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Spatial regionalization based on optimal
information compression
Alec Kirkley 1,2,3✉

Regionalization, spatially contiguous clustering, provides a means to reduce the effect of

noise in sampled data and identify homogeneous areas for policy development among many

other applications. Existing regionalization methods require user input such as the number of

regions or a similarity measure between regions, which does not allow for the extraction of

the natural regions defined solely by the data itself. Here we view the problem of regiona-

lization as one of data compression and develop an efficient, parameter-free regionalization

algorithm based on the minimum description length principle. We demonstrate that our

method is capable of recovering planted spatial clusters in noisy synthetic data, and that it

can meaningfully coarse-grain real demographic data. Using our description length for-

mulation, we find that spatial ethnoracial data in U.S. metropolitan areas has become less

compressible over the period from 1980 to 2010, reflecting the rising complexity of urban

segregation patterns in these metros.
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From the growth of economies1 to the systemic segregation of
human populations2 to the environmental adaptation of
ecological species3, many social and natural phenomena

manifest themselves in space with high levels of clustering among
similar agents or entities. Precisely defining the spatial boundaries
of these clusters and observing their evolution can shed light on the
fundamental processes driving the dynamics of these systems, aid
in the reduction of noise in spatially sampled data4,5, and facilitate
the identification of regions for spatially targeted policy
interventions6 among numerous other applications. Regionaliza-
tion methods—techniques to perform spatially constrained clus-
tering by aggregating spatial units—are typically the tools of choice
for partitioning spatial data into areas of interest for such analysis.
Consequently, regionalization methods have been adapted for
applications across fields as diverse as climatology7, urban
sociology8, hydrology9, geoecology10, and political science11.

Many approaches to regionalization typically require a sig-
nificant amount of input from the user to adjust various para-
meters prior to performing the clustering. These tunable
parameters can be used to constrain the size or shape of clusters,
or to avoid crossing administrative or geographical
boundaries12,13. User preferences are also commonly incorpo-
rated into regionalization methods through the choice of a
similarity or distance function between adjacent regions14,15.
Additionally, as is the case with any clustering method, a key
factor existing regionalization methods consider is the choice of
the number of regions, which is typically fixed by the user12,16 but
is sometimes determined endogeneously based on user-defined
thresholds for covariates of interest or other heuristics that
depend or one’s choice of dissimilarity between spatial units15,17.
An increased level of user control is desirable for many applica-
tions of regionalization, as researchers can ensure that the iden-
tified regions are suitable for the task at hand and do not violate
any necessary constraints. For example, clusters extracted from
regionalization methods may be used to define zones designated
for different aspects of urban development, and it may be pre-
ferred that these zones do not cross significant geographical or
infrastructural boundaries. In other applications of regionaliza-
tion, however, such as identifying characteristic scales over which
segregation or other socioeconomic phenomena persist18–21, one
may be interested in imposing as few assumptions as possible
about how the data clusters into regions, and instead rely on the
data itself to naturally define these clusters. The minimum
description length (MDL) principle from information theory is a
rigorous statistical framework within which one can perform
inference tasks with minimal user input22,23, and so provides a
natural foundation for new data-driven regionalization methods.

The minimum description length principle has been applied to
clustering categorical data24, real-valued vector data25, and other
sets of objects26 in aspatial contexts. In ref. 27, an algorithm for
community detection in (aspatial) network data is proposed that
identifies the partition minimizing the description length of an
encoding of the network. This method, however, takes only
topological information into account, which is relatively unin-
formative for planar networks of adjacent spatial regions (as is
the case in regionalization). In ref. 28, a regionalization algorithm
is proposed that uses concepts from information theory to define
homogeneous aggregations of spatial units, which can be iden-
tified using a greedy optimization procedure. This method works
well for identifying boundaries of ethnoracial segregation, but
requires the user to specify the desired number of regions and
chooses the class of Bregman divergences to measure informa-
tion rather than a purely combinatorial description length
approach.

In this paper, we present a regionalization objective function
for spatial networks with distributional metadata that is based

solely on fundamental combinatorial arguments and the mini-
mum description length principle. By viewing the problem of
regionalization from this perspective, our approach does not
require the specification of any free parameters such as an explicit
dissimilarity function between spatial units or a particular value
for the number of regions we want the algorithm to return. Our
method also takes into account the full distribution of the cov-
ariate of interest in each spatial unit, rather than summarizing
each local distribution with a single statistic such as its mode, and
accounts for both this spatial metadata and the topology of
regional adjacencies. We describe a greedy optimization proce-
dure used to obtain a partition of the network that approximately
minimizes this description length, which involves iteratively
merging the pair of nodes that maximally reduces the description
length. We demonstrate our method in a series of experiments
using both real and synthetic spatial data. In the first experiment,
we illustrate how our method can effectively recover synthetically
planted clusters in spatial distributional data, even in the presence
of substantial noise. We move on to show that our method
extracts meaningful regions and their evolution in real ethno-
racial data by analyzing the New Haven-Milford metropolitan
area of the U.S. as a case study, covering the decades between
1980 and 2010. Finally, in an experiment using a set of 110 large
metropolitan areas across the U.S., we demonstrate that our
method reveals the increasing complexity of urban segregation
patterns over this same time period, and that this trend can be
well explained by the increase in small-scale ethnoracial diversity
within these metros rather than by changes in segregation pat-
terns at large spatial scales.

Results
Cluster recovery in synthetic data. As a first test of our method,
we explore its capability of recovering clusters in synthetic data.
To do this, we create a synthetic model of spatial distributional
data that has four tunable parameters: the number of clusters K,
the number of covariate categories R, the level of statistical noise
between the cluster-level distributions ϵbetween, and the level of
statistical noise within the clusters, ϵwithin. The model requires a
spatial network G= (V, E) representing the adjacencies among
spatial units, and for this we use the census tract network for the
New Haven-Milford metropolitan area, with n(V)= 189 census
tracts (see Methods for details on data and mathematical vari-
ables). The specific choice of G does not tend to make a quali-
tative difference in the results, since the spatial networks induced
by the adjacencies between units will in general have very
restricted topologies29. It is also possible to include variable unit
populations b(u) in this model, but for simplicity we set
b(u)= 10,000 for all u∈V so that these values correspond
roughly to the values seen in the real U.S. census tract data used
in later experiments. We show that this population heterogeneity
has little effect on downstream results in Supplementary Note 3
and Supplementary Figs. 3 and 4.

To generate a realization of the model, we first randomly
partition the units into contiguous clusters by picking K units
(“seeds”) at random and constructing the Voronoi tesselation of
the centroids of the spatial units of the network with respect to
these seeds. This Voronoi tesselation places each unit into the
cluster corresponding to the seed geographically nearest to the
unit’s centroid in terms of Euclidean distance, and in doing so
tends to produce clusters are spatially contiguous (we reject the
proposed partition if it has any discontiguous partitions). The
Voronoi tesselation produces relatively compact convex regions
in the plane, but there are other reasonable alternative tesselations
for generating the randomized contiguous partition. We denote
this “planted” partition Pplanted, to distinguish it from the
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partition P inferred using our minimum description length
algorithm.

Next, each cluster Vk is assigned a vector x(Vk), which tunes
the covariate distributions within the units that comprise Vk.
x(Vk) is drawn from a Dirichlet distribution with length-R
concentration parameter α ¼ ϵ�1

between1R. This allows us to tune
the level of differentiation between the cluster-level distributions,
as well as the localization of these distributions. For low levels of
between-cluster noise ϵbetween (ϵbetween≲ 1), the distributions
x(Vk) will all tend to distribute their probability relatively equally
around the R categories, and there is little differentiation between
the clusters Vk. On the other hand, for high levels of between-
cluster noise ϵbetween (ϵbetween≳ 5), there will be high between-
cluster variance in the distributions {x(Vk)}, which will each tend
to localize around a single category r. In general, the higher the
between-cluster noise ϵbetween is, the easier it should be to recover
the planted clusters in the synthetic data with our partitioning
algorithm, since the clusters are more easily distinguished.

To tune the level of noise within each cluster Vk, we generate
the distribution xðuÞ ¼ fbrðuÞgRr¼1=bðuÞ for each u∈Vk using
x(u)= (1− ϵwithin)x(Vk)+ ϵwithinxnoise, where xnoise is drawn
from a Dirichlet distribution with concentration parameters
equal to 1. If the level of within-cluster noise ϵwithin ≈ 0, then each
x(u) for u∈Vk will be roughly the same as x(Vk), and thus the
unit-level distributions {br(u)} for u∈Vk are very similar. On the
other hand, if the level of within-cluster noise ϵwithin ≈ 1, then the
vectors x(u) will have high variability within the cluster Vk and
the distributions {br(u)} for u∈Vk will share very little
information. As opposed to the between-cluster noise, higher
values of the within-cluster noise ϵwithin correspond to it being
harder to recover the planted clusters in the synthetic data, since
the unit-level distributions within each clusters are not as similar
to each other. Illustrative examples of realizations of this synthetic
data model used for the experiments in this section are shown in
Supplementary Fig. 7.

To measure the performance of our algorithm for any
particular draw from the model, we compute the normalized
mutual information30 between our inferred minimum description
length partition P and the planted partition Pplanted. The mutual
information tells us how much information is shared between the
two partitions, and its value is then normalized to fall in [0, 1] so
that 0 corresponds to completely uncorrelated partitions, and 1
corresponds to identical partitions (up to an arbitrary relabeling
of the clusters). Letting P ¼ fVkg and Pplanted ¼ fUk0 g, the
mutual information MIðP;PplantedÞ is given by

MIðP;PplantedÞ ¼ ∑
k;k0

jVk \ Uk0 j
nðVÞ log

nðVÞjVk \ Uk0 j
jVkjjUk0 j

: ð1Þ

The mutual information can be normalized to fall in [0, 1] by
dividing by the average of the entropies of the individual
partitions P and Pplanted, giving

NMIðP;PplantedÞ ¼ 2
MIðP;PplantedÞ

HðPÞ þ HðPplantedÞ
; ð2Þ

with

HðPÞ ¼ �∑
k

jVkj
nðVÞ log

jVkj
nðVÞ ð3Þ

and

HðPplantedÞ ¼ �∑
k0

jUk0 j
nðVÞ log

jUk0 j
nðVÞ : ð4Þ

The normalized mutual information is a standard and well-
tested measure for comparing partitions of networks31,32, but it

has a critical shortcoming for our particular application in that it
gives very high baseline values to completely random contiguous
partitions of spatial networks. The reason for this is that Eq. (2)
compares the partitions P and Pplanted relative to the ensemble of
all possible partitions of the network, contiguous or not, and the
constraint of contiguity induces a high baseline level of
correlation between the partitions. To correct for this, we rescale
the normalized mutual information by subtracting off its
maximum value at ϵwithin= 1 over all simulations, which we
denote NMIbaseline, and dividing by one minus this baseline value.
The resulting measure is more appropriate for comparing
spatially contiguous partitions, and is given by

NMIrescaled ¼
NMI� NMIbaseline
1�NMIbaseline

: ð5Þ

It is then easy to see when we reach the NMI value at which the
partitions are minimally correlated, subject to the contiguity
constraint, since the rescaled measure in Eq. (5) will be near 0.
Our rescaling does not map the highest value of the NMI over the
ϵwithin range in a given experiment to 1, so that we have better
differentiation of performance in the low noise region. Indeed, we
will see that the zero-noise values of the rescaled NMI are slightly
less than 1 in most cases, since some sampled model realizations
will by chance produce some adjacent clusters that are nearly
indistingushable.

In Fig. 1, we show the results of generating realizations of
synthetic contiguous partitions from our model and running our
regionalization algorithm on each of these realizations to try to
recover the planted clusters. To summarize the distribution of
results over the ensemble of planted partitions generated from
the model, each data point represents the average rescaled
normalized mutual information over 100 of these cluster
recovery experiments, with error bars representing 2 standard
errors in the mean. We can see that as the level of within-cluster
noise ϵwithin increases, it becomes harder for us to recover the
planted partition (as expected), but that we still have recovery
better than the baseline value for reasonably high levels of
within-cluster noise, for ϵbetween > 1. (At ϵbetween= 1, there is not
enough differentiation in the latent cluster-level distributions
x(Vk) for a distinguishable cluster structure except for at very low
levels of within-cluster noise ϵwithin.) As expected, we can observe
that the recovery task becomes easier as ϵbetween increases, since
we have better differentiation in the latent cluster-level distribu-
tions {x(Vk)}. We can see that the exact values of ϵwithin and
ϵbetween at which significant enough noise is introduced to
obscure the cluster structure of the data are different, since
ϵwithin∈ [0, 1] is a fractional weight and ϵbetween ∈ [0,∞) is an
inverse Dirichlet concentration parameter. Recovery perfor-
mance also improves as R increases, as it is less likely for the
modes of the distributions x(Vk) to overlap for larger R. The
performance of our algorithm does not vary significantly with
the number of planted clusters K, so results are displayed only for
K= 5 for clearer visualization.

Overall, the results of Fig. 1 indicate that our minimum
description length regionalization algorithm is able to successfully
recover artificially planted clusters, even in the presence of
substantial noise, with the performance varying as expected with
the level of homogeneity within and between clusters. We now
move on to examine its performance on real ethnoracial
distribution data.

Case study: Ethnoracial composition of the New Haven-
Milford metropolitan area. To illustrate how the clusters
obtained with our regionalization algorithm capture meaningful
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patterns in real data, we look at a case study of the ethnoracial
evolution of the New Haven-Milford, Connecticut metropolitan
area, using the data described in Methods. This metro was chosen
for the case study analysis due to a clearly visible spatial evolution
of different ethnoracial groups and relatively low heterogeneity in
census tract density in comparison with other smaller metros in
our dataset, both factors allowing for a clear visual analysis of its
temporal segregation patterns. Additionally, the New Haven-
Milford metro exhibits a noticeable increase in ethnoracial
diversity at small scales, which will help us motivate the analysis
in the next section.

In Fig. 2, we show the evolution of the spatial distribution of
ethnoracial groups, along with the regional boundaries inferred
from minimizing the description length in Eq. (16), for the census
tracts in the New Haven-Milford metro area between 1980 and
2010. Points are distributed randomly within each tract in
proportion to the fraction of the population in each ethnoracial
category. We can see that, in general, the clusters inferred through
our algorithm correspond to heterogeneities in the spatial
densities of these ethnoracial groups. The outlying tracts in the
clusters, particularly in the year 2000, do not have as high a
proportion of minority ethnoracial groups as the more densely
packed areas of the clusters, but we can see these areas begin to fill
out with minority populations over time (their inclusion status in
the cluster is determined by their slightly higher relative
concentrations of the minority groups dominant in the core of
their cluster, compared to nearby areas).

Two emerging Black/Hispanic clusters in the north and one in
the south are the primary clusters dense with minority
populations that are captured by the algorithm, which assigns
the rest of the metro to a single more rural/suburban and
predominantly White cluster in all years (in 2000 and 2010 this
cluster is broken into two due to contiguity requirements). We see
that these clusters trend towards higher percentages of Hispanics
relative to Non-Hispanic Blacks, which is consistent with the high
influx of Latinos to the area between 1990 and 200033. The spatial
extent of these Black/Hispanic clusters increases over time,
reaching out into the less dense region of the metro that was
predominantly White in 1980, which is consistent with “White
flight” during deindustrialization as well as the expanding
influence of Yale University in the south34. In 2010, we see a
slightly different configuration of clusters, with the northern
Black/Hispanic clusters remaining largely intact, but the
southern-most cluster splitting into a largely Black/Hispanic
cluster and one relatively mixed cluster. In 2000, this mixed
cluster was merged with a primarily Black cluster, but in 2010 we
can see that the movement of Hispanic population into the
previously Black cluster provided a high enough level of Black/
Hispanic mixing to create a single dense southern-most cluster,
and a separate cluster to the north with smaller overall minority
populations. In 2010 we also see the emergence of a new largely
Hispanic cluster to the west. These emerging clusters are reflected
by an increasing optimal number of clusters, K, over the last three
decades. The high level of spatial aggregation of Hispanic
populations we see in the New Haven-Milford metro area is
consistent with a general trend revealed by a fractal scaling
analysis of large U.S. cities35, which found that from 1990 to 2010
the fractal dimensions of predominantly Hispanic areas increased
in most of the cities studied.

In addition to the emergent Black/Hispanic clusters at larger
spatial scales, the rural/suburban tracts diversified metro-wide due to
an influx of Asian and Hispanic populations to the area36. For the
most part these outlying tracts do not have sufficient differentiation
in their ethnoracial distributions to necessitate separate clusters, and
they are all grouped into a similar majority-White cluster for all four
decades. However, this increasing tract-level diversity does result in

Fig. 1 Recovery of synthetic clusters. In each panel, the recovery
performance of our algorithm, as measured by the rescaled normalized
mutual information (NMI) of Eq. (5), is plotted on the y-axis against the
level of within-cluster noise ϵwithin on the x-axis, for between-cluster noise
a ϵbetween= 1.0, b ϵbetween= 2.0, c ϵbetween= 5.0, and d ϵbetween= 10.0. The
number of covariate categories R is varied within each the panel (denoted
by different colors), and the number of clusters is set to K= 5. Error bars
represent 2 standard errors in the mean.
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greater difficulty compressing the data, as there is a clear positive
trend in the inverse compression ratio η (Eq. (18)) over the four
decades. We will show in the next section that a similar trend is seen
across all the metros in our dataset, and that this decreasing
compressibility can be better attributed to the latter effect observed in
this case study (small-scale diversification) than the former (changes
in large-scale segregation).

Compression of ethnoracial data across metros. Now that we
have demonstrated that our regionalization method is capable of
identifying meaningful clusters in ethnoracial census data, we
move on to a large-scale analysis of the metro area networks
described in Methods. Specifically, we look at the extent to which
the data within each metro can be compressed by our algorithm
according to Eq. (18), which can be used as an indicator of the
overall complexity of the segregation patterns in these areas.

From a purely visual analysis, one can easily argue that the
segregation patterns seen in the New Haven-Milford metro in
Fig. 2 are becoming more complex over time: describing to
somebody the spatial distribution of ethnoracial groups in this
metro would require more effort in 2010 than in 1980. And
although this concept is difficult to express in precise language
due to the highly multifaceted nature of patterns in spatial data,
we can capture this intuition through the inverse compression
ratio of Eq. (18), which tells us how efficiently we can compress
the data for its exact description to a receiver.

Despite the difficulty we may have in succinctly articulating the
overall complexity of the observed segregation patterns, there are
a few key features that stand out in the plots of Fig. 2. As
discussed in the case study, the inverse compression ratio η(D)
increases for the New Haven-Milford over the decades spanning
1980 to 2010, and it is uncertain whether or not this increase can
be better attributed to changes in tract-scale diversity or changes
in large-scale segregation. The first feature of interest is the
increasing diversity of a typical tract in the metro area,
demonstrated by a greater and greater fraction of area covered
by colored points as time progresses. The second feature that
stands out is the changing spatial extent of the clustered areas,
seen through the gradual absorption of the primarily White
outlying tracts in 1980 into the minority-dense clusters as these
clusters expand. In this section we explore the question of
whether or not spatial ethnoracial patterns become more complex
(as quantified by Eq. (18)) in metros other than New Haven-
Milford, and to what extent the patterns we observe across these
metros are consistent with each of these two features of overall
diversity and changing spatial scales of clustering.

To measure the tract-level diversity of the data D in each metro
area, the first feature of interest, we compute the average entropy
Havg(D) of the ethnoracial distribution in each tract-level
distribution within the metro, given by

HavgðDÞ ¼
1

nðVÞ ∑
u2V

HðfbrðuÞ=bðuÞgÞ

¼ � 1
nðVÞ ∑

u2V
∑
R

r¼1

brðuÞ
bðuÞ log

brðuÞ
bðuÞ ;

ð6Þ

where H is the Shannon entropy. Eq. (6) will take its minimum
value of 0 when the population in D is concentrated entirely into
a single category r within each tract, and its maximum value of
logR when all categories have equal representation in each tract
within the metro.

To measure the second feature of interest, the spatial scale of
clustering for a metro area, we define the characteristic cluster

Fig. 2 Ethnoracial distributions in census tracts within the New Haven-
Milford, Connecticut metropolitan area. Census tracts are delineated with
thin black borders and inferred cluster boundaries from the minimum
description length regionalization algorithm are shown with thick black borders
for each decade a 1980, b 1990, c 2000, d 2010. Colored points are distributed
at random within each tract and each color covers an area proportional to the
fraction of the population within the tract that falls under the corresponding
ethnoracial category. The inverse compression ratio η (Eq. (18)) and the optimal
number of clusters K are shown for each decade.
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length scale ξ(D) as

ξðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑kA Vk

� �2
AðVÞ

s
; ð7Þ

where AðV 0Þ is the area of tracts in the subset V 0 � V , and P ¼
fVkgKk¼1 is the minimum description length partition of the
metro. Eq. (7) will take its minimum value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðVÞ=nðVÞ

p
when

each cluster has a spatial extent of A(V)/n(V)—the area of a single
tract if the tracts were of equal size and each cluster only
consisted of a single tract. Conversely, Eq. (7) will take its
maximum value of

ffiffiffiffiffiffiffiffiffiffi
AðVÞ

p
, the length scale of the entire metro,

when the data D is best compressed with only a single cluster.
In Fig. 3, we show how changes in the inverse compression

ratio η (Eq. (18)) correspond to changes in Havg (Eq. (6)) across

all 110 metros for each time period in our dataset. In order to
account for unobserved heterogeneity in each metro network that
is constant in time—for example due to the size and topology of
the metro adjacency network—as well as for potentially nonlinear
dependencies, ordinary least squares (OLS) regression analysis
was performed on the differences in the logarithm of each
quantity over each of the periods 1980−1990, 1990−2000, and
2000−2010 (panels (a), (b), and (c), respectively, in the figure).
All significance results reported in the captions hold up under
Bonferroni correction for multiple comparisons37.

We can see that the inverse compression ratio η is in general
increasing over all time periods, as the majority of the points in Fig. 3
fall above the line y= 0. The average values of η over the four
decades are {0.74, 0.77, 0.82, 0.85} for {1980, 1990, 2000, 2010}. In
particular, the values of η increased substantially between t= 1990
and t= 2000, with all metros in our dataset having a positive change
in this quantity during this decade. This general pattern of decreasing
compressibility, with the greatest change occurring during the
1990−2000 period, is consistent with the case study analysis in the
previous section.

Looking at Fig. 3, we can also observe a consistently increasing
level of tract-level diversity in the metro areas, as illustrated by the
majority of points falling to the right of the line x= 0 in the three
plots. The average values of Havg over the four decades are
{0.57, 0.67, 0.87, 1.02} for {1980, 1990, 2000, 2010}. This observa-
tion is consistent with findings that suburbs have generally
become more racially diverse38, that there are an increasing
number of “no-majority” communities in which no ethnoracial
group makes up more than half of the population39, and that the
diversification of cities in the U.S. is manifested nationwide with
no significant regional dependence40. The Scranton Wilkes-Barre
metro area (the rightmost point in Fig. 3) represents a clear
outlier regarding changes in overall diversity, as its value of Havg

shot up in 2010, with roughly a 105% increase from relatively low
values in the first three decades. The coefficients of determination
r2 for the regression analyses reveal that the temporal changes
in Havg are highly correlated with the changes in η over the same
time periods, with the strongest correlation occurring between
2000 and 2010. These r2 values, along with the statistically
significant p-values of the corresponding regression line slopes
(all of which had p≪ 0.01), suggest that the small-scale diversity
within metros is an important factor for determining the
complexity in segregation patterns we see according to Eq. (18).

Indeed, the results in Fig. 3 should not be too surprising: Eq.
(6) has its origins in the theory of information transmission and
can itself be used as a measure of spatial segregation18, like the
compressibility in Eq. (18). However, Eq. (6) accounts only for
diversity at small spatial scales, while the compressibility in Eq.
(18) accounts for both small-scale diversity as well as large-scale
homogeneity within clusters. In this way, both large-scale
segregation and small-scale diversity will affect the compressi-
bility, and therefore we need to examine both factors to determine
which is a more dominant force associated with the increasing
complexity we see in metros according to Eq. (18).

As shown in Supplementary Fig. 5, however, we observe no
clear trend in the changes in the characteristic cluster length
scales ξ (Eq (7)) across metros for each time period, with roughly
half of the metros in each time period having decreasing values ξ,
and half having increasing values of ξ. The metros that comprise
these two halves also differ across time periods: only 18 of the 110
metros studied had monotonically increasing or decreasing values
of ξ across all time periods (compared to 105 of 110 metros
having a value of Havg that increased throughout all decades). The
r2 values for the regression analyses in Supplementary Fig. 5
indicate that the temporal changes in ξ are poorly correlated with
the changes in η over the same time periods, with r2 values in two

Fig. 3 Compression versus small-scale diversity. Log-ratio of consecutive
inverse compression ratios η (Eq. (18)) versus the log-ratio of consecutive
average tract-level diversities Havg (Eq. (6)), in U.S. metros over the
decades a t= 1980− 1990, b t= 1990− 2000, and c t= 2000−2010.
Dotted lines at x= 0 and y= 0 are displayed for reference, along with
ordinary least squares regression lines (solid black) and their coefficients of
determination r2. The slopes of all regression lines were highly statistically
significant at the 0.01 significance level. Without grouping the changes by
decade, we find r2= 0.70, and that the slope is again highly significant at
the 0.01 significance level.
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of the decades even rounding to 0 up to two decimal places. The
p-values corresponding to the slopes of the regression lines
plotted do not indicate any statistically significant linear
relationship between the plotted variables—p= 0.52, 0.13, and
0.89 for panels (a), (b), and (c) respectively. These results suggest
that the increasing complexity of segregation patterns we observe
across metros is not substantially affected by the characteristic
spatial scale at which the units can be optimally clustered in each
metro (at least when considering census tracts as the fundamental
unit, which obscures segregation patterns at smaller scales41,42).

An important additional consideration to take into account is
the effect of population, as the population in most of the metros is
increasing over time, and it is reasonable to expect that this may
affect the compressibility of the data. In Supplementary Fig. 6 we
plot, in the same style as Fig. 3, the changes in population and the
changes in compressibility of the metros over time. We can see
from the OLS r2 values that there is very little to no dependence
between the population changes and the changes in compressi-
bility of the metros (consistent with the discussion in Methods).
We can also consider the effects of population and average
diversity simultaneously through the following regression with
city-level fixed effects

log ηct ¼ β1 logHavg;ct þ β2 log bct þ αc þ ϵct; ð8Þ
where c and t index metros and decades respectively, β1,2 are
regression coefficients, αc is an unobserved time-invariant source
of heterogeneity specific to metro c (for example, based on metro
c’s adjacency network topology), and ϵ is a noise term. We can
then run a regression for the first differences estimators to remove
the heterogeneity αc and identify the effect logHavg and log b have
on log η when considered together. By partitioning the individual
contributions of each term to the variance in the dependent
variable43, we find a relative importance of 97.8% for logHavg

versus only 2.1% for log b, indicating that the average local
diversity is a much more important factor for determining the
compressibility than population.

Altogether, this analysis indicates that segregation patterns in
large U.S. metros are becoming more complex over time from the
perspective of information compression. The small-scale diversi-
fication of these metros plays an important role in increasing the
complexity of these segregation patterns, while changes in
population and large-scale spatial clustering among ethnoracial
groups are likely not major contributors.

Conclusions
Here we have presented a network regionalization algorithm
based on the minimum description length principle for parti-
tioning a set of spatial units with distributional metadata into
contiguous clusters. Our method requires no user input, learning
the natural clusters that result in a maximally compressed
representation of the data. We demonstrate that our approach
can effectively recover synthetically planted clusters in noisy
spatial data and that it returns a partitioning of ethnoracial census
data in U.S. metropolitan areas that can allow for insights about
the ethnoracial segregation patterns in these metros. We find that
the segregation patterns in these metros have become increasingly
complex over time, in part due to the increasing small-scale
ethnoracial diversity of the metros over the time period studied.

There are a number of ways our method can be extended in future
work. Our current formulation requires the spatial data of interest to
take the form of a single discrete set of counts within each unit, but it
may be possible to perform a similar description length calculation
for the transmission of multiple spatial covariates simultaneously by
employing the combinatorial form of the shared information
between these covariates and transmitting a contingency table

indexed by groups of covariates rather than a single covariate (similar
in spirit to the encoding in ref. 44). One could also develop objectives
for clustering with ordinal or continuous metadata by considering the
transmission on a per-symbol basis and using continuous approx-
imations for the entropy and mutual information. This would allow
us to perform regionalization with respect to a variety of attributes of
interest with variable data types, for example race and income, all at
once. Extension of our transmission procedure to a multi-step,
hierarchical encoding scheme may also prove useful, as this would
allow for multiscalar regionalization. It is also possible to include
additional penalties in the regionalization objective function we use in
the form of Lagrange multipliers that enforce constraints on the size,
shape, or populations of the clusters, which may make our method
more suitable for policy-driven applications of regionalization.
Additionally, using description length-based data imputation45 one
may be able to adapt our method to be robust for use with incom-
plete data. Finally, a comprehensive numerical comparison between
the method of this paper and existing regionalization methods would
shed light on the advantages and disadvantages of the MDL approach
to regionalization (see Supplementary Note 4 for a qualitative com-
parison with similar existing methods).

Methods
Description length formulation. We represent our spatial data to be regionalized
as a network G= (V, E) consisting of a set of spatial units (nodes) V and a set of
edges E that connect adjacent units. More precisely, the edge (u, v)∈ E if and only
if units u ∈V and v∈ V share a length of common border. We denote the number
of units in any subset V 0 � V of the network as nðV 0Þ. Over this set of n(V) units,
there are b(V) ≥ n(V) individuals residing (we adopt analogous notation for bðV 0Þ),
and each of these individuals is classified under one of R categories r= 1, 2,…, R.
For example, the spatial units u that comprise the network may be census tracts or
block groups, and the categories could represent race, income bracket, or occu-
pation type. We also denote with brðV 0Þ the number of individuals of type r in
subset V 0 � V , such that ∑R

r¼1 brðV 0Þ ¼ bðV 0Þ.
Now, suppose we want to transmit to a receiver the entire dataset

D= {br(u): r= 1, . . , R; u∈ V} consisting of the distribution of types r among
individuals in all units (nodes) u ∈V (since we generally do not know the value r
for each individual due to confidentiality concerns, these unit-level distributions
are the highest granularity we consider.) We will transmit this data in multiple
parts, first partitioning the units u into K disjoint, spatially contiguous clusters
P ¼ fV1;V2; ¼ ;VK g that allow us to describe the data to the receiver at a coarse
spatial scale. We then transmit the small-scale details within each of these clusters
by describing how the cluster’s population attributes are distributed among its
individual constituent units. Our goal will be to identify a partition P of the units
such that most of the information we need to transmit is contained in the first part,
or in other words, that the clusters describe most of the variation in the data and
are internally homogeneous. Using the adjacency network representation
G= (V, E), we can guarantee spatial contiguity of the clusters by coarse-graining
the network into super-nodes representing the clusters {Vk} through merging nodes
in V that share edges in E. A diagram of a partition P of an example network and a
list of the variables used in the information transmission scheme are shown in
Fig. 4a.

We assume that the receiver knows there are n(V) units in total that will be
assigned to K clusters, and that there are b(V) individuals with R distinct categories
that will be assigned to units u ∈V (transmitting these requires a negligible amount
of information, so we can safely ignore them in our description length anyway). We
first need to transmit the populations b(Vk) for each of the clusters Vk, which
consists of a configuration of K non-negative integer values that sum to b(V). Prior
to transmission of the data D, we must develop a common codebook with the
receiver, from which we will transmit a binary string representing the particular
configuration of the populations {b(Vk)}. Assuming K≪ b(V), there are
approximately 0exbðVÞ � 1K � 1ð Þ possible configurations of these values we must
encode, and so we will possibly have to send a bitstring of length
dlog2 0exbðVÞ � 1K � 1ð Þe to the receiver to transmit the cluster-level populations
{b(Vk)}. (⌈x⌉ denotes the smallest integer not less than x, and we will omit this
transformation in future considerations as its contribution is negligible for x≫ 1.
For the sake of brevity we will also denote log2ðxÞ � logðxÞ.) Thus, the information
content (or “description length”) of this step in the transmission procedure is

LðfbðVkÞgÞ ¼ log
bðVÞ � 1

K � 1

� �
: ð9Þ

Following the same logic, we can construct the description lengths for the rest of
the steps required to transmit D according to this scheme. After sending the
populations {b(Vk)}, we must transmit the number of units within each cluster,
{n(Vk)}, for which we will construct a different codebook. This step will have a

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01029-4 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:249 | https://doi.org/10.1038/s42005-022-01029-4 |www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


description length of the same form as Eq. (9), thus

LðfnðVkÞgÞ ¼ log
nðVÞ � 1

K � 1

� �
: ð10Þ

Now, for each cluster Vk we need to transmit the size distribution {br(Vk)} of
categories within the population b(Vk), which will have the same form as Eqs. (9)
and (10). The description length of this step will be a sum over such description
lengths, or

LðfbrðVkÞgÞ ¼ ∑
K

k¼1
log

bðVkÞ � 1

R� 1

� �
: ð11Þ

Similarly, we need to transmit the populations b(u) of the units u∈Vk, for each
cluster Vk, which will give a total description length contribution of

LðfbðuÞgÞ ¼ ∑
K

k¼1
log

bðVkÞ � 1

nðVkÞ � 1

� �
: ð12Þ

The receiver now knows how many units u are in each cluster Vk, how many
individuals are in each of these units, and how categories are distributed across the
entire population of each Vk. The only information left to transmit is how the
categories in each cluster Vk are distributed among the populations in Vk’s
constituent units u. (We ignore the information required to map the final unit-level
distributions to particular locations in the network.) The number of ways these
values can be distributed is equivalent to the number Ω(ak, ck) of non-negative
integer-valued matrices with row sums ak ¼ fbðuÞgu2Vk

and column sums

ck ¼ fbrðVkÞgRr¼1. We can see this by noting that there are b(Vk) total individuals in
cluster Vk, and using the identities

bðVkÞ ¼ ∑
u2Vk

bðuÞ ð13Þ

and

bðVkÞ ¼ ∑
R

r¼1
brðVkÞ: ð14Þ

The description length for this final step is thus given by

Lfinal ¼ ∑
K

k¼1
logΩðak; ckÞ: ð15Þ

Computing Ω(ak, ck) is in general challenging, but it can be approximated in the
regime R, n(Vk)≪ b(Vk), which is typically the regime we encounter in practice
(see ref. 44 for details on this approximation).

Taken all together, the total description length of the data D under the partition
P of the network G is given by the sum of Eqs (9), (10), (11), (12), and (15), thus

LðD;PÞ ¼ log
bðVÞ � 1

K � 1

� �
þ log

nðVÞ � 1

K � 1

� �

þ ∑
K

k¼1
log

bðVkÞ � 1

R� 1

� �
þ ∑

K

k¼1
log

bðVkÞ � 1

nðVkÞ � 1

� �

þ ∑
K

k¼1
logΩðak; ckÞ:

ð16Þ

A list of the individual transmission steps and their corresponding information
content contribution to Eq. (16) is shown in Fig. 4b.

We can see that the first three terms in Eq. (16) penalize us for having a greater
number of clusters K, as they will tend to contribute greater description lengths as
K increases, and the fourth term will not depend on the number of clusters to first
order in a Stirling approximation of the binomial coefficients. For the last term in
Eq. (16), in the extreme case where there is only one category r* that is represented
in the population of the units u∈ Vk (i.e., ck[r]= 0 for r ≠ r*), then we have
Ω(ak, ck)= 1 and the contribution from this term vanishes. More generally, there
are fewer ways the categories can be distributed among the populations in Vk’s
constituent tracts if ck is more concentrated on a single category, and so the last
term in Eq. (16) will penalize us for having a high level of diversity within the
clusters (or, conversely, this term encourages partitions P that have homogeneous
clusters).

The optimal partition P ¼ fV1; ¼ ;Vkg of the network G that minimizes the
description length in Eq. (16) will allow us to communicate most of the
information about the data D through the cluster-level distributions alone, but
penalize us for constructing these clusters at too small a scale, since this will not
save us much effort above and beyond simply transmitting all the unit-level data
individually. The goal of our regionalization algorithm is to identify this partition,
and we describe an algorithm to accomplish this task in the next section.

Optimization and model selection. Minimization of the description length in Eq.
(16), like many other regionalization objectives12, is a combinatorial optimization
problem that can be approached in a number of ways to obtain an approximate
solution. Here, we opt for a greedy solution that consists of starting with each node
in its own cluster then iteratively merging the pair of adjacent clusters whose
aggregation results in the largest decrease in Eq. (16), until no merges produce a
negative change in the description length. We consider the two clusters of units Vk

and Vk0 adjacent if and only if there exists a u∈Vk and v 2 Vk0 such that (u, v) ∈ E.
This merging procedure thus has the benefit of naturally ensuring that the partition
P produces only contiguous clusters of units, since if units u and v end up in the
same cluster Vk, there must be a path of edges in E that connect u and v such that
all nodes along this path are also in Vk.

For any pair of clusters Vk and Vk0 , we can quickly compute the change in Eq.
(16) that results from their aggregation into a single cluster, Vk;k0 . Supposing there
are K clusters prior to the proposed merge, the change in description length from

V1

V2

V3

n(V1) = 4

b4(V2) n(V2) = 3

n(V3) = 3

R = 5
= + + b5(u = 10)

u = 10

b2(V2)

(a)

(b)

n(V1)

n(V3)
n(V2)n(V)

br(Vk)

Information contentTransmission step

b(V1)

b(V3)
b(V2)b(V)

b(Vk)

b(Vk)

{b(u)}u∈Vk

br(Vk)

{b(u)}u∈Vk

{br(u)}u∈Vk

Fig. 4 Diagram of description length formulation. a Variables used in the
decription length objective (Eq. (16)), for the partition P of example unit-
level distributions that gives the minimum description length according to
Eq. (16). The optimal contiguous partition of the underlying network of
spatial adjacencies (nodes and edges in black) results in aggregated regions
that capture most of the information content of the data. b Individual
transmission steps corresponding to each of the five terms in Eq. (16),
along with their corresponding information content. Arrows go from
coarser objects to more detailed subsets of these objects, which requires
the specification of an amount of information quantified by the term to the
right of the dividing line.
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merging Vk and Vk0 is given by

ΔLðk; k0Þ ¼ log
bðVk;k0 Þ � 1

R� 1

� �
þ log

bðVk;k0 Þ � 1

nðVk;k0 Þ � 1

 !

þ logΩðak;k0 ; ck;k0 Þ � log
bðVkÞ � 1

R� 1

� �

� log
bðVkÞ � 1

nðVkÞ � 1

� �
� logΩðak; ckÞ

� log
bðVk0 Þ � 1

R� 1

� �
� log

bðVk0 Þ � 1

nðVk0 Þ � 1

� �
� logΩðak0 ; ck0 Þ:

ð17Þ

Here, we have ignored the first two terms in Eq. (16), as these terms change by
the same amount across all pairs k; k0 and thus do not need to be computed until
the optimal pair k; k0 is chosen (whether or not this pair will be merged or the
algorithm will terminate does depend on these first two terms, which can be
computed in constant time). This expression can be evaluated in OðnðVkÞ þ
nðVk0 ÞÞ time for each pair of clusters k; k0 . Additionally, it only needs to be
computed once for each pair, and can be reused for future iterations of the
algorithm if the pair k; k0 does not get merged (as long as each newly formed cluster
gets a unique label). Once no remaining pair of clusters can be merged to reduce
the description length (ΔLðk; k0Þ>0 for all adjacent pairs Vk;Vk0 ), the algorithm
terminates.

The adjacency relations between clusters are updated as the algorithm progress
by considering the clusters as "super-nodes” whose neighbor sets are merged at
each step. This takes an additional Oðdk þ dk0 Þ operations, where dk is the number
of adjacent clusters (super-nodes) to cluster (super-node) k, and is typically smaller
than OðnðVkÞ þ nðVk0 ÞÞ for large clusters, since many clusters are adjacent to only
a few others for planar graphs (this is not necessarily the case for non-planar
networks). We find in practice that the algorithm scales well to large systems,
running in less than order O(n(V)2) time for the entire clustering procedure (see
Supplementary Note 1 and Supplementary Fig. 1).

Although the greedy algorithm used to optimize the description length in Eq.
(16) has the advantages of being computationally efficient and simple to
implement, it is not guaranteed to identify the true optimal partition P that
minimizes the description length objective over all possible partitions of the
network into contiguous regions. Identifying the optimal partition P is a
computationally challenging optimization problem, as there are at least O(n(V)2)
(and at worst exponentially many) contiguous partitions of the network one must
account for46, and even sampling such partitions is itself intractable for planar
graphs47. Additionally, fast dynamic programming approaches used for exactly
solving contiguous clustering problems in one dimension are not applicable48.
However, we find in test examples that the greedy algorithm gives results quite
competitive with those obtained through exhaustive enumeration of all contiguous
partitions of the network to identify the true optimal partition (see Supplementary
Note 2 and Supplementary Fig. 2).

The first few terms in Eq. (16) penalize us for having a large number of clusters,
since we waste information describing all of the cluster-level distributions in their
entirety. Meanwhile, the last term penalizes us for having a small number of
clusters, since we waste information describing the small-scale details of these
clusters when they encompass too broad a variety of unit-level distributions. The
optimal balance, and thus the optimal value of K, lies somewhere in between with
an intermediate number of clusters, and the description length in Eq. (16) thus
performs model selection for K automatically. In our example applications, we
therefore choose to let the description length tell us exactly how many clusters are
in the data. However, in many applications it may be preferable to have a fixed
value of K12, and this can easily be accommodated in our algorithm by simply
performing the greedy merge moves until the desired number of clusters is reached.

We can assess the quality of the information compression achieved through
partitioning the units into clusters by comparing the final description length
LðD;PÞ for the optimal partition P with the description length LðD;P0Þ for the
trivial partition P0 in which each unit is in its own cluster (computed at the
beginning of the optimization algorithm). From this we can construct an inverse
“compression ratio” for the data D as

ηðDÞ ¼ compressed size of D
uncompressed size of D

¼ LðD;PÞ
LðD;P0Þ

: ð18Þ

η(D) approaches its minimum value of 0 when the data D can be compressed
extremely efficiently through partitioning the network G, and approaches its
maximum value of 1 when there is no partition of G that achieves any compression
of D.

Eq. (18) can thus be used as a measure of the complexity of the spatial
segregation of the data D, with more complex spatial distributions of the covariate
of interest resulting in higher inverse compression ratios η. Intuitively, if the data D
is very easy to compress (low η), then it is highly spatially segregated into
homogeneous clusters, and most of the information in D is captured at large scales.
On the other hand, if the data is very hard to compress (high η), then much of the
information in the data is manifested at small spatial scales, which could be due to
the presence of diversity at these small spatial scales among other factors that

contribute to the multifaceted spatial nature of segregation patterns49. The inverse
compression ratio in Eq. (18) also allows us to compare the compressibility of
datasets with different populations b(V), numbers of categories R, number of
spatial units n(V), or where categories are defined differently. Indeed, for
b(V)≫ n(V)≫ R, K—which we typically encounter in practice for demographic
data—the leading order scaling of both LðD;PÞ and LðD;P0Þ in Eq. (18) is
OðnR log bÞ.

Ethnoracial data in U.S. metropolitan areas. To examine the performance of our
algorithm in a practical context we test our method using ethnoracial data that take
the form of distributions within census tracts. Ethnoracial distributions for census
tracts in U.S. metro areas were obtained from the Longitudinal Tract Database50,
which maps 2010 census tract boundaries to ethnoracial distribution data for
decades going back to 1970 (data from 1970 are omitted from our analysis, as they
do not include the designation of Hispanic ethnicity). The race/ethnicity categories
considered are “Non-Hispanic White”, “Non-Hispanic Black”, “Asian”, “Hispanic”,
and “Other”, which includes persons not categorized under the first four groups.

To process the census tract networks for each metropolitan area, we first map
each census tract to its corresponding core-based Metropolitan Statistical Area
(MSA) using the county designation of the tract. MSA’s are used as the metro
regions for this analysis as they aim to encompass areas of unified social and
economic labor market forces, while also enclosing full counties, which allows us to
avoid splitting census tracts51. It is important to be mindful of this choice of metro
regions, since the Modifiable Areal Unit Problem can result in different conclusions
about city-level socioeconomic diversity depending on which boundaries are
chosen52,53.

We then use TIGER shapefile data54 for the census tracts to determine the
network G= (V, E) of adjacent tracts in each MSA. Finally, the longitudinal
ethnoracial distribution data is then mapped to the nodes in each network using
the census tract IDs. To reduce noise as much as possible in our analysis, we kept
only metros with at least 100 tracts that had complete ethnoracial distribution
estimates in all tracts for the four decades 1980, 1990, 2000, and 2010. After
preprocessing, 110 metro networks remained for the analysis in Results, one of
which was the New Haven-Milford metro used for the case study. We make the
tract adjacency networks for each metro we used in our analysis (with
accompanying node metadata including ethnoracial distributions), as well as code
for executing our algorithm, publicly available at https://github.com/aleckirkley/
MDL_regionalization.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper or are
available at https://github.com/aleckirkley/MDL_regionalization.

Code availability
The regionalization algorithm presented in this paper is available at https://github.com/
aleckirkley/MDL_regionalization.
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