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Feature extended energy landscape model for
interpreting coercivity mechanism
Alexandre Lira Foggiatto 1✉, Sotaro Kunii1, Chiraru Mitsumata1 & Masato Kotsugi 1✉

Coercivity is expressed as a complex correlation between magnetisation and microstructures.

However, owing to multiple intrinsic origins, coercivity has not been fully understood in the

framework of the conventional Ginzburg–Landau theory. Here, we use machine learning to

draw a realistic energy landscape of magnetisation reversal to consider missing parameters in

the Ginzburg–Landau theory. The energy landscape in the magnetisation reversal process is

visualised as a function of features extracted via machine learning; the correlation between

the reduced feature space and hysteresis loop is assigned. Features in the lower dimension

dataset strongly correlate with magnetisation and are embedded with morphological infor-

mation. We analyse the energy landscape for simulated and experimental magnetic domain

structures; a similar trend is observed. The landscape map enables visualisation of the energy

of the system and coercivity as a function of feature space components.
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Soft magnetic materials have important applications in the
cores of transforms, generators, and motors, among
others1–3. With the advantage of reducing global warming,

electric cars have become a popular topic in the automotive
industry. The desired properties of soft magnetic materials for
achieving high energy efficiency are high saturation magnetisa-
tion, low coercivity, and low loss. A crucial aspect that limits the
efficiency of motors is energy loss. The loss at each cycle corre-
sponds to the work performed by the external field4. Therefore, to
develop better motors, maximum suppression of this loss is
necessary. Among the losses, hysteresis loss is primarily caused by
the pinning of the domain wall, which limits the free motion
under an external field4. Domain walls have been extensively
researched5, and the correlation between hysteresis and micro-
structures has been addressed for hard magnetic materials6, and
in a few works, for soft magnetic materials7,8. The microstructure
in soft magnetic materials has an important influence on the loss
owing to the Barkhausen effect9.

Visualising the energy for magnetic materials has practical and
fundamental applications. Balakrishna and James recently
described a theoretical framework to elucidate the coercivity in
Permalloy (Py) using magnetoelastic and anisotropic energies10.
Toga et al. have described the energy landscape for the Neody-
mium (Nd) magnet to reveal the thermodynamic activation
energy of the system11. The calculation of the energy in real
materials is arduous owing to defects, roughness, crystal sizes, etc.
The description of physics in inhomogeneous polycrystalline
systems considering the metallography structure is necessary for
advanced material applications, particularly in non-equilibrium
conditions such as the magnetisation reversal process. Thus, an
understanding of the function of real materials in a heterogeneous
system, such as the magnetic domain and metallographic struc-
ture, has been an outstanding issue in materials science.

Currently, however, this problem may be solved using material
informatics12,13. In the last decade, with the evolution of hard-
ware and the creation of material databases14,15, machine-
learning techniques have broken into material science with out-
standing results16–18. Magnetic properties have recently been
investigated using machine learning. Kwon et al. developed a
technique for extracting the parameters of the magnetic Hamil-
tonian from spin-polarised low-energy electron microscope
(SPLEEM) image data using a combination of neural networks19.
Park et al. have used artificial neural network (ANN) and other
machine learning algorithms to predicate the coercivity in NdFeB
magnets and obtained an accuracy as high as R2= 0.920. Addi-
tionally, the obtainment of system parameters based on the
analysis of the Ginzburg–Landau (GL) domain wall equation has
been recently reported21. Recently discussions done by our group
about the GL theory and its applications and limitations have
been published somewhere else22,23.

In this work, we attempt to describe coercivity using the
machine learning energy landscape and how system properties
can be visualised in feature space using an extension of the
standard GL theory. We focused on understanding the coercivity
mechanism of real materials. We used a micromagnetics simu-
lation and magneto-optical Kerr effect microscope images com-
bined with principal component analysis (PCA) to develop the
energy landscape in the magnetisation reversal process for Py thin
film. We could draw the landscape for simulated and experi-
mental magnetic domain structure sets. We discuss how coer-
civity is represented in a feature space and analysed the
relationship between physical parameters, the meaning of the
outputted features, and energy cost. Our explainable machine
learning method is applied to understand the mechanism of
coercivity of both simulated and experimental datasets of mag-
netisation reversal processes. Here, we compared the effect of an

increase in the density of defects in Py thin films using a smart
analysis to directly connect the image information of the mag-
netic domain structure to the analysis of the coercive force
mechanism using the GL theory. To elucidate the general idea of
this manuscript, Fig. 1 displays the workflow of extracting the
physical information and drawing the energy landscape from the
magnetic domain images. (I) Magnetisation images were obtained
by simulation or experiment or both. (II) Here the images are
pre-processed and converted from real space to reciprocal space
using fast Fourier transformation (FFT). Fourier transformation
has been used in image processing to extract periodic compo-
nents; also, Fourier transformation has been extensively used to
study magnetic domains in diverse imaging and analysis
techniques24–28. The reciprocal space maps the magnetic order;
thus, we can reduce the dataset by considering only the higher-
ordered elements with minimum information loss, which also
avoids overfitting. (III) The reciprocal information is vectorised
and used as the input for PCA, which is reduced in two dimen-
sions. PCA is a simple and efficient algorithm that can help
interpret the trend in the dataset, and it also features explain-
ability. At the end of this step, the energy landscape is drawn,
which can be used to extract the hidden factors. (IV) Finally, the
GL model was extended to the information space by using vari-
able transformations. The correlation between the principal
components and the physical parameters is used to interpret the
magnetisation reversal phenomenon.

Results
Development of energy landscape model
Machine learning methods. Machine learning algorithms are
mainly separated into two main groups: unsupervised and
supervised learning. The former aims to detect patterns and
correlations between the data29 and the latter is trained using data
labels to perform predictions. In this work, we used PCA
(unsupervised learning) to reduce the dimension of the datasets
and ANN and polynomial regression (supervised learning) to
perform the predictions.

Principal component analysis: PCA is a traditional technique
applied for dimension reduction, feature extraction, and data
visualisation29,30. Due to the versatility of the method, PCA and
other PCA-based algorithms have been successfully employed in
pattern recognition and signal processing31–34.

PCA is formally defined as the orthogonal projection of data
points onto a lower-dimensional linear space that the variance of
the data in the lower space is maximised. The goal is to extract
important information from the data set as well as order both the
indices and principal components (PCs) based on the “explain-
ability” (explained variance) of the data set. In a two dimensional
decomposition, the first principal component (PC1) has the
maximum variance. Orthogonal to PC1, the second principal
component (PC2) presents the remaining variance.

Polynomial regression: Polynomial regression is a regression
method that represents the relationship between two variables
using a nth degree polynomial29.

y ¼ β0 þ β1x þ β2x
2 þ � � � þ βnx

n þ ϵ; ð1Þ

where ϵ is the error and β0,⋯ βn are the unknown parameters.
The fitting is often done using the least-square method.

Artificial neural network: ANN is inspired by the biological
neural network to perform predictions35,36. Based on the biolo-
gical concept, an ANN algorithm can be composed of one or
more layers and each layer has one or more nodes, also called
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neurons. The connection between the nodes in an ANN is
weighted based on their prediction ability35.

Each node is trained based on the previous layers and so on.
The layers between the input and output layers are called “hidden
layers”. The training is based on minimisation of the error
function by the gradient descend35.

Extended GL model. GL is a simple model to describe the mag-
netic reversal process based on statistical mechanics. Due to the
simplistic formulation of the system energy, taking account of
defects is rather complicated37. In the GL theory framework, the
free energy of the system is given as a function of the order
parameter. In the case of magnetic materials, the projection of
total magnetic moment in the direction of external magnetic field,
here written as m, plays the role of an order parameter. Therefore,
the magnetically stable state of the magnetic material is obtained
using the following free energy density38:

FðmÞ ¼ Ui þ Uz �
TS
V

ð2Þ

where the first and second terms on the right-hand side are the
internal energy densities, Uz is the Zeeman energy density owing
to the external magnetic field hz, and Ui is the internal energy
density term owing to the exchange, magnetic anisotropy energy
densities, among others, excluding Uz. In Eq. (2), Uz is a linear
function of m, which is given by Uz=−hzm. In the third term, T,
S, and V are the temperature, entropy, and volume respectively.

In this model the magnetisation reversal process is explained
by the stability of the system. For example, the reversal of the
magnetisation state from positive (m > 0) to negative (m < 0),
generated by hz becoming more negative, corresponds to a
monotonous increase of the functional F(m), as observed in Eq.
(2). The magnetisation reversal process occurs when hz is strong
enough to overcome the internal energy barrier. The non-

equilibrium condition is obtained using the following:

∂FðmÞ
∂m

¼ ∂Ui

∂m
� hz ≥ 0; ðm>0Þ ð3Þ

where the derivative of the third term in Eq. (2) can be neglected.
This is because, when the temperature T is sufficiently lower than
the Curie temperature, the change in the total magnetic moment
m is caused by a change in the global magnetic domain structure
rather than spin fluctuation. Thus, the influence of the change in
m on S is negligible. Regarding to the signs in Eq. (3), in the our
exemplified case ∂U/∂m and hz are negative. As a result, the
magnetisation reversal owing to the external magnetic field is
expressed as follows:

�Hc ¼ hz ≤
∂Ui

∂m

� �
min

ðm>0Þ; ð4Þ

where Hc denotes the coercivity of the magnetic material. Note
that hz is negative here and the definition of Hc is a positive
number, thus it requires the negative sign. The magnetisation
reversal condition is that the external magnetic field is less than
the minimum value of the differential term. Because the
differentiation of the internal energy by the magnetic moment
provides an effective field, it is possible to directly compare the
magnetic properties of a material with an external magnetic field.

The calculation of the realistic version of the internal energy
density Ui is extremely complicated; thus in this work, we can
overcome the difficulty in obtaining the internal energy by
investigating the features in the reduced space of the order
parameter. To extract the features from the magnetisation data
set, FFT was selected because it can capture the periodicity of the
magnetic domains39. The magnetisation in the reciprocal space

Fig. 1 Energy landscape analysis workflow. The classic Ginzburg–Landau (GL) model has issues with analysing the coercivity of inhomogeneous real
materials, such as grain boundaries and defects. Our extended GL model exploits the information of inhomogeneities in the magnetic domain structure and
uses a physical descriptor to draw the energy landscape in a feature space. The data acquisition starts with obtaining magnetic domain images from the
initial image set by solving the Landau–Lifshitz–Gilbert (LLG) equation or experimental setup. Next, the features are extracted using fast Fourier
transformation (FFT) and then vectorised. The FFT vectors of the magnetisation image dataset images were reduced to a 2-dimensional space using
principal component analysis (PCA). The dimensionally reduced data sets can finally be stacked together. The interpretation of the coercivity can be done
by observing the distance and gradient of the landscape. Summarily, using supervised machine learning, the prediction of the energy can be achieved.
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can be written as follows:

mq ¼
1

2πV

Z
mðrÞe�iq�rdr; ð5Þ

where m(r) is the total magnetic moment inside the local region
of the magnetic material, which is given by the position vector r,
and V is the volume of the magnetic material.

To connect the image features to the physical property m, we
derive a function D based on the principal components (PCs) of
the FFT features in principal components. D is given as a function
of the extracted features as follows:

m ¼ DðPC1ðmqÞ; PC2ðmqÞ; � � �Þ ð6Þ
The physical descriptor D describes the magnetisation as a
function of the output of the machine learning algorithm. This
transformation can be used to assign meaning to the PCs.
Moreover, to investigate the more complex relationship between
PCs and other physicals properties, the visualisation of the energy
and PCA space components can be useful. Note here that in Eq.
(6) the magnetisation is described as a projection of total
magnetic moment, in comparison to the vector description
displayed in Eq. (9) (Methods section). One approximation of our
model is that we are projecting the magnetisation in the same
direction as the external magnetic field, which is the direction that
accounts for the coercivity. In this study, we refer to this
relationship as an extended energy landscape i.e., extended in the
feature space.

Therefore, the effective field, ∂Ui/∂m, using machine learning
information is transformed to the following:

�Heff ¼
ΔUiðPC1ðmqÞ; � � � Þ
ΔDðPC1ðmqÞ; � � � Þ

ΔDðPC1ðmqÞ; � � � Þ
Δm

" #
ðDðPC1ðmqÞ; � � � Þ> 0Þ

ð7Þ
Equation (7) describes the effective field as a function of the
gradient of the energy landscape in the feature space, and physical
descriptor D. The first derivative contains only elements from the
extended energy landscape and the second describes the
relationship between the real and feature space. In this work,
we are interested in the description of the transformation

landscape in the feature space, our group has attempted to
analyse the shape of the effective field somewhere else40.

Application of energy landscape in feature space
Simulated Permalloy thin film
Data acquisition and pre-processing: Py is a Ni–Fe ferromagnetic
alloy used in the industry for decades owing to its high perme-
ability, low coercivity, and insignificant magnetostriction4,41,42.
The concentration of Ni and Fe is approximately 80% and 20%,
respectively. The impurities and defects must be mitigated to
achieve the desired properties. Figure 2 shows the conventional
magnetisation reversal curves for the simulated Py thin-film
considering the various non-magnetic grain defect densities
(Supplementary Fig. 1) which is in accordance with the
literature43,44. Note that coercivity increases with increasing
density of defects42. This relation is valid for micro-size defects
because increasing the defects result in the generation of more
pinning points, thereby, increasing coercivity45. It is well reported
that nanosize defects can reduce the coercivity; however, this is
outside of the scope of our study. To avoid thermal-related
complications, we consider T= 0 K and for the measured sample,
we measured as-grown. The problem with only relying in the
magnetisation curve is that it is a physical quantity calculated by
averaging the magnetic domain contrast and does not provide
sufficient information on the microstructure of the magnetic
domain. Thus, we use FFT and a dimension-reduction method to
increase the physical information obtained from the magnetisa-
tion curve.

To transform data into the feature space, we first arrange the
magnetisation in an image set and process it using FFT. Next, the
images were cropped 1/4 of the original size to avoid overflow.
The transformed images are then vectorised, and the real and
imaginary parts of the Fourier transformed vectors are stacked
together. Third, an unsupervised machine-learning algorithm,
PCA, was used to reduce the dimensions of the dataset. PCA is
effective in extracting linear features of the dataset and projecting
them into a low-dimensional space30. The main idea of PCA is to
identify a new set of variables (principal components) that are
linear functions of the original dataset and linearly independent
of one another. The new set of variables is ordered according to
the variance46.

Drawing the energy landscape. Figure 3 a shows the result of
drawing the magnetisation curve in the information space using
FFT and PCA. We took the FFT of the magnetisation component
of mx, extracted the features, and decomposed them in a two-
dimensional space using PCA. Each point corresponds to an
image from the dataset. The distribution of PCA decomposition is
centred at the origin, owing to a feature implemented by default
in the PCA algorithm. Cumulative contributions of the first and
second principal components (PC1 and PC2) are approximately
80–90% (for more details, see Supplementary Table 1), which
means that most of the information from the images can be
reduced to two dimensions. Note that the points representing
images around the coercivity region (m= 0) are commonly dis-
tributed around zero of feature 1 (PC1) and in the maximum/
minimum of feature 2 (PC2). In contrast, the points representing
the saturation texture images (B= 0.6 T) are commonly dis-
tributed in the minimum and maximum of PC1 and nearly zero
of PC2. The symmetric disposition of coercivity and saturation
shows that PCA can capture information about the hysteresis
loop from the magnetisation domain dataset. By overlapping
different defect density datasets, we can see a clear increase in
point dispersion as the defect density increases, implying that the
overall distance between the points increases.

Fig. 2 Defect dependence magnetisation reversal curves. Magnetisation
as function of the external field for simulated Permalloy films with different
density of defects, shown in the legend. The density of defects varied from 1
to 23.6%. The inset images show the normalised x-component of the
magnetisation (mx/m) domains images for a specific location on the
hysteresis curve. The calculation generates appropriate magnetic structures
and magnetic hysteresis loops that will be used hereafter as an example of
the application of extended Ginzburg-Landau method.
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To investigate the meaning of the feature space components,
the correlations between PCA components (Fig. 3a) and physical
parameters were analysed. Figure 3b shows the PC1 as a function
of magnetisation. Note that PC1 an be approximated as a linear
relationship with the magnetisation.

For PC2, however, the physical interpretation is difficult, since
no linear correlation was observed. Thus, it is important to
analyse the correlations between various physical parameters.
Near-coercivity images in the magnetisation space are mapped to
the local maximum/minimum of PC2 (Fig. 3a), but unlike PC1,
PC2 correlates with the magnetic domains. Thus, we can infer
that PC2 might be related to the system energy, the total energy as
a function of PC2 is displayed in Fig. 3c. The relationship between
total energy and PC2 resembles a higher-order polynomial, with
the coercivity data images near the maximum. Moreover, the
landscape is flattened near the coercivity, which accurately
represents the properties of soft magnetic materials.

One simple result that can be obtained from PCA decomposi-
tion is the relationship between feature space components and
coercivity. Figure 4 shows the relationship between the weighted
Euclidean distances from saturation to coercivity in the feature
space (d) and coercivity. The weighted distance from the
saturation to the coercivity is defined as follows:

dðPCsat; PCcoerÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i
α2i PCsat;i � PCcoer;i

� �2
r

; ð8Þ

where index i corresponds to the PCA components, and α is the
explained variance of component i of the PCA decomposition.
Here, we truncate the sum in the second element owing to the
high explanation rates of PC1 and PC2. Note that d is
proportional to coercivity. The second-order polynomial regres-
sion of the weighted distance associates a physical property with
an element from the feature space. This correlation is explained
by understanding how the magnetisation texture is disposed of in
the feature space. Similar textures are disposed closer in the
feature space; however, in the case of depinning, it is also
visualised in the morphology of the magnetic texture which, in
turn, increases the distance of points in the feature space. In other
words, increasing the density of defects increases the occurrence
of depinning, dispersing the data point in the reduced space.
Although the distance between the adjacent points is reduced for
the highly defective films owing to the smaller depinning, the
overall distance is increased by the occurrence frequency.

The distance in the extended landscape might determine the
coercivity mechanism. Thus, the energy of the system can be
visualised for an unknown system based on the disposition of
points in the feature space. High explanation ratios of PC1 and
PC2 demonstrate that both components hold sufficient

information on the magnetic ordering to describe coercivity. In
the case of a lower explanation ratio, other PCA components can
be easily added, which makes this approach versatile and useful.
The similarities in the feature space show that the components
are correlated with energy and coercivity, and can be used to
reveal other properties in more complex systems.

The final step is to predict the energy based on the reduced space
variables (PC1 and PC2). Figure 5 displays the estimated energy as
a function of the actual value of the energy. The model was trained
using a deep neural network and we achieved coefficient of
determination R2= 0.82. It is possible that by increasing the
number of data, we could improve the result of the prediction. This
implies that the energy can be predicted based on image location in
the feature space. The ease with which the inhomogeneities can be
added is a significant advantage over the GL theory because the GL
theory considers the average of magnetisation.

Experimental Permalloy thin film
Experimental data acquisition and pre-processing: We demon-
strate that the energy landscape for experimental images can be
drawn similarly. Here, the in-plane magnetisation image data were
obtained using a Kerr microscope, as described in the methods
section. Before drawing the energy landscape, the image set was pre-
processed using a Python library for scientific analysis called SciPy

Fig. 3 Principal component analysis output evaluation. a Principal component analysis (PCA) decomposition magnetisation dataset considering various
defect densities. bMagnetisation as a function of the first principal component (PC1), c total energy (Etotal) as a function of the second principal component
(PC2). Red and black symbols correspond to positive and negative coercivity, respectively. PC1 is a good explanatory variable for the magnetisation,
whereas PC2 can be a good explanatory variable for energy. The density of defects varied from 1 to 23.6%.

Fig. 4 Relationship between coercivity and distance. Coercivity as a
function of principal components weighted Euclidean distance from
saturation to coercivity (d(PCsat, PCcoer)) defined in Eq. (8). Each point
corresponds to a different dataset with a distinct defect density, thereby
varying coercivity. The dotted red line corresponds to second-order
polynomial regression.
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to correct for the brightness of the Kerr microscope’s light source47.
We treated the magnetisation texture images obtained from the
Kerr microscope as matrices, as they are in a 16-bit file format
(216= 65536 values). First, the background was subtracted from the
images to increase the contrast; a Gaussian filter (σ= 7) and blur
filter were used to reduce the noise. The filters had a negligible
influence on the final result. The average intensity variation of the
images was then used to normalise and correct the intensity of the
whole data set. In contrast to the simulated images, the experi-
mental images are susceptible to noise and drifting, which shifts the
brightness intensity requiring additional correction.

After image correction, the estimation of the magnetisation
curve for Py (Ni78.5Fe21.5) is displayed in Fig. 6. Here,
magnetisation is calculated by obtaining the ratio of bright to
dark pixels in the images. Note that, in contrast to the
magnetisation curve (Fig. 2), the hysteresis curve for the
experimental images is almost completely square owing to the

approximation method (superficial pixel counting) and the large
steps in the external field. Since we estimated the magnetisation
by the in-plane superficial Kerr images, the pixel contrast might
not be enough to obtain the detailed magnetisation curve. The
usual value for coercivity in Py has been reported as two orders
the magnitude lower than our sample42, which is in the same
order as a high defect film48.

Drawing experimental energy landscape. Similar to the discussion
in the previous section, the domain wall information was
extracted from the experiment using FFT. Before applying PCA,
the real and imaginary parts were vectorised and stacked together.
Figure 7 displays magnetisation as a function of PC1. Note that
the relationship between PC1 and magnetisation is similar to that
observed in the simulated data, demonstrating the reproducibility
of the extended GL model in the experimental data. Coercivity is
located near zero in PC1, which is consistent with our previous
discussion. Py has a very low coercivity, which imposed certain
experimental limitations. In contrast to the simulation, the
external conditions could not be controlled precisely, and the
steps were not comparably fine. A small difference is observed in
Fig. 7 compared to the simulated case near the saturation region
(Fig. 2b). The distinct curvature of the data points in the
saturation region in these two images might be because of the
different boundary conditions of the magnetic thin film. Never-
theless, the dimension reduction could capture similar informa-
tion regarding the data condition.

We used the model shown in Fig. 4 to estimate coercivity as
0.09 T, which is reasonably close to the measured value of
approximated 0.07 T. This result supports the robustness of the
developed method. Another advantage of using the energy
landscape in the reduced space is its sensitivity compared to the
usual methods that can be highly affected by the steps of the
external field as observed in the magnetisation curve (Fig. 6). In
our experiment, the coarser external field steps hinder the reversal
process mechanism. The energy barrier to align the spins in the
material with the magnetic field is very low owing to the almost
non-existence of large pinning point regions.

Discussion
In real materials, morphological and structural defects play an
important role in coercivity, and they are difficult to predict the
origin of the material function. Here, we attempt to interpret the
meaning of the features and deepen our understanding of the

Fig. 6 Experimental magnetisation reversal curve. Experimental
magnetisation curve (mx/m) as a function of the external field (B). The
inset Kerr magnetic domain image points to the corresponding position in
the magnetisation process. The positive and negative coercivity are
denoted by white dots. The magnetisation reversal in the experimental
dataset demonstrates that it is appropriate and that the analysis can be
conducted.

Fig. 7 Relationship between magnetisation and the first principal
component. Magnetisation (mx/m) as a function of first principal
component (PC1). Positive and negative coercivity are denoted by white
dots. This image can be used for direct comparison with the simulated
result (Fig. 3b).

Fig. 5 Prediction of the demagnetisation energy. Demagnetisation energy
(Edemag) as a function of energy prediction using deep learning (r2= 0.82).
Each point corresponds to one magnetisation image and the solid line is the
bisector. The shape of the energy landscape can be build and updated
based on the training data.
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analysis results. In our model the FFT extracts features of the
periodic structures by extracting multiple principal components
in a data-driven manner, it might be possible to extract hidden
features while still containing information about heterogeneity.
This could be included in the edge of the usual FFT peak, which
may contain magnetic ordering information, but has largely been
overlooked by conventional analysis. It is noteworthy that we are
using most of the information in the FFT pattern by considering
the high explanation ratio components of PCA. Moreover, by
using PCA to reduce the dimensions, we can narrow down and
focus only on the ones with high explanation, which contributes
to reducing the amount of data for analysis and study.

In simulations, coercivity can be calculated with high accuracy
owing to the access of all variables in real materials; otherwise,
there are many unknown parameters correlated with the micro-
structures. Our approach for describing the energy landscape
using machine learning showed good results for both experimental
and simulated data. Both shared similar shapes for the energy
landscapes, as well as the explanation of variables and correlations
between them. Because both systems consist of the same material,
the magnetisation process should be similar; thus, the magnetic
domain information in the reciprocal space is comparable, and the
same considerations hold. Another advantage of using reciprocal
space is that the same method to obtain the energy landscape can
be applied to other techniques, not only for spatial imaging.
Neutron diffraction, which is a powerful technique to investigate
the magnetic structure of a material that outputs the data in the
reciprocal space49 and can be used to study the magnetic prop-
erties using the energy landscape. We recently developed an
analysis method for magnetic domains using topological data
analysis (TDA)40,50. In the future, we intend to combine the
method described herein with TDA to improve the extraction of
inhomogeneities in magnetic domain structures.

In conclusion, to obtain the physical parameters from magne-
tisation images, we draw the energy landscape using material
informatics tools. The coercivity for real materials cannot be
described using only the usual GL method because morphological
defects cannot be added without tuning the theory using ad hoc
parameters. Here, we tried to overcome this problem by using the
landscape that emerges from the principal components analysis of
the magnetisation images. Based on the landscape, we observed the
correlation of the distance and the coercivity in the reduced space.
Mediated by the landscape, the energy and order parameters could
be obtained from the magnetisation texture. Moreover, we
demonstrated the importance of the pinning process in the total
energy of the system and showed its relationship to the feature
space and physical properties. Although we applied it to simple
systems, the method can be extended to other systems and con-
sidering other properties such as temperature and strain/stress as
well the dynamics in a high-speed magnetisation reversal process.

Methods
Micromagnetics simulation. Micromagnetics is a technique that simulates the
magnetic behaviour of ferro- or ferrimagnetic materials in sub-micrometre scales.
It can reproduce the magnetisation reversal process in inhomogeneous systems in
any arbitrary shape45,51. The Landau–Lifshitz–Gilbert (LLG) equation models the
effect of the electromagnetic field on ferromagnetic materials by considering the
response of the magnetisation M to torques52.

dM
dt

¼ �γ0ðM ´Heff Þ þ α M´
dM
dt

� �
; ð9Þ

where γ0 is the electron gyromagnetic ratio and α is the dimensionless damping
factor. The effective field Heff usually contains the contribution from the exchange,
anisotropy, Zeeman, and demagnetisation energy densities.

Micromagnetic modelling was performed using MuMax344. The cell size in all
the simulations was set as 10 nm × 10 nm × 50 nm, and the LLG equation was
solved using a closed boundary condition. In this model, we selected the following
material parameters that are suitable for Py: saturation magnetisation

Ms= 8.5 × 105 Am−1, exchange stiffness A= 1.3 × 10−11 Jm−1, dumping constant
α= 0.01, and perpendicular uniaxial anisotropy Ku= 0.5 × 103Jm−353,54. This
results in an exchange length ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=μ0M

2
s

p
¼ 5:3 nm, which is in accordance

with the values reported in literature54.
To simulate the defects, an algorithm was used to draw random size defects in

the texture of the input images. The dot defects vary from 1 to 50 μm2, and the total
number of defects ranges from 1 to 23.6% of the surface of the film. The external
magnetic field B swept from −0.6 T to 0.6 T in the x direction, yielding 4400
magnetisation images for each texture.

Magneto-optic Kerr effect observation. The sample used in this study was a
100 nm Py (Ni78.5Fe21.5) sputtering grown on a clean Si surface without removing
the oxide layer. The magnetic texture of the sample was observed using Magneto-
optic Kerr effect microscope of Evico Magnetics, selecting the longitudinal polar-
isation. The exposition time was set to 42 ms, and the field of view was 100 μm. The
external magnetic field B swept from −0.07 to 0.07 ± 0.005 T in-plane at room
temperature.

ANN model construction. The ANN model was built using 3 layers, the first and
second layers have 64 nodes and the last layer has 1 node. We set the dropout in
the first layer as 5% and used the rectified linear unit (ReLU) as activation function.
To avoid overtraining using the ReLU function, we normalised the energy between
0 and 1. The input data are the reduced space landscape and were divided into
150 × 100 bins. We used the position of the bin and the training value for energy
for all data sets. The input data were also shuffled and divided into batches of
10 samples.

Data availability
All datasets are available upon reasonable request.

Code availability
The codes are available upon reasonable request.
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