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Controlling topological phases of matter with
quantum light
Olesia Dmytruk1✉ & Marco Schirò1✉

Controlling the topological properties of quantum matter is a major goal of condensed matter

physics. A major effort in this direction has been devoted to using classical light in the form of

Floquet drives to manipulate and induce states with non-trivial topology. A different route can

be achieved with cavity photons. Here we consider a prototypical model for topological phase

transition, the one-dimensional Su-Schrieffer-Heeger model, coupled to a single mode cavity.

We show that quantum light can affect the topological properties of the system, including the

finite-length energy spectrum hosting edge modes and the topological phase diagram. In

particular we show that depending on the lattice geometry and the strength of light-matter

coupling one can either turn a trivial phase into a topological one or viceversa using quantum

cavity fields. Furthermore, we compute the polariton spectrum of the coupled electron-

photon system, and we note that the lower polariton branch disappears at the topological

transition point. This phenomenon can be used to probe the phase transition in the

Su-Schrieffer-Heeger model.
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Light-control of quantum materials is an emerging goal of
condensed matter physics. While traditionally light has
played the role of spectroscopic probe, recent experimental

efforts have demonstrated the possibility of inducing novel phases
of matter by selective irradiation1,2 or by coupling to cavity
fields3–7.

Topological phases of matter8,9 play an important role in this
perspective due to their robustness and their possible application
in quantum technologies. As such there has been tremendous
interest in the possibility of enhancing or inducing topological
properties in electronic system by light, a notable example being
the Floquet topological insulator10,11. Floquet-engineered topo-
logical band structure was experimentally demonstrated in a
variety of solid state materials irradiated by circularly polarized
light12,13. Similar efforts in realizing topological phases of matter
using time-modulated optical lattices have been made with
ultracold atoms14. Quantum fluctuations of the light field in a
cavity offer new possibility to probe, control and tune the prop-
erties of a material, leading for example to polaritons, hybrid
light-matter excitations, with non-trivial topological
properties15–21 or to anomalous Hall response in presence of a
circularly polarized field22. Here we ask the question of what
happens to a topological material due to the coupling to cavity
photons. Such question is of direct experimental relevance given
the recent observation of a breakdown of topological protection
in an integer Quantum Hall system coupled to a cavity23 and can
be also explored with ultracold atoms embedded in high-finesse
resonators24,25.

A prototypical model for topological behavior in one dimen-
sion is the Su-Schrieffer-Heeger (SSH) model26, originally intro-
duced to describe conducting electrons in polyacetylene and
which later found applications in a variety of settings27–33. The
SSH model describes a 1D dimerized chain with alternating weak
and strong nearest-neighbor hoppings and displays a topological
transition associated with a non-trivial Zak phase. The experi-
mental realization of the SSH model has been demonstrated in
ultracold atoms34–36, graphene nanoribbons37,38 and in various
platforms for topological phenomena, from photonics39–41 to
mechanical metamaterials42.

In this work, we study the interplay of topological phases of
matter and quantum light by considering the SSH model coupled
to a single mode photonic resonator through the full gauge
invariant Peierls phase. We show that quantum fluctuations of
the light field can have dramatic effects on the topological
properties of the system and most remarkably turn a trivial
insulating phase into a topological one above a critical light-
matter coupling, with emergence of non-trivial topological edge

modes. This topological transition is possible due to the structure
of the Peierls phase, which preserves chiral symmetry and
introduces a non-trivial dependence from the lattice geometry,
similarly to the case of classical light explored in the context of
Floquet driving. Differently from the latter, however, our results
do not suffer from heating runaway problems that often plagued
Floquet engineering schemes and required high-frequency driv-
ing or tailored dissipation. Finally, when considering the limit of
an infinite chain we show that the topological transition reduces
to the case of the isolated SSH model. However, photons retain
memory of the non-trivial topology of the system as we show by
computing the polariton spectrum of the hybrid system. We find
that the lower polariton branch disappears when the hopping
amplitudes is tuned to satisfy the topological criterion. Thus,
measurements of the polariton frequencies could provide direct
access to the topological phase transition point.

Results
The Model. We consider a one-dimensional SSH model coupled
to a single mode cavity (Fig. 1). The SSH model describes spinless
electrons hopping on a one-dimensional chain composed of L
unit cells with two sublattices A and B.

The Hamiltonian reads

HSSH ¼ v ∑
L

j¼1
cyjAcjB þ cyjBcjA

� �

� w ∑
L�1

j¼1
cyjþ1;AcjB þ cyjBcjþ1;A

� �
;

ð1Þ

where v ≥ 0 is the intracell hopping amplitude, w ≥ 0 is intercell
hopping amplitude, and cyjμ (cjμ) are the fermionic creation
(annihilation) operators at site j and sublattice μ=A, B. As
shown in Fig. 1 the lattice constant is a0 while the intracell
distance between A and B lattice sites is b0 < a0. In absence of any
light-matter interaction the SSH model displays a well-known
topological phase transition as the ratio between the two
hoppings is tuned. In particular the ground-state of the system
is in topological phase for v <w with finite Chern number and in
a topologically trivial phase for v >w. We emphasize that in this
case the spectrum does not depend on the lattice spacing b0. The
single mode cavity Hamiltonian is given by

Hph ¼ ωc ayaþ 1
2

� �
; ð2Þ

where ωc is the mode frequency and a† (a) are the photon
creation (annihilation) operators satisfying [a, a†]= 1. We couple
the SSH chain to the cavity mode through the gauge invariant
Peierls substitution43–47, which amounts to dress the hoppings
amplitudes entering the SSH Hamiltonian Eq. (1) as v ! v eieA‘AB

and w ! we�ieA‘BA , where e is the electric charge, A ¼ A0ðaþ
ayÞ is the uniform vector potential, and ℓAB= b0, ℓBA= a0− b0
represent respectively the distance between atoms in the same
(different) unit cell. To understand the origin of this different
renormalization we note that the Peierls substitution is
completely equivalent to applying a unitary transformation Ω
to electronic Hamiltonian47, i.e.

H ¼ Hph þ ΩyHSSHΩ; ð3Þ
where the unitary is defined as

Ω ¼ e
ieA∑

jμ
Rjμc

y
jμcjμ

: ð4Þ

Here, Rjμ indicates the position of the atom in the μ=A, B
sublattice, with RjA= ja0 and RjB= ja0+ b0. Under this unitary
transformation the fermionic operators cjA, cjB acquire a site-

Fig. 1 Scheme of the Su-Schrieffer-Heeger chain coupled to cavity. A one-
dimensional dimerized Su-Schrieffer-Heeger chain with intracell v (black
solid line) and intercell w (black dashed line) hopping amplitudes coupled
to a single mode cavity with frequency ωc. The strength of the light-matter
coupling is given by g. The lattice constant is a0, and the distance between
the sublattices A and B within the same unit cell (blue dashed square) is b0.
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dependent phase (See Methods) which leads to the full light-
matter Hamiltonian of the form (setting a0= 1)

H ¼ v ∑
L

j¼1
ei

gffiffi
L

p b0ðaþayÞcyjAcjB þ h.c.
� �

� w ∑
L�1

j¼1
e�i gffiffi

L
p ð1�b0ÞðaþayÞcyjþ1;AcjB þ h.c.

� �

þ ωc ayaþ 1
2

� �
:

ð5Þ

Several observations are in order here concerning this Hamilto-
nian. First, the two hopping integrals v,w are renormalised by
different Peierls factors due to the different distance between
atoms within the same or different unit cell. This gives an explicit
dependence of the Hamiltonian from the ratio of lattice spacing
b0, which instead is missing in equilibrium and will play a key role
in the following. Furthermore, we note that using the unitary
operator defined in Eq. (4) one can write down a fully equivalent
light-matter Hamiltonian in the Dipole Gauge (see Methods).
Finally, we note that in Eqs. (4)–(5) we have rescaled light-matter
coupling g= eA0 by the factor 1=

ffiffiffi
L

p
, namely, we consider the so-

called collective ultra-strong coupling regime48–51. While this
ensures that in the thermodynamic limit a single cavity mode
does not affect thermodynamic bulk properties, as we indeed are
going to recover, we show here that the topological properties, in
particular the emergence of edge modes in the finite-length
energy spectrum is strongly modified by the coupling to light.

Energy spectrum of finite-length SSH model coupled to pho-
tons. A signature of the non-trivial topology of the SSH model is
contained in its finite-length energy spectrum which hosts edge
modes exponentially localized near the boundaries52. The first
question we address is therefore what is the fate of the edge
modes in presence of a finite coupling to the cavity mode. To this
extent we study the model within a factorized mean-field ansatz
for the ground-state of the form Ψj i ¼ ψ

�� �
ϕ
�� �

, corresponding to
neglecting correlations between the cavity modes and electrons.
This ansatz is justified in the limit of large L where electron and
photons are expected to decouple. Within this ansatz we obtain
(see Methods) a renormalised SSH model with hopping ampli-
tudes v and w dressed by the cavity photon

Hmf
el ¼ ϕ

	 ��H ϕ
�� � ¼ ∑

L

j¼1
~v cyjAcjB þ h.c.

� �

� ∑
L�1

j¼1
~w cyjþ1;AcjB þ h.c.

� �
;

ð6Þ

where we introduced the renormalized hoppings ~v ¼
vφðg; b0Þ; ~w ¼ wφðg; 1� b0Þ with the renormalization factor

φðg; ‘Þ ¼ ϕ
	 ��e�i g‘ffiffi

L
p ðaþayÞ ϕ

�� �
; ð7Þ

and a renormalised mean-field photon Hamiltonian Hmf
ph (see

Methods for the complete expression). We find the photonic
ground state ϕ

�� �
and the electronic ground-state ψ

�� �
by solving

the associated mean-field Hamiltonian self-consistently. We find
that the renormalization factor φ(g, ℓ) is purely real, a con-
sequence of the fact that the ground-state of the coupled electron-
photon does not carry a finite current.

The finite-sized spectrum of the effective SSH model is plotted
in Fig. 2 for different values of the light-matter coupling g and the
geometrical factor b0. As expected for g= 0 we find a topological
transition for w/v > 1, when a pair of exponentially small almost
zero modes appear in the middle of the bulk gap. Upon including
a finite light-matter coupling we see that the energy spectrum

changes depending on the value of the parameter b0. In particular,
for b0= 0.8 we see that the topological transition is pushed to
smaller values of w/v, indicating that coupling to the quantum
fluctuation of the light field favor the topological phase. On the
other hand, for b0= 0.2, the situation is reversed and the edge
modes appear for larger values of the hopping ratio w/v. This
different behavior can be understood by looking at the different
photonic renormalization to the hopping integrals, as we are
going to discuss further below.

Topological phase diagram. We now turn to discuss the bulk
phase diagram of the coupled electron-photon system and the
emergence of topological phase transitions. To this extent we
consider a system with periodic boundary conditions and no
edges. This allows to write the Hamiltonian in momentum space.

Introducing the fermionic field ψy
k ¼ cyk;A; c

y
k;B

� �
, the Peierls

Hamiltonian in the momentum space can be written in compact
form as

H ¼ ∑
k
ψy
k Hkða; ayÞψk þ ωc ayaþ 1

2

� �
; ð8Þ

where we have introduced an effective single particle electronic
Hamiltonian Hkða; ayÞ ¼ ∑α dkαða; ayÞσα, with σα=x,y,z Pauli
matrices. The structure of this Hamiltonian is encoded in the

vector dkα ¼ dkx; dky; dkz
� �

, which depends on the photonic

degrees of freedom, the light-matter coupling and the ratio of
lattice spacing, and reads

dkx ¼ v cos Kb0

 �� w cos Kð1� b0Þ


 �
; ð9Þ

dky ¼ �v sin Kb0

 �� w sin Kð1� b0Þ


 �
; ð10Þ

dkz ¼ 0; ð11Þ
with K ¼ kþ gffiffi

L
p aþ ay

� 
the shifted momentum.

For topological systems such as the SSH model the chiral (or
sublattice) symmetry plays a pivotal role, protecting the existence
of a transition between two insulating phases with different
topological properties. In the language of the pseudo-spin
components used in Eq. (8) this requires that there is no mass
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Fig. 2 Energy spectrum of the Su-Schrieffer-Heeger chain in presence of
cavity. Energy spectrum of the Su-Schrieffer-Heeger model coupled to a
single mode cavity as a function of hopping ratio w/v. Black solid lines
correspond to zero light-matter coupling g= 0 and red dashed (blue dot-
dashed) lines correspond to the sublattice distance b0= 0.8 (b0= 0.2) and
g= 20. Other parameters are chosen as intracell hopping v= 1, number of
unit cells L= 100, lattice constant a0= 1, cavity frequency ωc= 0.5, and
maximum number of photons Nmax= 10.
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term for the electrons in the A and B sublattices, i.e. dkz= 0. From
the structure of the Hamiltonian in momentum space we see
therefore that even in presence of quantum light, g ≠ 0, the chiral
symmetry is preserved by the Peierls substitution. This ensures
the existence of pairs of eigenstates with opposite energies.

In the purely electronic model, corresponding to g= 0, the
topological phase transition in the thermodynamic limit would
be associated with a closing and reopening of the bulk gap. For
a finite-size chain the gap remains finite and the transition
point is associated to the minimum energy gap. In presence of
light-matter coupling in the collective ultrastrong coupling
regime it is important to keep a finite L to obtain non-trivial
effects from the photons. As in the previous section, we employ
the mean-field approach to calculate the bulk energy spectrum
in the presence of the coupling to photons (see Methods). By
solving the electronic and photonic mean-field Hamiltonian
self-consistently, we find that the photon renormalization to the
electronic hoppings are purely real, and the electronic bulk
energy spectrum reads

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v2 þ ~w2 � 2~v~w cosðkÞ

q
; ð12Þ

with ~v; ~w defined before Eq. (7). The bulk energy gap is given by
the value of the dispersion at k= π/L,
Δ ¼ min ϵk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v2 þ ~w2 � 2~v~w cosðπ=LÞ

p
. From this we see that

the phase boundary between trivial and topological phases is
implicitly given by the equation ~w=~v ¼ 1, i.e.

wc

v
¼ φðg; b0Þ

φðg; 1� b0Þ
; ð13Þ

where we emphasize how the renormalization factors depend both
on the electronic and photonic parameters, such as light-matter
coupling and cavity frequency, as well as the geometric factor b0,
through the self-consistent ground state entering Eq. (8).

Solving the photonic and electronic Hamiltonian self-
consistently we find numerically the topological phase diagram

that we plot for two values of b0 in Fig. 3 (panel (a) b0= 0.2, panel
(b) b0= 0.8). From this we see, even more clearly, that the light-
matter coupling is able to affect the finite-size topological
structure of the system. As already observed in the finite-sized
edge spectrum, for b0= 0.2 we see that coupling to quantum light
is energetically detrimental and the topological phase of the SSH
model is destroyed. Strikingly, we see that for b0= 0.8 a trivial
SSH model can be turned into a topological phase by increasing
light-matter interactions. This is one of the main result of this
work which opens up the exciting possibility of controlling
topology with light. Another interesting aspect is the role played
by the geometrical factor b0 in shaping the phase diagram of the
system. As we see in Fig. 3, panel (c), also tuning b0 gives rise to
different behavior and a possible topological transition. This
suggests a comparison with the classical Floquet case28, that we
leave for the discussion.

Finally, we discuss the dependence of the critical hopping
strength wc from the size of the system L. As we show in panel (d)
of Fig. 3 upon increasing L the critical coupling approaches the
value wc= v, corresponding to the topological transition in the
absence of the cavity (g= 0). This result is consistent with the
recent literature stating that single mode cavity are not expected
to change bulk properties of the system in the thermodynamic
limit47,51,53,54.

Photonic properties. In this section, we focus on the properties
of the photonic states coupled to a finite-length SSH chain. In the
basis of the Fock states, the photon ground state can be written as
ϕ
�� � ¼ ∑ncn nj i, where n denotes the number of photons. The
coefficients cn could be found by calculating the eigenvectors of
the photonic Hamiltonian Hmf

ph ¼ ψ
	 ��H ψ

�� �
. We find that the

coefficients cn corresponding to odd number of photons are zero
(see inset in Fig. 4). This reflects a discrete symmetry of the
photonic Hamiltonian which in presence of light-matter coupling
is invariant under a↔− a, rather than under a fully phase
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Fig. 3 Topological phase diagram of the Su-Schrieffer-Heeger model in presence of cavity. Topological phase diagram as a function of the light-matter
coupling g and hopping ratio w/v for a the sublattice distance b0= 0.2 and b b0= 0.8. Trivial (white area) and topological phases (a blue for b0= 0.2 and
b red for b0= 0.8) are separated by the phase boundary (blue and red lines) given by Eq. (13). Phase boundary is shifted to larger (smaller) values of w/v
for b0= 0.2 (b0= 0.8). c Topological phase diagram as a function of b0 and w/v for a fixed value of the light-matter coupling g= 10. The topological phase
is entered at smaller (larger) values of w/v for b0 > 0.5 (b0 < 0.5). d Topological phase diagram as a function of the number of unit cells L and w/v for
g= 20. Phase boundary goes to w/v= 1 for large values of L for b0= 0.2 (blue dashed line) and b0= 0.8 (red solid line). Other parameters are fixed as
intracell hopping v= 1, lattice constant a0= 1, cavity frequency ωc= 0.5, maximum number of photons Nmax= 10, and L= 100 (except panel d).
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rotation. This symmetry is protected by the absence of an elec-
tronic current in the ground-state, and thus of superradiance,
which otherwise would generate terms linear in the photonic field
and non-symmetric. Furthermore, as we are going to see it
implies squeezing. To this extent we introduce the position X ¼
aþ ay
� 

=
ffiffiffi
2

p
and momentum P ¼ �i a� ay

� 
=

ffiffiffi
2

p
operators.

For a bare photonic Hamiltonian Eq. (2), the expectation values
of the X2 and P2 operators are equal, 〈X2〉= 〈P2〉= 1/2. However,
for a single mode photonic Hamiltonian coupled to the SSH
chain we find that 〈P2〉 > 〈X2〉, therefore, photonic state becomes
squeezed (see Fig. 4). We can understood this behavior from the
form of the effective photonic Hamiltonian (see Methods) for
large L and from the fact that, as we said, there is no coherent
displacement induced by the electrons i.e.

Hmf
ph ¼ ωc ayaþ 1

2

� �
þ r aþ ay

� 2
; ð14Þ

where the squeezing parameter r is controlled by the renorma-
lized kinetic energy of the SSH chain (see Methods).

Polariton spectrum as signature of topological phase transi-
tion. Finally, we conclude discussing how the light emitted from
the cavity, encoded in the photonic spectral function and mea-
surable through transmission/reflection experiments55–57, con-
tains crucial signatures of the topological phase transition in the
SSH system. The excitations of the SSH chain coupled to a cavity
mode are hybrid light-matter polariton quasiparticles whose
energies and lifetime can be read out from the photonic spectral
function. This strongly depends on the topological properties of
the underlying electronic system. Here we show in particular that
at the topological transition one polariton mode is pushed to zero
frequency and loses spectral weight, thus leaving only two peaks
in the spectral function. Specifically we consider the photon
spectral function AðωÞ ¼ � 1

π Im
R
dte�iωt �iθðtÞð Þh aðtÞ; ay
 �i,

dressed by the electronic system including 1/L Gaussian

fluctuations47,58. This can be written as

AðωÞ ¼ � 1
π

χ00ðωÞðωþ ωcÞ2
ðω2 � ω2

c � 2ωcχ
0ðωÞÞ2 þ ð2ωcχ

00ðωÞÞ2 ; ð15Þ

where χ(ω)= K(ω)− 〈Jd〉 is the current-current correlation
function that is a sum of paramagnetic and diamagnetic con-
tributions (see Methods),

Kðτ � τ0Þ ¼ �hTcJpðτÞJpðτ0Þi; ð16Þ

Jp ¼
gffiffiffi
L

p ∑
k
ψy
kðw sinðkÞσx � w cosðkÞσyÞψk; ð17Þ

Jd ¼ � g2

L
∑
k
ψy
kðw cosðkÞσx þ w sinðkÞσyÞψk: ð18Þ

We show the behavior of the photonic spectral function in the top
panel of Fig. 5. In the previous section, we have demonstrated
that in the thermodynamic limit the topological phase transition
point remains unchanged by the cavity photons even in the
(ultra)strong coupling limit and takes place when v= w. Let us
first consider the behavior of the spectral function in the trivial
phase (v >w). In the absence of the coupling to the cavity there is
only one peak in the spectral function at ωc. Since we fixed the
system parameters such that ωc is equal to the band gap 2E(k),
where E(k) is the electronic bulk energy spectrum given by Eq.
(12) in the absence of coupling to cavity, in the SSH model at
k= 0, for finite values of g the peak at ωc in the spectral function
splits into two. Moreover, there is a third peak appearing in A(ω)
coming from the band gap at k= π. Therefore, there are three
peaks in A(ω) corresponding to three polariton branches. As we
fix the parameters of the SSH chain such that v= w, the lowest
polariton branch disappears. This is related to closing of the bulk
gap at k= 0 and is a direct signature of the topological phase
transition. Decreasing the intracell hopping v further the SSH
model enters the topological phase (v <w) and the lowest
polariton branch reemerges. To better illustrate the disappearance
of the polariton branch at the topological phase transition we plot
the cross section of the spectral function for a fixed value of the
light-matter coupling constant g= 2 as a function of frequency in
the lower panel of Fig. 5. We note in passing that the width of the
second polariton branch is larger in the topological phase.

We provide a simple analytical argument to understand the
disappearance of the lowest polariton branch at the phase
transition. First, we note that the light-matter Hamiltonian in Eq.
(8), when written in terms of pseudo-spin operators
σkα ¼ ψy

kσαψk, takes the form of a spin-photon problem often
encountered in quantum optics. Here, however, pseudo-spins at
different k points are coupled to the same cavity mode. The
lowest excitations of the system can be then obtained from a spin-
wave analysis focusing on the k= 0 sector of the SSH model (see
Methods). This allows to write down an effective Hamiltonian in
terms of bosonic spin-wave modes b (b†) coupled to cavity
photons

~H
k¼0 ¼ωca

yaþ ωxb
yb� igwsðaþ ayÞðb� byÞ

� g2

2
wsðaþ ayÞ2 � ωx

2
L;

ð19Þ

where ωx= 2∣v− w∣ and s= sign[v− w]. We find the analytical
expression for the polariton energies by using the Bogoliubov-
Hopfield transformation59

ω2
± ¼ 1

2
ω2
x þ ~ω2

c ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~ω2

c � ω2
xÞ

2 þ 16g2ωcw2ωx

q� �
; ð20Þ

where ~ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcðωc � 2wsg2Þ

p
. Next, we note that at v= w the

lower polariton branch ω−= 0 is absent, and the upper polariton
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Fig. 4 Properties of photonic states coupled to the Su-Schrieffer-Heeger
chain. Expectation values 〈X2〉 (red solid line) and 〈P2〉 (black dashed line)
as a function of the light-matter coupling g for the intercell hopping w= 1. In
the absence of the coupling between the cavity and the Su-Schrieffer-
Heeger chain, the expectation values are equal, 〈X2〉= 〈P2〉= 1/2. For finite
values of g, 〈X2〉 decreases and 〈P2〉 increases with increasing g, and
photonic state becomes squeezed. Inset: Photon probability density ∣cn∣2 as
a function of photon number n for g= 10. Other parameters are chosen as
number of unit cells L= 100, lattice constant a0= 1, intracell hopping v= 1,
cavity frequency ωc= 0.5, and maximum number of photons Nmax= 10.
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frequency is given by ωþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c � 2ωcg2w

p
. In agreement with

the spectral function calculations, the lower polariton branch
disappears at the phase transition point providing a way to probe
the phase transition point in the SSH model via cavity response
measurements.

Conclusions. In this work, we have shown that coupling an
electronic system to the quantum light field of a cavity can be
used to control the topological properties of a system and most
notably to drive a topological transition with the emergence of
edge modes, even in a regime where the uncoupled system would
be topologically trivial. We have highlighted these results in the
context of paradigmatic model for topological phases of matter,
the SSH chain, that we have studied in presence of a finite cou-
pling to a single-mode cavity encoded in the gauge-invariant
Peierls phase.

We have shown that quantum light-matter coupling does not
spoil the chiral symmetry, which protects the topological phase in
the isolated SSH chain and furthermore introduces a non-trivial
dependence from the ratio of lattice spacing which can be used as
further controlled parameter to control the phase diagram of the
system together with the light-matter coupling. Computing the
finite-length energy spectrum as well as the bulk spectrum using a
mean-field decoupling of electrons and photons, which treats the
Peierls phase non-perturbatively, we have shown that light-matter
interaction can turn a trivial insulator into a topological one,
depending on the value of b0. Our work therefore provides a
simple and paradigmatic example of non-trivial topology induced
by quantum light. We emphasize that with respect to the largely
explored Floquet engineering schemes, where classical oscillating
light fields are used to induce non-trivial topology, our scheme
does not suffer from any heating problem, an issue which requires
in the Floquet context to assume high-frequency driving.

Finally, we found that in the thermodynamic limit the
topological phase transition point v=w in the SSH model is
insensitive to cavity photons. In this limit, we evaluated the
polariton spectrum of the hybrid electron-photon system that
revealed the appearance of three polariton branches for v ≠w.
Interestingly, we noticed that the lowest polariton branch
disappears exactly at the topological phase transition point v=w,
the result which was further supported by the full analytical
solution within the effective spin-wave theory. Therefore, cavity
photons provide a way to both control and probe topological
properties of the electronic systems. In future works, it would be
interesting to consider inhomogeneous electromagnetic field,
recently utizlized in the context of superradiance46,60,61, since a
momentum-dependent photonic operators might bring a new
ingredient to control topological properties of the material.

Methods
Gauge-fixing of electrons coupled to quantum light. In this section we derive the
Peierls Hamiltonian used in the main text by means of a unitary transformation
acting on the electrons. Starting from the operator Ω defined in Eq. (4) of the main
text we see that the fermionic operators transform as

ΩyciμΩ ¼ eieARiμ ciμ;

where Riμ= ia0+ δμ,Bb0. Applying this unitary operator to the SSH Hamiltonian
generates an electron-photon Hamiltonian

H ¼ Hph þΩyHSSHΩ;

which is equivalent to a renormalization of the hopping integrals according to the
Peierls phase, i.e.

cyjAcjB ! eigðaþayÞb0 cyjAcjB; ð21Þ

cyjþ1AcjB ! e�igðaþayÞða0�b0Þcyjþ1AcjB; ð22Þ

which reduces to the result in the main text for a0= 1 and g ¼ g=
ffiffiffi
L

p
. Further-

more, using the same unitary operator Ω it is possible to write down the light-
matter Hamiltonian in the dipole gauge. This reads

Fig. 5 Photon spectral function. a–c Spectral function A(ω) (amplitude normalized by its maximum value is given by the color bar) as a function of the
light-matter coupling g and frequency ω. Red dashed line corresponds to frequency ωc and blue dot-dashed line corresponds to 2E(k= π). a Trivial phase:
intracell hopping v= 0.8 and intercell hopping w= 0.5. There are three polariton branches. b The gap at k= 0 closes for v=w= 0.5 corresponding to the
topological phase transition. There are only two polariton branches. c Topological phase, v= 0.2, w= 0.5. There are three polariton branches. The photon
frequency ωc is chosen such that ωc= 2E(k= 0) [for v≠w]. Other parameters are fixed as ωc= 0.6 and η= 10−3. d-f Spectral function A(ω) as a function
of ω for g= 2. d There are three peaks. e There are two peaks. f There are three peaks. The lower polariton branch is absent at the topological phase
transition point.
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HD ¼ ΩHphΩ
y þHSSH;

HD ¼Hph þHSSH þ i
gωcffiffiffi
L

p ða� ayÞ∑
jμ
Rjμc

y
jμcjμ

þ g2ωc

L
∑
j0 jμμ0

RjμRj0μ0 c
y
jμcjμc

y
j0μ0 cj0μ0 :

ð23Þ

Mean-field decoupling between electrons and photons in finite-length SSH
chain coupled to photons. We provide details on the solution of the light-matter
Hamiltonian H Eq. (5) in mean field that corresponds to neglecting correlations
between the cavity modes ϕ

�� �
and electrons ψ

�� �
,

Ψj i ¼ ψ
�� �

ϕ
�� �

: ð24Þ

As a result of the mean field decoupling we have to solve an electronic mean field
Hamiltonian given by Eq. (6) and a photonic mean field Hamiltonian that reads

Hmf
ph ¼ ψ

	 ��H ψ
�� � ¼ v CjjABei

gffiffi
L

p b0 ðaþayÞ þ h.c.
� �

� w Cjþ1;j
AB e�i gffiffi

L
p ð1�b0 ÞðaþayÞ þ h.c.

� �

þ ωc ayaþ 1
2

� �
;

ð25Þ

where we introduced two parameters

CjjAB ¼ ∑
L

j¼1
ψ
	 ��cyjAcjB ψ

�� �
; ð26Þ

Cjþ1;j
AB ¼ ∑

L�1

j¼1
ψ
	 ��cyjþ1;AcjB ψ

�� �
: ð27Þ

We find the electronic spectrum of the SSH model in presence of coupling to
cavity photons by solving Eqs. (6) and (25) self-consistently. In particular, we set
g= 0 in Hmf

el and calculate numerically CγAB , where γ= jj or j, j+ 1. Then we insert
CγAB into Hmf

ph with g ≠ 0, and evaluate ~v and ~w. Afterwards, we insert ~v and ~w

(calculated for g ≠ 0) into Hmf
el and evaluate the eigenvalues of the electronic mean-

field Hamiltonian. We find that the energy spectrum of the SSH chain is modified
in presence of coupling to cavity photons (Fig. 2).

Mean-field solution of momentum space Hamiltonian. In order to obtain the
topological phase diagram we study the SSH model coupled to cavity in
momentum space. Starting from Eq. (5) and performing the Fourier transforma-
tion as cj;μ ¼ 1ffiffi

L
p ∑ke

ikjck;μ , we arrive at the Peierls Hamiltonian in the momentum

space given by Eq. (8). Similarly to the finite-length SSH chain, we solve Eq. (8)
within a mean field approximation. The electronic mean-field Hamiltonian reads

Hmf
el ¼ ϕ

	 ��H ϕ
�� � ¼ ∑

k
hkxσ

k
x þ hkyσ

k
y

h i
; ð28Þ

where we introduced the pseudo-spin operators

σkα ¼ ψy
kσαψk; ð29Þ

and

hkx ¼ ϕ
	 ��dkxða; ayÞ ϕ�� �

; ð30Þ

hky ¼ ϕ
	 ��dkyða; ayÞ ϕ�� �

: ð31Þ

At zero temperature, we find for the expectation values over the electronic states

ψ
	 ��σkx ψ

�� � ¼ �hkx=ϵk; ð32Þ

ψ
	 ��σky ψ

�� � ¼ �hky=ϵk; ð33Þ

where we introduced the energy of the SSH model in presence of cavity fields

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hkx
� 2 þ hyx

� 2q
: ð34Þ

Similarly, the photonic mean-field Hamiltonian reads

Hmf
ph ¼ ψ

	 ��H ψ
�� � ¼ ωc ayaþ 1

2

� �
þ cos

gb0ffiffiffi
L

p ðaþ ayÞ
� �

´ v∑
k

ψ
	 ��σkx ψ

�� �þ sin
gb0ffiffiffi
L

p ðaþ ayÞ
� �

v∑
k

ψ
	 ��σky ψ

�� �

� cos
g 1� b0
� 

ffiffiffi
L

p ðaþ ayÞ
� �

w∑
k

ψ
	 ��σkx ψ

�� �
cosðkÞ�

þ ψ
	 ��σky ψ

�� �
sinðkÞ

o
þ sin

g 1� b0
� 

ffiffiffi
L

p ðaþ ayÞ
� �

´w∑
k

ψ
	 ��σkx ψ

�� �
sinðkÞ � ψ

	 ��σky ψ
�� �

cosðkÞ
n o

:

ð35Þ

In the thermodynamic limit, retaining only the leading terms we obtain Eq. (14)
of the main text, with a squeezing parameter r given by

r ¼� g2b20
2L

v∑
k

ψ
	 ��σkx ψ

�� �þ g2 1� b0
� 2
2L

´w∑
k

ψ
	 ��σkx ψ

�� �
cosðkÞ þ ψ

	 ��σky ψ
�� �

sinðkÞ
n o

:

ð36Þ

Photonic Green’s function—Gaussian fluctuations. In this Section, we compute
the Gaussian 1/L corrections to the photon Green’s function47,58. For the sake of
simplicity we consider the SSH model with b0= 0, since the results do not change
qualitatively with b0 in the large L limit. The partition function of the SSH model
can be written as

Z ¼
Z

D ϕ; ϕ�;C;C�
 �
e�Sph ½ϕ;ϕ� ;C;C���Sel ½C;C���Sel�ph ½ϕ;ϕ� ;C;C��; ð37Þ

where we separated the different contributions to the total action S: Sph describes to
the photonic fields, Sel corresponds to the purely electronic system, and Sel-ph
describes to the electron-photon interaction,

Sph ¼ �
Z β

0
dτdτ0ϕ�ðτÞd�1

0 ðτ � τ0Þϕðτ0Þ; ð38Þ

Sel ¼ �
Z β

0
dτdτ0 ∑

k
c�k;A∂τck;A þ c�k;B∂τck;B � vσkx

h i
; ð39Þ

Sel�ph ¼�
Z β

0
dτ cos

gffiffiffi
L

p ðϕðτÞ þ ϕ�ðτÞÞ
� �

´ ∑
k

w cosðkÞσkx þ w sinðkÞσky
h i

þ sin
gffiffiffi
L

p ðϕðτÞ þ ϕ�ðτÞÞ
� �

∑
k

�w sinðkÞσkx þ w cosðkÞσky
h i

:

ð40Þ

Here, ϕ�ðτÞ; ϕðτÞ� 
correspond to the photonic fields, and

d�1
0 ðτ � τ0Þ ¼ �δðτ � τ0Þ ∂τ þ ωc

� 
: ð41Þ

Defining

Z0½ϕ; ϕ�� ¼
Z

D C;C�½ �e�Sel ½C;C� ��Sel�ph ½ϕ;ϕ� ;C;C��; ð42Þ

the partition function can be rewritten as

Z ¼
Z

D ϕ; ϕ�

 �

e�Sph ½ϕ;ϕ��Z0 �
Z

D ϕ; ϕ�

 �

e�Seff ; ð43Þ

where

Seff ¼ Sph � logZ0: ð44Þ
Expanding the action of the SSH model coupled to a single mode cavity up to

second order in photonic fields ϕ(τ), we arrive at

~Seff ¼
1
2

Z
dτdτ0ΦyðτÞ D�1

0 ðτ � τ0Þ � Πðτ � τ0Þ
 �
Φðτ0Þ; ð45Þ

where ΦyðτÞ ¼ ϕ�ðτÞ; ϕðτÞ� 
, D�1

0 ðτ � τ0Þ is the bare photon Green’s function, and
Πðτ � τ0Þ is the polarization given by

Πðτ � τ0Þ ¼
δ2 logZ0 ½Φ;Φ��
δϕ�ðτÞδϕðτ0 Þ

δ2 logZ0 ½Φ;Φ��
δϕ�ðτÞδϕ�ðτ0 Þ

δ2 logZ0 ½Φ;Φ��
δϕðτÞδϕðτ 0 Þ

δ2 logZ0 ½Φ;Φ��
δϕðτÞδϕ�ðτ0 Þ

0
@

1
AjΦðτÞ¼α¼0: ð46Þ

Next, we find that all four components of the polarization are equal and can be
written as

ΠðωÞ ¼ 1 1

1 1

� �
χðωÞ; ð47Þ

where χ(ω) is the current-current correlation function defined in the main text.
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Using Eqs. (16)–(18) and substitution sum with an integral, we find the
expressions for the real

χ0ðωÞ ¼ g2

2π

Z π

�π
dk

wðw� v cosðkÞÞ
Ek

þ 2g2

π
P
Z π

�π
dk

wðv cosðkÞ � wÞ
Ek

� �2 Ek

ω2 � 4E2
k

ð48Þ

and imaginary parts of the correlation function χ(ω)

χ00ðωÞ ¼ � g2

2

Z π

�π
dk

wðv cosðkÞ � wÞ
Ek

� �2

´ δ ω� 2Ek

� � δ ωþ 2Ek

� 
 �
:

ð49Þ

Spin-wave theory for polariton spectrum. In this Section, we derive the spin-
wave spectrum of the polaritons. To this extent we start from Eq. (8) that we
rewrite in terms of the pseudo-spin operators defined in Eq. (29). Then, con-
sidering only the momentum k= 0 and expanding to second order in g, we obtain

~H
k¼0 ¼ωca

ya� ωx

2
~σk¼0
z þ gffiffiffi

L
p wsðaþ ayÞ~σk¼0

y

� g2

2L
wsðaþ ayÞ2~σk¼0

z ;

ð50Þ

where ωx= 2∣v−w∣ and s= sign[v− w]. Performing Holstein—Primakoff
transformation47,62

~σk¼0
y ¼ �i

ffiffiffi
L

p
ðb� byÞ; ð51Þ

~σk¼0
z ¼ L� 2byb; ð52Þ

we arrive at Eq. (19). We find analytical expression for the polariton energies Eq.
(20) by performing the Bogoliubov-Hopfield transformation59.

Since we consider only k= 0 mode, it turns out that ω− always go to zero for
v ≠w at the critical value of the light-matter coupling
gc ¼ v � wj j ffiffiffiffiffi

ωc
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vwjv � wjp

. We note that the same softening of the lower
polariton branch was observed in the case of the excitonic insulator coupled to light
using the Peierls substitution47 and is absent when all momentum k are taken into
account.
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