, c, since the growth rate is largest at this frequency
(corresponding to the red dot in Fig. 5a). From the figures, the
growth rates shown in Fig. 5a correspond to the perturbation
eigenmodes with q= 0. The contributions from the higher-order
perturbations with q ≠ 0 are negligible. Based on the above results
and using the Vakhitov–Kolokolov (VK) stability criterion, we
can conclude that the bulk solitons are linearly stable within the
whole spectrum range, although the growth rates are not exactly
equal to zero due to the numerical errors. VK criterion predicts
the instability of the solitons with dP/dω < 0 and provides the
necessary stability condition dP/dω > 052,53. Usually for solitons
without vortices, dP/dω > 0 is also a sufficient stability condition,
because the perturbation eigenmodes have q= 0 and there are no
azimuthal perturbations with q ≠ 054. From Fig. 4c, the power P2
dominates the total power and we have dP2=dω>0 within the
whole spectrum range. Since the pseudospin component ψ2 has a
zero vorticity, the contributions from the azimuthal perturbations
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with q ≠ 0 (namely the perturbations from phases) are negligible.
Thus, according to the VK criterion, the bulk solitons are linearly
stable. Physically, the bulk solitons are stabilized by the saturable
nonlinearity. The bulk solitons under the nonsaturable Kerr
nonlinearity become unstable when the frequency exceeds a
threshold, because there exists a range for dP2/dω < 0 (see
Supplementary Note 3). The saturable nonlinearity suppresses the
continuous decrease of the spatial size of the solitons and changes
the slopes of the existence curves. Then the high-frequency
solitons become stable and all the bulk solitons in the whole
spectrum range are stable.

Next, we further confirm the stability of the bulk solitons by
directly simulating Eqs. (3), (4) based on Runge-Kutta method
in the spectrum domain. The evolution time is t= 10,000,
which is long enough to observe the soliton dynamics. When
the initial input is selected as the soliton solution with ω= 9.35,
we observe the stationary evolution of the bulk soliton, as
shown in Fig. 6a, b. When ±5% noises with uniform
distributions are added to the initial input, although the bulk
soliton experiences a transverse displacement, the bulk soliton
still exhibits as a semi-vortex soliton and the radii of the
isosurfaces are invariant during the temporal evolution (Fig. 6c,
d), unlike the breathing or collapse of the unstable solitons
under Kerr nonlinearity (see Supplementary Note 4). This
behavior confirms that, although the pseudospin component ψ1

has a nonzero vorticity, the bulk solitons are only disturbed by
the radially symmetric perturbations with q= 0 and there is no
radial symmetry breaking. These results valid the fact that the
bulk solitons are stable in the whole spectrum range.

Robustness. Since the bulk solitons are nonlinearity induced
topological edge states, it is crucial to study their robustness
against lattice disorders. We study the robustness of the bulk
solitons by adding disorders to the parameters in Eqs. (3), (4) and
observing the temporal evolution of the bulk solitons under a
noiseless input. As an example, we only show the robustness of
the bulk soliton with ω= 9.35 at K valley under the self-focusing
nonlinearity. The parameters are a= 1, ωA ¼ ωB ¼ 10,
t1 ¼ 2=

ffiffiffi
3

p
, t2 ¼ 1=3

ffiffiffi
3

p
, g= 1, and σ= 1. The evolution time is

also set as t= 10,000. The parameters ωA;B, t1, t2, g, and σ can be
treated as two kinds: ωA;B, g, and σ are the (equivalent) on-site
energies; and t1 and t2 are the hopping amplitudes.

First, we add ±5% disorders with uniform distributions to both
g and σ, and the result is shown in Fig. 7a, b. Since the
nonlinearity is a perturbation to the on-site energies, disorders
from the nonlinear parameter g and saturation coefficient σ only
induce a small drift of the soliton center in xy plane [see the
soliton trajectory in Fig. 7a and Supplementary Movie 1] and the
soliton profile has no deformation (Fig. 7b). Here we only
demonstrate the amplitude of the pseudospin component ψ1 at
the output with t= 10,000 because ψ1 has a small optical power
(Fig. 4c) and it should be more sensitive to the disorders.

Second, we add ±5% disorders to both ωA and ωB. In contrast
to the first case, the bulk soliton shows a considerable random
drift (Fig. 7c and Supplementary Movie 2). Since periodic
boundary conditions are imposed in the numerical simulations of
Eqs. (3), (4), the bulk soliton can move out the simulation domain
from one boundary and reenter from the opposite boundary.
Besides, from the amplitude of ψ2 shown in Fig. 7d, there is a
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perturbation eigenmodes.
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deformation of the soliton profile. Considering the structure
disorders, we find that the upper and lower band edges are
governed by ω0 � δω±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�δωþ 1Þ2

p
, where ωA ¼ ωB ¼ ω0 and

δω is the strength of the disorders. Since the robustness of a
topological edge state is guaranteed only when the disorders do
not close the bulk bandgap, the disorder strength δω should be
smaller than 0.5. Thus, the robustness of bulk soliton is degraded
due to the large disorders from on-site energies.

Third, we add ±5% disorders to t1. Since the change of the NN
hopping amplitude does not affect the central frequency and
bandgap width of the linear bulk band structure, the bulk soliton
in this case has no deformation (Fig. 4f). During temporal
evolution, the bulk soliton exhibits a random transverse drift
because of the breakdown of the periodicity of the lattice (Fig. 4e
and Supplementary Movie 3).

Finally, we add ±5% disorders to t2. Although the NNN hopping
controls the bandgap width, the bandgap exists as long as we have
t2 ± δt2 ≠ 0. This condition is satisfied obviously. The bulk soliton
does not deform during temporal evolution (Fig. 4h), although it also
experiences a transverse drift (Fig. 4g and Supplementary Movie 4).

Regarding to the lattice disorders, our bulk solitons are robust to
the disorders from g, σ, t1, and t2; and only weakly perturbed by the
disorders from the on-site energies ωA;B. Experimentally it is
possible to reduce the on-site disorders to less than ±5% or observe
the bulk solitons within a short period42. Besides, the bulk solitons
are also topologically protected in real space. From Fig. 7b, d, f, and
h and Supplementary Movies 1–4, although there are disorders
from on-site energies or hopping amplitudes, the first pseudospin
components still have nonzero vorticity. Thus, the bulk solitons are
robust against the lattice disorders both from on-site energies and
hopping amplitudes within the whole spectrum range, and the
intervalley conversion of the bulk solitons is prohibited.

Comparison with discrete bulk solitons. In Figs. 2–7, the bulk
solitons are obtained by solving the continuous model based on

Eqs. (3), (4). Here we show the discrete bulk solitons directly
calculated from Eqs. (1), (2) and compare them with the con-
tinuous ones. For simplicity, we only consider the discrete bulk
solitons at K valley under the self-focusing nonlinearity. The
parameters are ωA ¼ ωB ¼ 10, a= 1, t1 ¼ 2=

ffiffiffi
3

p
, t2 ¼ 1=3

ffiffiffi
3

p
,

g= 1, and σ= 1.
Figure 8a, b shows the discrete bulk soliton with the frequency

ω= 9.1. Similar to the continuous bulk soliton in Fig. 2a, b, the
amplitude of ψ1 features a hump at a nonzero radius and the
pseudospin component ψ2 exhibits a peak at the lattice center. From
the phase distributions, near the lattice centers, the phase of the
pseudospin component ψ1 increases clockwise by 2π and the phase
of the component ψ2 is zero. The phase distortions away from the
lattice centers are created by the discrete lattice configuration. Thus,
the discrete bulk solitons are also semi-vortex solitons. Similarly,
Fig. 8c, d shows the discrete bulk soliton with the frequency ω= 9.9.
The discrete bulk soliton extends to more lattice sites and this
behavior agrees with that of the continuous bulk solitons (Fig. 4a, b).
Besides, in Fig. 8e, f, we show the full lattice distribution of the
discrete bulk soliton with ω= 9.9, where (e) and (f) correspond to
the amplitude and phase, respectively. Unlike the continuous bulk
solitons (Figs. 5 and 6), the discrete bulk solitons are unstable within
the whole spectrum range (see Supplementary Note 5). To stabilize
the discrete bulk solitons, we need to decrease the lattice period a
and increase the NN hopping t1

51.

Discussion
We have several remarks here. First, from the above results, the
(continuous) bulk solitons reside in a complete topological
bandgap, and they are stable and robust within the whole spec-
trum range. Because of these features, it is feasible to observe the
bulk solitons experimentally in a photonic Chern insulator. In the
microwave frequency, linear photonic Chern insulators have been
realized in gyromagnetic photonic crystals5,55. Nonlinearity can
be introduced into the photonic crystals using nonlinear elements
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Fig. 6 Temporal evolutions of the bulk solitons. Isosurfaces for the temporal evolutions of the bulk solitons without (a), (b) and with (c), (d) noises added
to the initial input. The soliton frequencies are ω= 9.35.
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such as varactors56. In the optical frequency, a linear photonic
Chern insulator is also realized using active resonator networks26.
Nonlinearity can be easily incorporated by using nonlinear
materials and high input power. Besides, electrical circuit lattices
have been proposed recently as the low-frequency counterparts of
the photonic topological insulators57. Since both Chern circuits
and nonlinear topological circuits have been demonstrated33,58, it
is feasible to implement a nonlinear Chern circuit and observe the
bulk solitons. The theoretical results presented here are not spe-
cific to classical photonic systems. They are also applicable to
photonic lattices realized in atomic systems59–61 and exciton-
polariton systems40,62,63.

Second, we would like to compare our results with the bulk
solitons in a photonic Floquet insulator28. Our paper reveals

several features that were not discovered previously. Our bulk
solitons are found under the saturable nonlinearity, in contrast to
the Kerr nonlinearity used in the photonic Floquet insulator. Due
to the saturable nonlinearity, our bulk solitons are stable and
robust, but the bulk solitons in the photonic Floquet insulator are
unstable. We also find that the angular momenta of the bulk
solitons at different valleys are linked to the topology of the linear
host lattice and the angular momenta can be switched by the sign
of the nonlinearity. These behaviors were not reported in pre-
vious publications.

Third, we would like to point out that the bulk solitons also
exist at other k points. At a general k point, Eqs. (3), (4) are
generalized to the general form of the nonlinear Dirac equations,
which admit the existence of soliton solutions (see Supplementary
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Note 6). However, in order to get a more accurate result when
compared with the discrete bulk solitons calculated from Eqs. (1),
(2), higher-order expansions should be considered because the
dispersions are nonlinear at general k points.

Conclusions
In conclusion, our work predicts the existence of topological bulk
solitons in a nonlinear photonic Chern insulator and we find that
the bulk solitons exhibit as semivortex solitons. Our bulk solitons
at different valleys have the equal angular momentum and the
angular momentum can be switched by the sign of the non-
linearity. Moreover, the bulk solitons are stable and robust within
the whole spectrum range. Our work can be extended to study
bulk solitons in other photonic topological insulators, such as the
photonic spin-Hall insulators8–12.

Methods
For the continuous model [Eqs. (3), (4)], Newton-conjugate-gradient method is
used to seek for the bulk soliton solutions. The stability of the bulk solitons is
studied using the linear stability analysis by following a standard linearization
procedure and the linearized equations are numerically solved using Fourier col-
location method combined with Newton-conjugate-gradient method. The temporal
evolution of the bulk solitons is studied using the Runge-Kutta method in the
spectrum domain. For the discrete model [Eqs. (1), (2)], the Newton’s method is
used to seek for the solutions for the discrete bulk solitons. The stability of the
discrete bulk solitons is also studied using the standard linear stability analysis.

Data availability
The data to produce Figs. 2–8 and Supplementary Movies 1–4 are available from the
corresponding author upon reasonable request.

Code availability
The program code of this study is available from the corresponding author upon
reasonable request.
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