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Use of temporal contact graphs to understand
the evolution of COVID-19 through contact
tracing data
Mincheng Wu1,2,8, Chao Li1,2,8, Zhangchong Shen2, Shibo He 1,2✉, Lingling Tang3, Jie Zheng4, Yi Fang5,

Kehan Li 2, Yanggang Cheng2, Zhiguo Shi6, Guoping Sheng3, Yu Liu5, Jinxing Zhu5, Xinjiang Ye5, Jinlai Chen5,

Wenrong Chen5, Lanjuan Li7✉, Youxian Sun1,2 & Jiming Chen 1,2✉

Digital contact tracing has been recently advocated by China and many countries as part of

digital prevention measures on COVID-19. Controversies have been raised about their

effectiveness in practice as it remains open how they can be fully utilized to control COVID-

19. In this article, we show that an abundance of information can be extracted from digital

contact tracing for COVID-19 prevention and control. Specifically, we construct a temporal

contact graph that quantifies the daily contacts between infectious and susceptible indivi-

duals by exploiting a large volume of location-related data contributed by

10,527,737 smartphone users in Wuhan, China. The temporal contact graph reveals five

time-varying indicators can accurately capture actual contact trends at population level,

demonstrating that travel restrictions (e.g., city lockdown) in Wuhan played an important role

in containing COVID-19. We reveal a strong correlation between the contacts level and the

epidemic size, and estimate several significant epidemiological parameters (e.g., serial

interval). We also show that user participation rate exerts higher influence on situation

evaluation than user upload rate does, indicating a sub-sampled dataset would be as good at

prediction. At individual level, however, the temporal contact graph plays a limited role, since

the behavior distinction between the infected and uninfected individuals are not substantial.

The revealed results can tell the effectiveness of digital contact tracing against COVID-19,

providing guidelines for governments to implement interventions using information

technology.
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COVID-19, caused by SARS-CoV-2, has rapidly spread to
most of the countries in the past year. As of 11 AM CEST,
8 September 2022, world-wide confirmed cases of

COVID-19 has reached 603,711,760, among which 6,484,136
patients died1. It has been overwhelming the medical systems of
many countries with large case counts and threatening to infect
an extremely large population, but it is still too early to tell its
disappearance2. Currently, many countries (e.g., the U.S.A., the
U.K., Australia, etc.) have been cooperating together to prevent
and control such an unprecedented disease via a variety of
ways3–5.

As is known, contact tracing is one of the most effective ways
to search individuals with a high risk of being infected. However,
it is always costly, time-consuming, and even impossible to find
unconscious contacts by traditional ways. Recently, digital con-
tact tracing using information technology has been widely
advocated to replace traditional labor-intensive contact
surveys5–7. The main idea is to exploit Bluetooth/positioning
sensors on smartphones to discover nearby devices held by users
and identify the contacts with the infectious individuals8,9. On
one hand, about 28 countries such as China, Switzerland, Spain,
the United Kingdom, Australia, Singapore and Germany have
implemented various measures using information technology
(e.g., launching digital contact tracing apps)10–14. On the other
hand, however, recent works have revealed that digital contact
tracing contributes little to contain outbreaks, principally
because of low participation rates and low engagement of
participants15,16. As many controversial issues of digital contact
tracing have been raised, it is urgent to review empirical evidence
for the effectiveness of this measure against a pandemic
spreading from different aspects17–19.

Since contact tracing measures are essentially based on
crowdsourcing20, their performance highly relies on the invol-
vement of voluntary smartphone users. Due to potential privacy
leakage and cost incurred during crowdsourcing process, volun-
tary users are reluctant to participate and contribute their per-
sonal data at a fine-grained scale21. It is challenging to fully utilize
sparse and noisy crowdsourced data of contact information from
voluntary users to capture the intrinsic transmission character-
istic of COVID-19. Therefore, we devote ourselves to take an in-
depth investigation into this issue, and to show that an abundance
of information can be extracted from digital contact tracing for
COVID-19 prevention and control. This is different from pre-
vious studies which focused on integrating mathematical models
and available statistical data of confirmed cases to characterize the
transmission of epidemic diseases22–38, or those which utilized
individual mobility traces (with the information of confirmed
cases) to simulate the spreading process7,39, providing insight to
understand the spreading of COVID-19 from the aspect of digital
contact tracing.

In this article, we construct a temporal contact graph (Fig. 1a,
d) that quantifies the daily contacts between infectious and sus-
ceptible individuals by exploiting a large volume of location-
related data contributed by a large volume of smartphone users in
Wuhan, China. We demonstrate that such a temporal contact
graph has many applications, e.g., to analyze the dynamic contact
behavior (Fig. 1b), identify the potential infected contacted
individuals (Fig. 1c), and assist the decision-making of control
measures (Fig. 1e). Specifically, we use five time-varying indica-
tors that are validated to have the capability of accurately cap-
turing actual contact trends at individual and population level in
Wuhan, providing a data-driven evidence that the travel restric-
tions in Wuhan significantly reduced the chance of susceptible
individuals having contacts with the infectious and thus played an
important role in containing COVID-19. We reveal a strong
correlation between the number of daily symptomatic cases and

daily total contacts with a 12-days delay, and estimate several
significant epidemiological parameters such as the serial interval.
We study the effect of user involvement on the effectiveness of
digital contact tracing measures, finding that user participation
rate exerts higher influence on situation evaluation than user
upload rate does. By dividing all individuals into two groups, i.e.,
the infected and the uninfected, we show that the contact dis-
tinction of the two groups are not significant. Moreover, the
contact distinction is more significant than the gender distinction
but less significant than the age distinction. By designing an
infection risk evaluation framework, we find it only performs a
limited role in identifying high-risk contacted individuals. This
indicates that it is not highly effective to narrow down the search
of high risk contacted individuals for quarantine by the distinc-
tion of contact behaviors. The empirical results can offer a pro-
mising way to evaluate and predict the evolving epidemic
situation of COVID-19, and provide guidelines for governments
to implement digital contact tracing measures.

Results
Characteristics of informative indicators. We leverage a large
volume of location-related data set contributed by
10,527,737 smartphone users in Wuhan, China. Each item in the
data set includes a geohash encoded meshed area, a timestamp
and an anonymized identity. We build a contact model, in which
a contact between two individuals is said to occur when they are
reported within a temporal interval of 120 min, and a certain
spatial area of 15 m × 29m according to the uploaded geohash. By
collaborating with local authority, we obtain the information
whether and when each anonymous individual was confirmed.
With the information of 14,198 confirmed cases and the contact
model we build, we identify 519,400 contacted individuals, with
which we are able to construct a temporal contact graph (con-
sisting of over 2.4 million contacts) between infectious and sus-
ceptible individuals. We use five informative indicators (t denotes
a day): (1) C(t), the daily total number of contacts between
infectious and contacted individuals, i.e. the number of edges in
the constructed temporal contact graph; (2) I(t), the daily number
of infectious individuals who had encountered with contacted
individuals at least once, i.e. the number of infectious nodes; (3)
S(t), the daily number of contacted individuals who had
encountered the infectious at least once, i.e. the number of sus-
ceptible nodes; (4) kI(t), the daily average contacts of infectious
individuals associating with contacted individuals, i.e., the average
degree of infectious nodes, and (5) kS(t), the daily average con-
tacts of contacted individuals associating with infectious indivi-
duals, i.e., the average degree of susceptible nodes.

The five indicators at the beginning of 2020 are shown along
with a series of implements (Fig. 2a). The daily total contacts
between infectious and susceptible individuals C(t) can reflect the
potential transmission. We find that C(t) increased dramatically
first from 4 to 20 January 2020, due to the fast increasing
infectious individuals, and then dropped after 20 January. As we
know, the Chinese authority announced the outbreak of COVID-
19 and confirmed its infection among people on 20 January,
which explains the decline of C(t). Obviously, C(t) decreased
sharply around 23 January when the lockdown was implemented
in Wuhan, and tended to zero around 28 February.

From a macroscopic view, S(t) and I(t) describe population-
level contacts trend in Wuhan. Notice that S(t) had a minor
bouncing back after 26 January 2020, which is possibly due to the
number of confirmed cases quickly increased after 23 January,
and people in Wuhan could still move within the city (their
mobility increased due to the approaching of Chinese New Year).
Then, S(t) began to decline on 4 February, and approached zero
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around 28 February. Compared to S(t), however, I(t) performs a
different characteristic from the other ones. Initially, I(t) quickly
increased with the number of confirmed cases as few of them are
under quarantine. It began to drop on 20 January upon the
official announcement and reached the local minimum on 23
January, after which it had a duration of increase. It decreased
again on 3 February and eventually approached to zero around 28
February. The main reason is that the confirmed cases increased
fast after 20 January and the chance of meeting an infectious
individual remained high as many of them were not hospitalized
due to test capacity constraint.

Further evidence can be observed from the indicators kS(t) and
kI(t). kS(t) performed a similar behavior as S(t), while kI(t)
displays a more distinct fluctuation in the early January 2020,
since the infected are not isolated, and they contacted the
susceptible as usual in the incubation period. On account of the
small proportion of the infected and the randomness of their
movements, the two indicators were not stable during 6–20
January. For example, they first dropped a bit around 10 January,
which may be due to the mobility reduction caused by the sudden
drop of temperature (Supplementary Fig. 2). The dynamic kS(t)
and kI(t) accurately describe the actual individual-level contacts
trend in Wuhan, providing data-driven evidence that travel
restrictions in Wuhan significantly reduced the chance of a
susceptible individual having contacts with the infectious
individuals and thus played an important role in containing
COVID-19.

From the perspective of the infectious, the distribution of daily
contacts is heavy-tailed (Fig. 2b), and has a prominent long tail
especially when the exponent coefficient is small before 23
January. The long tails indicate that there were some super active
cases who had contacted with hundreds of susceptible individuals.
Identifying and quarantining them helps mitigate the fast
transmission. Therefore, C(t), S(t), I(t), kS(t), and kI(t),

characterized the spread of COVID-19 from dimensions of
susceptible individuals, confirmed cases and overall contacts,
which were informative for COVID-19 prevention and control
(see Supplementary Fig. 5 for more sensitivity analyses).

A strong situation correlation revealed by digital contact tra-
cing. The temporal contact graph shows the potential group of
contacted individuals at high infection risk. Intuitively, more
contacts between infectious and contacted individuals are likely to
cause more confirmed cases in the future. We proceed to inves-
tigate the correlation between the daily number of contacts C(t)
and the symptomatic cases reported by authority40.

The curves of daily number of contacts C(t) (in blue) and daily
symptomatic cases (in red) with normalization (i.e., normalized
by the maximum) in Wuhan are shown in Fig. 3a, from which we
observe a prominent delay between them. By moving points in
the time series of daily number of total symptomatic cases ahead
(in yellow), these two curves present more similar trends. To find
the proper delay that results in the best similarity in trends
between the curves of daily number of contacts and confirmed
cases, we alter the delays ranging from 0 to 17 days according to
existing surveys41,42. The experiments show that a 12-days delay
results in the best Pearson correlation of 0.77 (Fig. 3b) in
accordance with recent works42–49. As for the cumulative
correlation analysis, the curves of cumulative contacts (in blue)
and cumulative symptomatic cases (in red) with normalization
(i.e., normalized by the maximum) in Wuhan are shown in
Fig. 3c, where we find a strong correlation between the number of
cumulative contacts and the cumulative confirmed cases with
12 days ahead (in yellow). The delay from being contacted to
symptom onset may vary for different individuals, while
analyzing the cumulative correlation would weaken these
variations, reaching a higher Pearson correlation. Specifically,
the Pearson correlation reaches 0.99 when there is a 12-days delay

Fig. 1 Temporal contact graph and schematics for its potential applications. An individual has four status: susceptible, contacted, infectious and
confirmed. The status `susceptible' turns to `contacted' when an individual had at least one contact with infectious individuals. A contacted individual may
be infected or stay healthy. The status `infectious' changes to `confirmed' when confirmation is made. In China, confirmed cases will be quarantined for
treatment and no longer infectious to others. a Daily contact graph. b The analysis for contact behaviors shows the distributions of contact counts between
infected and uninfected contacted individuals. c The personal risk evaluation based on contact behaviors. d Contact history and status of individuals. A
node denotes an individual and different colors indicate different status. A dashed line means the status evolution of a single individual in timeline, and a
solid curve between two individuals means a contact. e The correlation between normalized daily total contacts and daily confirmed cases. The panels here
are illustrative examples.
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between normalized cumulative contacts and normalized cumu-
lative symptomatic cases (Fig. 3d). Since the correlation between
cumulative contacts and cumulative symptomatic cases is higher
than that between daily contacts and daily symptomatic cases.
Thus, the number of cumulative contacts can reflect and estimate
the number of symptomatic cases with higher accuracy, having a
better predictability of the number of symptomatic cases than the
number of daily contacts does. In summary, indicator C(t)
provides an empirical way to evaluate and predict the epidemic
situation of COVID-19.

Furthermore, we also explore several significant epidemiology
parameters including the contacting period, incubation period,
and serial interval (Fig. 3e). Specifically, the contacting period
indicates the interval from the first possible contact to the last
possible contact, which is estimated to be 2.3 days (95% CI,
0.4 to 6.7 days) (Fig. 3f). The incubation period indicates the
interval from the last possible contact to symptom onset, which is
estimated to be 7.3 days (95% CI, 1.2 to 14.1 days) (Fig. 3g). The
serial interval indicates the interval from symptom onset of A to
symptom onset of B who is infected by A, which is a proxy of

Fig. 2 Daily characteristics of five indicators. a C(t), the daily total number of contacts between infectious and contacted individuals. S(t), the daily total
number of contacted individuals who had encountered the infectious at least once. I(t), the daily total number of infectious individuals who had
encountered with contacted individuals at least once. kS(t), the daily average number of infectious individuals that each susceptible individual encountered.
kI(t), the daily average number of susceptible individuals that each infectious individual contacted. The error bar in this panel indicates the standard
deviation of different time interval T in the contact model, which varies from 15 to 120min. b The distributions p(k) of the daily number (k) of contacts by all
contacted individuals and the distributions p(k) of the daily number (k) of contacts by all confirmed cases, respectively, on four specific days.
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generation period from the infection of A to the infection of B
who is infected by A. Notice that the serial interval could be
negative because of asymptomatic transmissions, and it is
estimated to be 2.5 days (95% CI, −9.2 to 13.9 days) (Fig. 3h).
These estimations are in accordance with most existing
survey42–49, demonstrating the effectiveness of revealing epidemic
situation at population level by digital contact tracing.

The impacts of user involvement on the contact tracing per-
formance. Clearly, digital contact tracing is based on crowdsouring.
Individual smartphone users are voluntary to participate in the
process and upload their contact information. It remains open to

tell how the performance of contact tracing (e.g., estimating kS(t)
and kI(t) and daily confirmed cases) is affected by user involvement,
raising the question on whether contact tracing measures can really
work in practice. We study on this issue by taking into account two
types of user involvement: user participation rate (the proportion of
users in the whole population) and data uploading rate (their data
reporting frequency per day). To simulate user involvement, we
randomly choose α% users as the voluntary users, and α% data
items each participating user uploading per day, and evaluate the
corresponding performance loss.

We conduct extensive explorations by varying the values of α,
and repeat ten times of Monte Carlo experiments at each

Fig. 3 Daily and cumulative correlation analysis. a Historical time series of the number of daily contacts (in blue), daily reported symptomatic cases in
Wuhan (in red) and daily reported symptomatic cases ahead 12 days (in yellow). b The reached maximum Pearson correlation (0.77) between normalized
daily contacts and normalized daily confirmed cases with a 12-days delay. c Historical time series of the number of cumulative contacts (in blue),
cumulative symptomatic cases in Wuhan (in red) and cumulative reported symptomatic cases with a 12-days delay (in yellow), where the Pearson
correlation reaches 0.99. d The reached Pearson correlation (0.99) between normalized cumulative contacts and normalized cumulative symptomatic
cases with a 12-days delay. e The timeline displays the contact period, incubation period, and serial interval inferred by digital contact measure. f The
distribution of the duration from the first possible contact to the last possible contact (mean 2.3 days, 95% CI, 0.4 to 6.7 days). g The distribution of the
duration from the last possible contact to symptom onset (mean 7.3 days, 95% CI, 1.2 to 14.1 days). h The distribution of the duration from the symptom
onset of A to the symptom onset if B who is infected by A (mean 2.5 days, 95% CI, −9.2 to 13.9 days).
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involvement level to make our experiments more credible. At a
specific α, we plot the time series with error bars of kS(t), kI(t) and
total contacts C(t) for both scenarios of user participation rate
and user upload rate, ranging from 1 January to 28 February
2020. It is shown that, as α decreases, corresponding time series
decrease with the similar trend (Fig. 4a–f). This is expected as
reduction in either user participation rate or user upload rate
decreases the chances of having contacts among users. To see if
the reduction has influence on capturing the evolving trends, we
calculate the Pearson correlations between the time series under α
% and full (100%) participation rate/data upload rate case
(Fig. 4g, h).

We obtain the following observations. (1) Decreasing the user
upload rate or participation rate results in the lower values of
kS(t), kI(t), and C(t). (2) User participation rate and data upload
rate have minor effects on the evaluation of evolving pattern of
C(t), whose error bars are not as obvious as another two variables.
The above observations indicate that C(t) is more robust than
kS(t) and kI(t) when user involvement changes. (3) kS(t) is more

sensitive to the change of user involvement α than kI(t). This is
because the number of susceptible individuals is much larger than
that of the infectious. (4) User participation rate exerts higher
influence on the three indicators than user upload rate does
according to Fig. 4g, h. Therefore, we should encourage more user
participation to obtain a better performance in practice.
Considering their privacy and cost concerns, it would be a good
strategy to allow voluntary smartphone users having a relatively
low data upload rate. (5) For the participation rates analysis,
when the participation rate reduces to 10%, the correlation
coefficient reduces significantly according to Fig. 4g, which can be
attributed to the characteristics of the overall heavy-tailed degree
distribution of the network. Only when the participation rate is
low enough can some key nodes be deleted, thereby affecting the
trend of the entire network. The result indicates that it requires
far less invasive data collection and a dramatically sub-sampled
dataset would be as good at prediction, avoiding large-scale data
collection. We note that the performance of individual-level
infection risk evaluation will be impacted when user participation

Fig. 4 The performance of contact tracing under different user involvements. a–c Three figures show the change of the average degree of susceptible
nodes kS(t), the average degree of infectious nodes kI(t), and the number of edges C(t) from 1 January to 28 February with error bars vs. different user
participation rates. The error bar indicates the standard deviation of a ten-times repeating experiment. d–f Three figures show the change of daily kS(t),
kI(t), and C(t) from 1 January to 28 February with error bars vs. different user upload rates. The error bar indicates the standard deviation of a ten-times
repeating experiment. g, h The Pearson correlations vs. different user participation rates and user upload rates.
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rate or upload rate drops since we may miss many contacts with
infectious cases in such case and make an incorrect evaluation.

Individual-level infection risk evaluation by contact behavior
discrimination. In a spreading process, contacted individuals
have chance of being infected, or staying healthy. We proceed to
study the contact behaviors between the infected and uninfected
contacted individuals, based on which we can obtain an
individual-level infection risk evaluation. We count the number
of contacts each contacted individual had with the infectious in
recent 17 days, i.e., the infectious period (see Supplementary
Note II for more sensitivity analysis), and calculate the probability
p(k) that a contacted individual had k contacts for infected and
uninfected contacted individuals, respectively.

Heavy-tailed distributions are found for both types of the
behaviors, while the parameters are mildly different if we fit them
by power-law distributions. The contacts of infected contacted
individuals can be fitted by a power-law distribution with an
average <k>= 5.93 and an exponent γ= 1.66, while the contacts
of uninfected contacted individuals can be fitted by a power-law
distribution with <k>= 5.38 and γ= 1.81 (Fig. 5a).

Further, we count the number of infectious individuals who
had contacts with any contacted individual in recent 17 days, and

calculate the probability p(k) that a contacted individual have
associated k infectious individuals for infected and uninfected
contacted individuals, respectively. The infected contacted
individuals have a fitted power-law distribution with <k>= 3.95
and γ= 1.33, and the uninfected contacted individuals have a
fitted power-law distribution with <k>= 2.89 and γ= 1.79
(Fig. 5b). We count the number of days when contacted
individuals had contacts with any infectious individual. The
probability p(k) that a contacted individual have encountered any
infectious individual for k days in recent 17 day for infected and
uninfected contacted individuals, respectively. It can be fitted by a
power-law distribution with <k>= 2.27 and an exponent γ= 1.94
for the infected contacted individuals, while it can be fitted by a
fitted power-law distribution with <k>= 2.03 and γ= 2.22 for the
uninfected contacted individuals (Fig. 5c). These distributions are
different in terms of the expectations and the fitted power
exponents: the infected contacted individuals have more contacts
than uninfected contacted individuals and the corresponding
distribution has a fatter tail. This indicates that there are an
appreciable quantity of infected contacted individuals with a large
amount of contacts.

Based on these contact behavior discriminations, we proceed to
perform an individual-level infection risk evaluation for each
contacted individual. We propose a risk evaluation method based

Fig. 5 Infection risk evaluation based on the Bayesian framework. a The distributions of the numbers of contacts with the infectious by infected and
uninfected contacted individuals, respectively. b The distributions of the numbers of the infectious by infected and uninfected contacted individuals,
respectively. c The distributions of the days of contacts with the infectious by infected and uninfected contacted individuals, respectively. d The ROC curves
for the risk evaluation. Here the x-axis denotes the false positive rate and the y-axis denotes the true positive rate, where a random guess gives a point
along the dashed diagonal line. e The ROC (receiver operating characteristic) curves for the risk evaluation with different temporal and spatial granularities.
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on the Bayesian framework by calculating the posterior infected
probability for any contacted individual50. We first use a variable
zj to represent the health status for any contacted individual j, i.e.,
zj= 1 if j is infected and zj= 0 otherwise. Then, the infection risk
for j is determined by the posterior probability P(zj= 1∣bj, fj):

Pðzj ¼ 1jbj; f jÞ ¼
Pðbj; f jjzj ¼ 1Þ � Pðzj ¼ 1Þ

Pðbj; f jÞ
; ð1Þ

where bj denotes the contact features (e.g., number of contacts)
for j, and fj denotes the individual feature, indicating the age,
gender, and etc. The term P(bj, fj∣zj= 1) is the likelihood, and
P(zj= 1) indicates the infected probability for any contacted
individual j a prior, which is taken as a constant (see the
“Methods” section for more details).

After calculating the infection risk of every contacted
individual, we vary the positive threshold from 0 to 1 and
display the ROC (receiver operating characteristic) curve. The
ROC space is defined by plotting the false positive rate in x-axis
and the true positive rate as y-axis, indicating the relative trade-
offs between false positive (costs) and true positive (benefits)
(Fig. 5d). Increasing the threshold results in fewer true positives
and false positives. However, the true positive is larger than false
positives, indicating the infection risk model is effective. Above an
appropriate threshold, for example, we can find about 50% of the
infected contacted individuals with 30% false report of the
uninfected contacted individuals, where the AUC (area under the
ROC curve) reaches 0.57 by using the contact graph (green line).
The feature of gender did not contain any information to
distinguish infected ones, where the AUC is 0.5, while the AUC
with the feature of age reaches 0.59. Generally, a high AUC can
help narrow down high risk contacted individuals for quarantine
in practice. Obviously, information of the age provides a more
accurate discrimination to identify the infected contacted
individuals, while there is nearly no distinction by gender. The
results indicate that the distinction of contact behaviors between
the infected and uninfected contacted individuals are not
prominent. Moreover, the contact distinction is more significant
than the gender distinction but less significant than the age
distinction. To perform a sensitivity analysis for the temporal and
spatial granularities, we vary the time interval and spatial area in
the contact model. Specifically, the time interval is ranging from
15 to 60 min, and the contact distance is ranging from an area of
2 m × 3m to 15 m × 29m. The ROC curves shows the parameters
are not sensitive, indicating a stable analytical result (Fig. 5e).

Conclusion
Since the emergence of COVID-19, researchers have proposed
many mathematical models to characterize the transmission of
COVID-1922–25,51. As digital contact tracing has been advocated
by many countries, it rises the pressing issue of how to fully utilize
such a new approach to contain COVID-19. Here, we provide the
first collection of results that accurately characterize the evolving
epidemic situation of COVID-19 by exploiting the temporal
contact graph. Our approach offers a data-driven approach to
evaluate and predict the evolving epidemic situation of COVID-
19. Clearly, our data-driven approach and the traditional model-
based approaches are complementary to characterize the trans-
mission of COVID-19.

As the contact tracing data are still unavailable, their perfor-
mance on COVID-19 prevention and control can not be directly
evaluated. Some excellent studies have utilized large-scale
smartphone data to capture mobility patterns52, and simulated
the infection process due to the unavailability of user infection
status2,7. Here, we leverage a large amount of location-related
data contributed by a large volume of voluntary users to study

such an issue. As we know the health status of smartphone users,
we construct a temporal contact graph between susceptible and
infectious individuals, which can be directly used to characterize
the transmission of COVID-19. This distinguishes our work from
most of the previous studies. We show that we can obtain a good
performance in estimating and evaluating the epidemic situation
even when user participation rate and data upload rate are low.
We also demonstrate that user participation rate has a bigger
impact than data upload rate on the estimations of the proposed
indicators. Our results can provide guidelines for governments to
practically deploy digital contact tracing measures.

Methods
Data collection and contact model. The data are contributed by 10,527,737
voluntary users in Wuhan, China, and collected by crowdsourcing platforms from
our industry partners. The location-related information was authorized and
uploaded every time smartphone users are using location-based services (see
Supplementary Note I for more data descriptions). Privacy protection mechanisms
such as perturbation and pseudonymization are adopted during data collection.
The location-related information, including POI, GPS, geomagnetic, etc., is pro-
jected into meshed area. The confirmed cases from 20 January to 28 February 2020,
serve as the sources of the infection. They are linked to the status of smartphone
users by their phone number, which is validated by the local authorities.

Note that all individual location-related data and health status information were
collected, stored and used by following the Personal Information Security
Specification (2019) and Public Health Emergencies Regulations of China. All raw
data was stored in specialized data servers with limited access by LBS providers.
This article only utilizes the temporal contact graph that is derived from the
raw data.

We propose a contact model based on the crowdsourced dataset: a contact
between two smartphone users is said to occur when they report the identical
geohash within a given time interval. As aforementioned, the geohash can be
projected into a mesh area of a certain meshed area (e.g., 15 m × 29m). This means
that a contact is characterized when the distance between two smartphone users is
within 18 m averagely. Such a definition is similar to that adopted by most contact
tracing apps which exploit Bluetooth or GPS to decide a contact when two users are
in a short distance. As smartphone users report data in a very low and irregular
frequency, the contributed data are typically sparse. We would miss many contacts
if we only count those where two smartphone users are reporting identical
information simultaneously. Considering the data sparsity, we define a contact
occurring when two users upload the same geohash with time interval T. We vary T
from fifteen minutes to two hours for sensitivity analyses, where the resutls
corroborate the stability of T (see Supplementary Fig. 7 for more details). In the
article, we present the results when T equals to two hours for an illustration.

The construction of the temporal contact graph. An individual has four status:
susceptible, contacted, infectious and confirmed. The status ‘susceptible’ turns to
‘contacted’ when an individual had at least one contact with infectious individuals.
A contacted individual may be infected or stay healthy. The status ‘infectious’
changes to ‘confirmed’ when confirmation is made. In China, confirmed cases will
be quarantined for treatment and no longer infectious to others.

Recent results indicated that an infected individual can turn to infectious before
and after the symptom onset, known as pre-symptomatic transmission and
symptomatic transmission. Taking into account both types of transmission, we
define the infectious period from the time when an infected individual becomes
infectious to the time when he/she is removed (recovered or quarantined for
treatment). We analyze the range of this period, finding that 17 days is the best
choice (see Supplementary Fig. 6 for sensitivity analyses).

By using the contact model, we identify 519,400 susceptible individuals having
contacts with 14,198 infectious individuals who turn to confirmed status later. The
daily temporal contact graph is constructed as a temporal undirected weighted
bipartite graph where the vertices represent contacted susceptible individuals or
infectious individuals and the weight represents the number of contacts between
them in a single day. This bipartite temporal graph is used in all the analysis in this
article.

Bayesian framework. We calculate the posterior probability P(Z∣B, F) under the
Bayesian framework, where we denote the behavior events by B and denote the
feature events by F. Specifically, bj indicates the numbers of contact events for any
contacted individual j, and fj indicates the category of feature event for j. To
measure the infection risk of a contacted individual j, we employ the Bayesian
formula

Pðzj ¼ 1jbj; f jÞ ¼
Pðbj; f jjzj ¼ 1Þ � Pðzj ¼ 1Þ

Pðbj; f jÞ
: ð2Þ

The term P(bj, fj∣zj= 1) is called the likelihood, indicating the distributions of
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behaviors and features for any infected individual j. Assuming the behaviors and
features are independent53, we have

Pðbj; f jjzj ¼ 1Þ ¼ Pðbjjzj ¼ 1Þ � Pðf jjzj ¼ 1Þ: ð3Þ
Since we have found that the probabilities for various contacts can be approxi-
mated by power-law distributions, i.e.,

Pðbj ¼ kjzj ¼ 1Þ ¼ c � k�γ; k ¼ 1; 2; � � � ; ð4Þ
where coefficient c is the normalizing constant, satisfying

c ¼ 1
R1
k¼1 k

�γdk
¼ γ� 1; γ > 1: ð5Þ

We next try to compute the values of c and γ by maximum likelihood
estimate54. Supposing we have N infected samples b1, b2,⋯ , bN, we obtain the
likelihood function

lðγÞ ¼ ln Pðb1; b2; � � � ; bN jγÞ ¼ ln
YN

j¼1

ðγ� 1Þ � b�γ
j ¼ ð�γÞ � ∑

N

j¼1
ln bj þ N � lnðγ� 1Þ: ð6Þ

Then,

∂lðγÞ
∂γ

¼ � ∑
N

j¼1
ln bj þ N � 1

γ� 1
: ð7Þ

Holding ∂lðγÞ
∂γ ¼ 0, we can obtain

γ̂ ¼ 1þ N

∑N
j¼1 ln bj

: ð8Þ

As P(fj∣zj= 1) indicates the features for any infected individual j such as gender or
age, we assume the distributions are multinomial, i.e.,

Pðf j ¼ kjzj ¼ 1Þ ¼ QðkÞ: ð9Þ
Specifically, supposing we have M infected samples f1, f2,⋯ , fM, the multinomial
distribution Q(k) is estimated by

^QðkÞ ¼
1ff j¼kg
M

: ð10Þ

Notice that there is difference between the behaviors of the infected contacted
individuals and the uninfected contacted individuals. We thus denote the
estimations from the infected samples by γ̂I for contact events, and Q̂I for feature
events, while we denote the estimations from the uninfected samples by γ̂U for
contact events, and Q̂U for feature events. Substituting Eq. (8) and Eq. (10) into Eq.
(2), we can calculate the posterior probability

Pðzj ¼ 1jbj; f jÞ ¼
ðγ̂I � 1Þ � b�γ̂I

j � Q̂I ðf jÞ � ρ
ðγ̂I � 1Þ � b�γ̂I

j � Q̂I ðf jÞ � ρþ ðγ̂U � 1Þ � b�γ̂U
j � Q̂U ðf jÞ � ð1� ρÞ

;

ð11Þ
where ρ can be obtained by the proportion of the infectious among the population.

Risk evaluation. In this article we have considered the risk by their behaviors and
features, and we use true/false positive and the ROC curve to analyze the effec-
tiveness of the risk model. Notice that the "positive” in the phrase "true/false
positive rates” does not indicate the "positive” in a nucleic acid testing. In fact, we
have measured the risk of any contacted individual j, i.e., P(zj= 1) by the proposed
risk model. In order to evaluate the risk measured by the model, we study the ROC
(receiver operating characteristic) curve. For a threshold 0 < q < 1, specifically, a
contacted individual j is considered to be true positive if zj= 1 and P(zj= 1) > q,
while j is considered to be false positive if zj= 0 and P(zj= 1) > q. Then, we can
calculate the TPR (true positive rate) by

TPR ¼
∑j1fzj¼1;Pðzj¼1Þ> qg

∑j1
; ð12Þ

and FPR (false positive rate) by

FPR ¼
∑j1fzj¼0;Pðzj¼1Þ> qg

∑j1
: ð13Þ

Thus, the ROC curve described by TPR and FPR can well evaluate the risk model
for contacted individuals.

Ethics statement. The original data of location-related information was uploaded
to location-based services provider, when a smartphone user requests location-
based services. Smartphone users were informed the data collection process, and
authorized the process once using location-based services. Westlake Institute for
Data Intelligence provided the anonymous temporal contact graph. The whole
process of constructing the temporal contact graph was conducted and calculated
by third-party secure data servers of the local institutions. The anonymous tem-
poral contact graph was output for research, and there is no private identifying

information about the individuals accessible to us. The whole project was reviewed
and approved by the Medical Ethics Committee of School of Medicine, Zhejiang
University. The ethical committee did not deem it necessary to request an addi-
tional informed consent by the participants, since there is no private identifying
information about the individuals accessible to us (researchers) and no interaction
between the individuals and us. Moreover, the project utilized anonymous data,
and did not involve evaluation of experimental or patient data. Westlake Institute
for Data Intelligence aggregated mobility travel flows were previously anonymized
in compliance with Civil Code of the People’s Republic of China and General Data
Protection Regulation (GDPR) enforced by the European Union (see Supple-
mentary Note III for more details about ethic and privacy issues).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The anonymous constructed temporal contact graph is available at https://github.com/
MinchengWu/temporal-contact-graph, and the daily symptomatic cases are referred to
the ref. 40.

Code availability
Code reproducing the key results of this paper is available from the corresponding author
upon reasonable request.
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