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Variance of fluctuations from Noether invariance

Sophie Hermann® '™ & Matthias Schmidt® ™

The strength of fluctuations, as measured by their variance, is paramount in the quantitative
description of a large class of physical systems, ranging from simple and complex liquids to
active fluids and solids. Fluctuations originate from the irregular motion of thermal degrees of
freedom and statistical mechanics facilitates their description. Here we demonstrate that
fluctuations are constrained by the inherent symmetries of the given system. For particle-
based classical many-body systems, Noether invariance at second order in the symmetry
parameter leads to exact sum rules. These identities interrelate the global force variance with
the mean potential energy curvature. Noether invariance is restored by an exact balance
between these distinct mechanisms. The sum rules provide a practical guide for assessing
and constructing theories, for ensuring self-consistency in simulation work, and for providing
a systematic pathway to the theoretical quantification of fluctuations.
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requires identifying and hence exploiting the fundamental

symmetries of the system under consideration. Indepen-
dent of whether such work is performed in a Hamiltonian setting
or on the basis of an action functional, typically it is a con-
servation law that results from each inherent symmetry of the
system. The merits of the Noetherian strategy have been
demonstrated in a variety of contexts from classical mechanics to
field theory?. However, much of modern condensed matter
physics is focused on seemingly entirely different physical beha-
vior, namely that of fluctuating, disordered, spatially random, yet
strongly interacting systems that possess a large number of
degrees of freedom. Recent examples include active particles that
display freezing? and wetting?, hydrophobicity rationalized as
critical drying®, the structure of two-dimensional colloidal
liquids® and that of fluid interfaces”S.

Relating the fluctuations that occur in complex systems to the
underlying symmetries has been investigated in a variety of
contexts. Such work addressed the symmetries in fluctuations far
from equilibrium?, isometric fluctuation relations!?, fluctuation
relations for equilibrium states with broken symmetry!!, and
fluctuation-response out of equilibrium!2. The fluctuation theo-
rems of stochastic thermodynamics provide a systematic setup to
address such questions!'3. Beyond its widespread use in deter-
ministic settings, Noether’s theorem was formulated and used in a
stochastic context!4, for Markov processes!?, for the quantifica-
tion of the asymmetry of quantum states!®, for formulating
entropy as a Noether invariant!”13, and for studying the ther-
modynamical path integral and emergent symmetry!®. Early work
was carried out by Revzen?? in the context of functional integrals
in statistical physics and a recent perspective from an algebraic
point of view was given by Baez?l.

Noether’s theorem has recently been suggested to be applicable
in a genuine statistical mechanical fashion?2-24, Based on trans-
lational and rotational symmetries the theorem allows to derive
exact identities (“sum rules”) with relative ease for relevant many-
body systems both in and out of equilibrium. The sum rules set
constraints on the global forces and torques in the system, such as
the vanishing of the global external force in equilibrium?2-2> and
of the global internal force also in nonequilibrium?2.

Here we demonstrate that Noether’s theorem allows to go
beyond mere averages and systematically address the strength of
fluctuations, as measured by the variance (auto-correlation). We
demonstrate that this variance is balanced by the mean potential
curvature, which hence restores the Noether invariance. The
structure emerges when going beyond the usual linear expansion
in the symmetry parameter. The relevant objects to be trans-
formed are cornerstones of Statistical Mechanics, such as the
grand potential in its elementary form and the free energy density
functional. The invariances constrain both density fluctuations
and direct correlations, where the latter are generated from
functional differentiation of the excess (over ideal gas) density
functional.

Q pplying Noether’s theorem! to a physical problem

Results and discussion
External force variance. We work in the grand ensemble and
express the associated grand potential in its elementary form2° as

Q[Vext] = _kBTlrl Tr exp <_[5 (Hint + Z Vext(ri) - “’IN) ) )
(1)

where kp indicates the Boltzmann constant, T is absolute tempera-
ture, and = 1/(kgT) is inverse temperature. The grand ensemble
“trace” is denoted by Tr =X ,1/(NKN) [ dr,... dry
Jdp ... dpy, where r; is the position and p; is the momentum of

particle i =1, ..., N, with N being the total number of particles and h
the Planck constant. The internal part of the Hamiltonian is
Hyp = 2p?/(2m) + u(xy, ... , ry), where m indicates the particle
mass, u(ry,....ry) is the interparticle interaction potential, and
Vex(r) is the external one-body potential as a function of position r.
The thermodynamic parameters are the chemical potential 4 and
temperature T.

Clearly, the value of the grand potential Q[ V] depends on the
function V. (r) and we have indicated this functional depen-
dence by the brackets. We consider a spatial displacement by a
constant vector €, applied to the entire system. The external
potential is hence modified according to Ve (r) — Veu(r +€).
This displacement leaves the kinetic energy invariant (the
momenta are unaffected) and it does not change the interparticle
potential u(ry,...,ry), as its dependence is only on difference
vectors r; — r;, which are unaffected by the global displacement.
Throughout we do not consider the dynamics of the shifting and
rather only compare statically the original with the displaced
system, with both being in equilibrium. (Hermann and Schmidt??
present dynamical Noether sum rules that arise from invariance
of the power functional?’ at first order in a time-dependent
shifting protocol e(f).) The invariance with respect to the
displacement can be explicitly seen by transforming each position
integral in the trace over phase space as [dr;=[d(r; —€). No
boundary terms occur as the integral is over R?; the effect of
system walls is explicitly contained in the form of V.(r). This
coordinate shift formally “undoes” the spatial system displace-
ment and it renders the form of the partition sum identical to that
of the original system. (See the work of Tschopp et al.24 for the
generalization from homogeneous shifting to a position-
dependent operation.)

The Taylor expansion of the grand potential of the displaced
system around the original system is

AUV =0Vl + [ dpOVVey(0) €
+ % / drp(r)VVV (r) : €e )
- g/ drdt'H,(r, ¥ )VV _ ()V'V . (¥) : €€,

where we have truncated at second order in € and have used the
shortcut notation V¢, (r) = V .(r+ ¢€) for the functional argu-
ment on the left hand side of Eq. (2). The colon indicates a double
tensor contraction and VV ., (r)V'V,,(r') is the dyadic product of
the external force field with itself. (V' denotes the derivative with
respect to r’). The occurrence of the one-body density profile p(r)
and of the correlation function of density fluctuations H,(r,r’) is
due to the functional identities p(r) = 6Q[Vey)/0Vex(r) and
H,(r,v) = —kg T8 Q[V ,]/0V oy (1) V(¥ ) 26729,

The Noetherian invariance against the displacement implies
that the value of the grand potential remains unchanged upon
shifting, and hence Q[V¢ ] = Q[V,]?*. As a consequence, both
the first and the second-order terms in the Taylor expansion (2)
need to vanish identically, and this holds irrespectively of the
value of €; i.e. both the orientatation and the magnitude of € can
be arbitrary. This yields, respectively, the first?%»2> and second-
order303! identities

- [ anwvvam=o )

/ drdt'H,(r, ¥')VV (r)V'V (X)) = kBT/ drp(r)VVV ().
4
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Fig. 1 lllustrations of the sum rules for the variance of fluctuations. The
sum rules arise from Noether invariance against spatial displacement.
Shown are the different types of identical integrals. Thick dots indicate
position variables that are integrated over. a External sum rule, Eq. (4),
which relates the correlation function of density fluctuations H,(r,r’) and
the external force field — V Ve, (r) with the product of the density profile
p(r) and the Hessian of the external potential kgT V V Vi, (r). This
curvature is indicated by a schematic heat map. b Internal sum rule, Eq. (8),
where the density gradient at two different positions is bonded by the direct
correlation function c,(r, ). This integral is identical to the integrated
Hessian — V V ¢;(r) (indicated by a schematic heat map) weighted by the
local density p(r).

-0

We can rewrite the sum rule (3) in the compact form (F,,) = 0,
where we have introduced the global external force operator
F = —2V,V(r) = — [ drX8(r — r,)V,V, (r;). The angu-
lar brackets denote the equilibrium average (-) = Tr V-, where the
grand ensemble distribution function is ¥ = e PH-#N)/5, with
H=Hy+>;Vex(r;) and the grand partition sum is
E = Tre PH=#N)_ Using these averages, and defining the density
operator p(r) = >_,0(r —r;), where &(-) denotes the Dirac
distribution, allows us to express the density profile as
p(r) = (>2,0(r — r;)). The covariance of the density operator is
H,(r,r') = (p(r)p(r')) — p(r)p(r’), which complements the above
definition of H,(r,r’) via the second functional derviative of the
grand potential.

The second-order sum rule (4) constrains the variance of
the external force operator on its left hand side:

<ﬁ:xtf::xt) — <szt>(f:(e’xt) = (ﬁ:xtf:zxt); recall that the average (first
moment) of the external force vanishes, see Eq. (3). The right-
hand side of Eq. (4) balances the strength of these force
fluctuations by the mean curvature of the external potential
(multiplied by thermal energy kgT), see Fig. 1(a) for an
illustration of the structure of the integrals.

The curvature term can be re-written, upon integration by parts,
as [dr(— kT V p(r)) VV(r), which is the integral of the local
correlation of the ideal force density, — kgT V p(r), and the negative
external force field VV . (r). (We assume setups with closed
walls, where boundary terms vanish.) The sum rule (4) remains
valid if one replaces H,(r,r’) by the two-body density
p,(r, 1) = (p(r)p(r')), due to the vanishing of the external
force (3). Explicitly, the alternative form of Eq. (4) that one obtains
via this replacement is: [ drdrp,(r,r)VV (r)V'V (¥) =
kyT [ dep(r)VVV . (x).

It is standard practice?6-2 to split off the trivial density
covariance of the ideal gas and define the total correlation
function h(r,r’) via the identity H,(r,r’) = p(r)p(x')h(r,r') +

p(r)8(r — r'). Insertion of this relation into Eq. (4) and then
moving the term with the delta function to the right-hand side
yields the following alternative form of the second-order Noether
sum rule:

[ 45 P (5. OV 09V )
(©)
= / dl‘ (kB TV V Vext (I’) - (V Vext(r))v Vext(r))p(r)'

For the ideal gas h(r,r’) = 0 and hence the left hand side of (5)
vanishes. That the right-hand side then also vanishes can be seen
explicitly by inserting the generalized barometric law2° p(r) o
exp(—f(V(r) — ) and either integrating by parts, or by
alternatively observing that —(k,T)> J drVVp(r) = 0 and insert-
ing the barometric law therein.

The right-hand side of (5) makes explicit the balancing of the
external force variance with the mean potential curvature, as
given by its averaged Hessian. For an interacting (non-ideal)
system, h(r,t’) is nonzero in general and the associated external
force correlation contributions are accumulated by the expression
on the left hand side of Eq. (5). For the special case of a harmonic
trap, as represented by the external potential V. (r) = xr?/2, with
spring constant x and Hessian VVV,(r) = k1, where 1 denotes
the unit matrix, the mean curvature can be obtained explicitly.
The first term on the right-hand side of the sum rule (5) then
simply becomes kz T{N)x1 upon integration. Notably, this result
holds independently of the type of interparticle interactions,
although the latter affect h(r,r’) as is present on the left hand side
of Eq. (5). The remaining (second) term on the right-hand side of
Eq. (5) turns into — x2f drp(r)rr, where the integral is the matrix
of second spatial moments of the density profile. The alternative
form — k2(>_;r;r;) is obtained upon expressing the density profile
as the average of p(r) and carrying out the integral over r.
Collecting all terms and dividing by x* we obtain the sum rule (5)
for the case of an interacting system inside of a harmonic trap as:

J drdr’p(r)p(x))h(x,¥)ry’ = [ drp(r)(kyTx™'1 — rr).

Internal force variance. In light of the external force fluctuations,
one might wonder whether the global interparticle force also
fluctuates. The corresponding operator is the sum of all inter-
particle forces: f:fm =2 Vulr, ... ,ry) = — [ dr>,0(r — 1))
Vu(r, ... ,ry), where the integrand in the later expression
(including the minus sign) is the position-resolved force density
operator?’. However, for each microstate laz)m =0, as can be seen
e.g. via the translation invariance of the interparticle potential??,

which ultimately expresses Newton’s third law actio est reactio.
Hence trivially the average vanishes, (ﬁfnt) =0, as do all higher
moments, (F; F;.) = 0, as well as cross correlations, (E;, F.,) = 0,
etc. Thus the total internal force does not fluctuate. This holds
beyond equilibrium, as the properties of the thermal average are not
required in the argument. Identical reasoning can be applied to a
nonequilibrium ensemble, where these identities hence continue
to hold.

While these probabilistic correlators vanish, deeper inherent
structure can be revealed by addressing direct correlations, as
introduced by Ornstein and Zernike in 1914 in their treatment of
critical opalescence and to great benefit exploited in modern
liquid state theory?®. We use the framework of classical density
functional theory?6:28:29, where the effect of the interparticle
interactions is encapsulated in the intrinsic Helmholtz excess free
energy Fe.[p] as a functional of the one-body density distribution
p(r). As the excess free energy functional solely depends on the
interparticle interactions, it necessarily is invariant against spatial
displacements. In technical analogy to the previous case of the
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external force, we consider a displaced density profile p(r + ¢€)
and Taylor expand the excess free energy functional up to second
order in € as follows:

Brocle] =BFocle) - [ dre09p(0) ¢
— %/ dre, (r)VVp(r) : €€ (6)

1
) / drdr' ¢, (x, ') Vp(x)V'p(r) : €€,

where p¢(r) = p(r + €) is again a shorthand. The one- and two-
body direct correlation functions are given, respectively, via the
functional derivatives c¢,(r) = — BOFe [p]/dp(r) and c,(r,¥) =
—B&*F,, [p]/dp(r)dp(r). Noether invariance demands that
Fexc[p€] = Fexc[p] and hence both the linear and the quadratic
contributions in the Taylor expansion (6) need to vanish,
irrespective of the value of €. This yields, respectively:

[ dse@vem =o %

/drdr’cz(r, )Vp(r)V'p() = —/ drp(r)VVe (x), (8)

where we have integrated by parts on the right-hand side of (8).
The first-order sum rule (7) expresses the vanishing of the global

internal force (??m) = 022, This can be seen by integrating by
parts, which yields the integrand in the form — p(r) V ¢,(r), which
is the internal force density scaled by — kpT. In formal analogy to
the probabilistic variance in Eq. (4), the second-order sum rule
(8) could be viewed as relating the “direct variance” of the density
gradient (left hand side) to the mean gradient of the internal one-
body force field in units of kgT (right-hand side), which,
equivalently, is the Hessian of the local intrinsic chemical
potential — kgTc;(r), see Fig. 1(b).

As a conceptual point concerning the derivations of Egs. (7)
and (8), we point out that the excess free energy density
functional F.,[p] is an intrinsic quantity, which does not
explicitly depend on the external potential V.. (r). Hence there
is no need to explicitly take into account a corresponding shift of
Vext(r). This is true despite the fact that in an equilibrium
situation one would consider the external potential (and the
correspondingly generated external force field) as the physical
reason for the (inhomogeneous) density profile to be stable.
Both one-body fields are connected via the (Euler-Lagrange)
minimization equation of density functional theory26:28:29;
kgTInp(r) = kgTc,(xr) — V. (r) + 4, where we have set the
thermal de Broglie wavelength to unity. For given density profile,
we can hence trivially obtain the corresponding external potential
as Vi (r) = —kzTlnp(r) + kzTc,(r) + 4, which makes the
fundamental Mermin-Evans?®=2% map p(r) — V(r) explicit.

As a consistency check, the second-order sum rules (4) and (8)
can alternatively be derived from the hyper virial theorm3%-3! or
from spatially resolved correlation identities?22>. Following the
latter route, one starts with [ dr’H,(r,¥)V'V (r') = —kzTVp(r)
and [drc)(r,v')V'p(r') = Ve (r), respectively. The derivation
then requires the choice of a suitable field as a multiplier
(V Veu(r) and V p(r), respectively), spatial integration over the
free position variable, and subsequent integration by parts.
However, this strategy i) requires the correct choice for multi-
plication to be made, and ii) it does not allow to identify the
Noether invariance as the underlying reason for the validity. In
contrast, the Noether route is constructive and it allows to trace
spatial invariance as the fundamental physical reason for the
respective identity to hold.

Thermal diffusion force variance. Similar to the treatment of the
excess free energy functional, one can shift and expand the ideal
free  energy functional Fylp] = kT [ drp(r)(Inp(r) — 1).
Exploiting the translational invariance at first order leads to
vanishing of the total diffusive force: — kzT [ dr V p(r) = 0, and at
second order: [ drp(r)”'(Vp(r))Vp(r) = — [ drp(r)VV In p(x).
These ideal identities can be straightforwardly verified via inte-
gration by parts (boundary contributions vanish) and they
complement the excess results (7) and (8).

Outlook. While we have restricted ourselves throughout to
translations in equilibrium, the variance considerations apply
analogously for rotational invariance?? and to the dynamics,
where invariance of the power functional forms the basis?%27. In
future work it it would be highly interesting to explore connec-
tions of our results to statistical thermodynamics!3, to the study
of liquids under shear3?, to the large fluctuation functional?3, as
well as to recent progress in systematically incorporating two-
body correlations into classical density functional theory43>,
Investigating the implications of our variance results for Levy-
noise®® is interesting. As the displacement vector € is arbitrary
both in its orientation and its magnitude our reasoning does not
stop at second order in the Taylor expansion, see Egs. (2) and
(6). Assuming that the power series exists, the invariance against
the displacement rather implies that each order vanishes indi-
vidually, which gives rise to a hierarchy of correlation identities
of third, fourth, etc. moments that are interrelated with
third, fourth, efc. derivatives of the external potential (when
starting from Q[V,]) or the one-body direct correlation func-
tion (when starting from the excess free energy density func-
tional Fey.[p]).

Future use of the sum rules can be manifold, ranging from the
construction and testing of new theories, such as approximate
free energy functionals within the classical density functional
framework, to validation of simulation data (to ascertain both
correct implementation and sufficient equilibration and sam-
pling) and numerical theoretical results. To give a concrete
example, in systems like the confined hard sphere liquid
considered by Tschopp et al.24 on the basis of fundamental
measure theory, one could apply and test the sum rule (5)
explicitly, as the inhomogeneous total pair correlation function
h(r,r’) is directly accessible in the therein proposed force-DFT
approach.
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