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Multiplicative topological phases
Ashley M. Cook 1,2,3✉ & Joel E. Moore 1,4

Symmetry-protected topological phases of matter have challenged our understanding of

condensed matter systems and harbour exotic phenomena promising to address major

technological challenges. Considerable understanding of these phases of matter has been

gained recently by considering additional protecting symmetries, different types of quasi-

particles, and systems out of equilibrium. Here, we show that symmetries could be enforced

not just on full Hamiltonians, but also on their components. We construct a large class of

previously unidentified multiplicative topological phases of matter characterized by tensor

product Hilbert spaces similar to the Fock space of multiple particles. To demonstrate our

methods, we introduce multiplicative topological phases of matter based on the foundational

Hopf and Chern insulator phases, the multiplicative Hopf and Chern insulators (MHI and

MCI), respectively. The MHI shows the distinctive properties of the parent phases as well as

non-trivial topology of a child phase. We also comment on a similar structure in topological

superconductors as these multiplicative phases are protected in part by particle-hole sym-

metry. The MCI phase realizes topologically protected gapless states that do not extend from

the valence bands to the conduction bands for open boundary conditions, which respects to

the symmetries protecting topological phase. The band connectivity discovered in MCI could

serve as a blueprint for potential multiplicative topology with exotic properties.
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The search for novel phases of matter–and particularly
phases of matter beyond the Ginzburg-Landau paradigm,
known as topological phases of matter–is now a vast and

influential topic in condensed matter physics1–13. The search
has more recently focused primarily on considering an exten-
ded set of protecting symmetries14–19, and on realizing topology
in systems that are non-electronic, driven, or coupled to an
environment20–26, as our understanding of electronic topology
in equilibrium and in isolation was thought to be complete for
effectively non-interacting systems.

However, rather than realizing non-trivial topology by
imposing symmetries only on the entire Hamiltonian for a sys-
tem as has been done in the past, here we generalize by imposing
symmetries on components of the Hamiltonian as well, which
combine multiplicatively, i.e., via the vector space product rather
than by the direct sum. This approach leads to methods for
construction of a large class of previously unidentified topolo-
gical phases, including two examples of new phases as proof of
concept of these methods along with an example of how a known
phase can be viewed in this framework. This approach con-
siderably expands the possible set of symmetry-protected topo-
logical phases of matter, as the large set of symmetries already
considered in studying topology may be combined, allowing a set
of parent phases of matter to be combined into a single child
phase of matter synthesizing the properties of the parents, as
illustrated in Fig. 1. Many of these symmetries are commonplace,
indicating multiplicative topology may appear in additional
situations in electronic systems. This physics furthermore
extends to various non-electronic topological phases and to
driven or non-Hermitian systems, extending each of these sets of
topological phases as well.

We demonstrate this method explicitly by constructing two
novel symmetry-protected topological phases of matter, the
multiplicative Hopf insulator and the multiplicative Chern insu-
lator, although the concept is broader; indeed we show that a
product structure is naturally also present in one kind of topo-
logical superconductor. We begin by constructing an example of a
multiplicative Hamiltonian that is the child of two non-
degenerate parent Hamiltonians, H1ðkÞ and H2ðkÞ. We then
show that this form may be symmetry-protected such that it

describes phases of matter, before introducing foundational
examples of multiplicative phases of matter, the multiplicative
Hopf and Chern insulators (MHI and MCI).

Results and discussion
Construction of multiplicative Hamiltonians. To construct the
multiplicative Hamiltonian, we first determine the expressions for
the matrix elements of the multiplicative Hamiltonian in terms of
the matrix elements of the parent Hamiltonians. To do this, we
consider parent Hamiltonians which are each acted upon by
elements of the special unitary group, SU(2). Such Hamiltonians
have two bands and may describe both the Chern insulator and
the Hopf insulator topological phases of matter. A child Hamil-
tonian constructed from such parents would then be acted upon
by the semisimple Lie group SU(2) × SU(2). As this Lie group is
isomorphic to the double cover of the special orthogonal group
SO(4), this direct product indicates there is a mapping from a pair
of parent Hamiltonians, each with 2 × 2 matrix representation, to
a child Hamiltonian with 4 × 4 matrix representation.

The explicit construction of the isomorphism is given in the
Methods, “Expressing the multiplicative child Hamiltonian in
terms of the parent Hamiltonian”, and here we state the resulting
expression for the child Hamiltonian. We take H1ðkÞ ¼ ða b

c dÞ
and H2ðkÞ ¼ ðα β

κ δÞ to be the two parent Hamiltonians in the
construction, with momentum dependence suppressed. The
expressions can of course be simplified further given hermiticity
of H1ðkÞ and H2ðkÞ, which gives c= b* and κ= β*, ensuring
hermiticity of the child Hamiltonian, but we leave the expressions
more general to more clearly show the underlying dependence of
the child Hamiltonian on the parent Hamiltonians. We may then
write the child HamiltonianHcðkÞ in terms ofH1ðkÞ andH2ðkÞ as

HcðkÞ ¼

aδ �aκ bδ �bκ

�aβ aα �bβ bα

cδ �cκ dδ �dκ

�cβ cα �dβ dα

0
BBB@

1
CCCA; ð1Þ

Probably the most familiar physical examples of Hamiltonians of
this product form, derived from underlying two-by-two Hamil-
tonians that can be expanded over Pauli matrices, appear in the
theory of 2D Dirac materials, where the two-by-two components
can represent spin, valley, or layer degrees of freedom. More
specifically, the additional particle-hole symmetry enforced to
symmetry-protect the multiplicative phases in this work can
correspond to the child effectively possessing a spinless version of
time-reversal symmetry. The multiplicative phases could corre-
spond, therefore, to a spinless superconductor with a suitable
orbital or valley degree of freedom.

We comment briefly on the differences between this tensor
product construction of the multiplicative phases and square root
topological phases27–30: these past works are distinct from our
multiplicative constructions and involve finding a Bloch Hamilto-
nian HðkÞ with non-symmorphic symmetries at the expense of
breaking crystal symmetries, starting from H2ðkÞ. That is, these
constructions are based on matrix multiplication rather than a
tensor product, yielding phenomena which may be understood in
the framework of crystalline topological phases. One example that
highlights the difference is a two-dimensional multiplicative Bloch
Hamiltonian Hcðkx; kyÞ can be constructed from two parents
H1ðkxÞ and H2ðkyÞ, which are each only one-dimensional and a
function of momentum in the x-direction, kx, or momentum in
the y-direction, ky. Such constructions are explored in detail in
follow-up works currently being completed31,32.

Fig. 1 Realization of multiplicative topology. Parent Hamiltonians 1 and 2,
each possessing some symmetries and corresponding to a topological
phase of matter, may be combined in a multiplicative manner to construct a
single child Hamiltonian. This child Hamiltonian can possess an additional
set of symmetries and inherit non-trivial topology from the parents in novel
combinations. In this schematic, the first parent is represented by a blue
circle, and the second parent is represented by a red square. The child is
represented by a rectangle with rounded corners, with color interpolating
between the blue of parent 1 and the red of parent 2, to symbolize
inheritance by the child of features of each parent.
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Topological classification. The topological classification of the
child Hamiltonian may be related to the homotopy classification
of the parents as follows: each parent Hamiltonian can be diag-
onalized by an element of SU(2), but two diagonalizing elements
are equivalent if they differ only by an element of the special
diagonal unitary group with two elements SDU(2)33. We can
obtain the Chern and Hopf invariants for each parent Hamilto-
nian by considering mappings from the D-dimensional Brillouin
zone torus TD to the space of distinguishable Hamiltonians,
which is SU(2)/U(1)= S2, where the U(1) is the diagonal sub-
group (Strictly speaking the Hamiltonian in the “periodic gauge”
is only periodic up to a gauge transformation; while this matters
for some quantities such as polarization, it does not matter for the
topological invariants we discuss.)33. An intuitive way to under-
stand why the sphere appears here is to imagine expanding the
Hamiltonian over Pauli matrices: the identity part is irrelevant
(just a shifting of the zero of energy) and the non-degeneracy
constraint means that the set of Hamiltonians is R3 with the
origin removed, which has the same homotopy as the sphere S2.

The corresponding homotopy group of the child Hamiltonian
is similarly a mapping from a sphere to two spaces, each
corresponding to an observable of a parent Hamiltonian. For
D= 2 or D= 3, each parent Hamiltonian acted on by SU(2)
corresponds to homotopy group πDðS2Þ ¼ Z for mappings to
observables of the Hamiltonian. This gives topological classifica-
tion of πDðS2Þ ´ πDðS2Þ ¼ Z ´Z for the child Hamiltonian.
Mappings from the Brillouin zone torus are more complicated
than mappings from the sphere, because the former do not
necessarily form a group, but each nontrivial homotopy group πD
of a space of Hamiltonians allows a new topological band
structure starting in dimension D. The π2 invariant is known as
the Chern number of a band and additional integer invariants
appear for additional bands, while the π3 Hopf invariant is more
subtle and requires an additional generalized particle-hole
symmetry C0 to be defined in the case of additional bands34.

It is possible for two topologically non-trivial phases of matter,
each governed by its own non-trivial homotopy group, to co-
exist, which could effectively yield Z ´Z classification as one
example. Our construction, however, instead allows properties of
multiple topological phases to be integrated into one phase of
matter, governed by a single homotopy group that is the direct
product of two homotopy groups. Multiple topological phases can
therefore be combined, rather than simply co-exist, such that the
resultant child phase may inherit exotic combinations of
phenomena of parent phases. Two one-dimensional topological
phases can even be combined into a single two-dimensional
phase, for instance. Such a two-dimensional phase is constructed
from two one-dimensional Kitaev chain models in this way in a
follow-up work31.

Symmetry-protection. Importantly, this multiplicative form for
Hamiltonians can furthermore be symmetry-protected rather
than being fine-tuned, such that it describes a phase of matter. To
identify protecting symmetries for the topological phases of the
child Hamiltonians of interest to us, we proceed as follows: we
change the form of the quotient to more easily relate the multi-
plicative Hamiltonian to Hamiltonians in different symmetry
classes of the ten-fold way35. We will then identify a close rela-
tionship between the multiplicative Hamiltonian and those
Hamiltonians in class D and class DIII of the ten-fold way.
Finally, we will show how we can protect the form of the mul-
tiplicative Hamiltonian using symmetries of classes D and DIII.
This also reveals the general principle behind realization of
symmetry-protected multiplicative topological phases of matter.

We first reformulate the quotient. To do this, we note that the
child Hamiltonian may be acted upon by the double cover of
SO(4) or SO(4) itself, and also possess observables that are SO(2)
invariant, as SO(2) is isomorphic to U(1).

We next generalize this quotient to systems with more than
four bands, which may more easily be connected to a particular
set of protecting symmetries. To do this, we note that SO(4)/
SO(2) corresponds to the N= 2 case of quotient SO(2N)/SO(N).

We now compare this more general form for the quotient to
the corresponding quotients of the classes of the ten-fold way in
order to identify which symmetries a Hamiltonian must possess
to yield observables acted on by SO(2N)/SO(N), the general form
of the quotient of the child Hamiltonian considered so far. To do
this, we first note that Hamiltonians in class D of the ten-fold way
possess observables acted upon by SO(2N), and those of class DIII
are acted upon by SO(2N)/U(N)35. This suggests symmetries
corresponding to class D and symmetries corresponding to class
DIII might be combined to realize the desired quotient.

To see how symmetries of classes D and DIII may be combined
to symmetry-protect the multiplicative phases, we consider how
these symmetries restrict the form of a Hamiltonian. We first
consider the simpler case of class D and then that of class DIII. In
the case of this class of the ten-fold way, observables acted upon
by SO(2N) correspond to Hamiltonians with particle-hole
symmetry, with the particle-hole operator C squaring to +1.
This results from the fact that the Bloch Hamiltonian, H, must
satisfy the following expression

�CH>C ¼ H ð2Þ

where H> is the transpose of H.
To mathematically show how symmetries may be used to

restrict the Hamiltonian to a multiplicative form, it is useful at
this point to assume that our Hamiltonian may be adiabatically
deformed to a flat-band counterpart that is topologically
equivalent to our original dispersive Hamiltonian, provided
that occupied bands remain occupied and vice versa. Consider-
ing Bloch Hamiltonians with 2N × 2N matrix representation,
with N fully occupied bands and N fully unoccupied bands, we
adiabatically deform our Hamiltonian to a flat-band counterpart
expressed as

HðkÞ ¼ UðkÞIN;NU
yðkÞ ð3Þ

where here IN,N= diag(IN,−IN) and IN is the N ×N identity
matrix, and U(k) ∈ SO(2N). To restrict ourselves to a set of
Bloch Hamiltonians that are topologically equivalent (assuming
the flat band limit assumption holds), we restrict U(k) to
U(k)= diag(U+(k),U−(k)) that does not move IN,N.

We now consider the symmetries of class DIII. This class
possesses the same particle-hole symmetry as class D as well as
time-reversal symmetry and chiral symmetry. We could use these
symmetries to now express U−(k) in terms of U+(k), effectively
reducing the configuration space to the quotient SO(2N)/U(N).
Before doing this, however, we enforce an additional symmetry
on U(k) that yields the quotient of the multiplicative Hamilto-
nian instead. To do this, we note (suppressing momentum
dependence) that U= diag(U+,U−) may be further restricted to
the form

U ¼ diagðUþ
1 U

þ
2 ;U

�
1 U

�
2 ;U

þ
1 U

�
2 ;U

�
1 U

þ
2 Þ; ð4Þ

expressed in terms of N ×N elements U1 ¼ diagðUþ
1 ;U

�
1 Þ and

U2 ¼ diagðUþ
2 ;U

�
2 Þ. These U1 and U2 may be thought of as

the unitary matrices diagonalizing two separate N ×N
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Bloch Hamiltonians, H1ðkÞ and H2ðkÞ.
H1ðkÞ ¼ U1ðkÞIN=2;N=2U

y
1ðkÞ ð5Þ

H2ðkÞ ¼ U2ðkÞIN=2;N=2U
y
2ðkÞ ð6Þ

where here IN/2,N/2= diag(IN/2,− IN/2), corresponding to H1ðkÞ
and H2ðkÞ being restricted to half filling, similarly to HðkÞ. We
see that generic elements that will not move IN/2,N/2 in each case
are U1 ¼ diagðUþ

1 ;U
�
1 Þ and U2 ¼ diagðUþ

2 ;U
�
2 Þ, respectively.

Here, we can also see that U expressed in terms of Ui,±, where
i ∈ {1, 2}, satisfies the half filling restriction on the full 2N × 2N
Hamiltonian.

To realize Hamiltonians with observables acted on by SO(2N)/
SO(N), we require that H1ðkÞ and H2ðkÞ each lie in class D. This
restricts U1 and U2 to SO(N) rather than U(N). Thus, the desired
multiplicative form is realized for Hamiltonians in class DIII with
an additional particle-hole symmetry corresponding to class D.

While this method of construction here utilizes symmetries of
class D and DIII, other symmetries could also be enforced in this
manner to realize other topologically non-trivial phases of matter.
This approach may also be generalized to constructions
combining more than two parents, parents with different matrix
dimensions, and construction of Hamiltonians describing D-
dimensional topological phases from Hamiltonians for d-dimen-
sional systems, where d <D.

As discussed in greater detail in the Methods, “Stabilizing
multiplicative topological phases up to closing of the bulk gap in
systems with more than four bands”, although we discuss the case
of symmetry-protection specifically in the four-band case above,
this symmetry-protection also stabilizes multiplicative topological
phases in systems with more than four bands up to closing of the
bulk gap, similarly to results of Liu et al.34, as the relevant
homotopy groups can be nontrivial for N > 4. These phases are
therefore new stable topological phases rather than fragile
topological phases.

We may also consider how the multiplicative phases can be
extended by additionally considering crystalline point group
symmetries. As one example, if a two-dimensional system in the
x− y plane were described by a Bloch Hamiltonian with projector
space SO(2N)/SO(N) (N ≥ 4) and furthermore possessed a mirror
symmetry Mz taking z→−z, one could block-diagonalize the
Hamiltonian by going to the basis in which Mz was diagonal,
with each block possessing projector space SO(4)/SO(2). One
could then potentially realize a two-dimensional multiplicative
phase in eachMz subsector. This is one approach to constructing
a topological crystalline phase from the Chern insulator phase
used previously36.

Multiplicative Hopf insulator. To demonstrate our construc-
tion, we first combine two Hamiltonians, which describe the
same D-dimensional topological phase, to realize a D-dimen-
sional multiplicative phase. In particular, we choose a parent
Hamiltonian with distinctive gapless boundary states in the
topological phase to better compare the multiplicative topolo-
gical phase with its parents. We also choose a parent phase of
matter that has previously only been considered in isolation. For
these reasons, we consider parent Hamiltonians characterizing
the Hopf insulator phase. The Hopf insulator phase of matter
has long been of interest as a topological phase realizable in non-
interacting systems even without a protecting symmetry when
the Hamiltonian is restricted to two bands. It has also recently
gained prominence during the development of theory of fragile
topological phases of matter37, given that its topology is unstable
in the presence of additional bands without the addition of a
protecting symmetry34.

We will first show how to combine two Hopf insulator
Hamiltonians into a single Hamiltonian characterizing the
multiplicative Hopf insulator phase. We then characterize the
multiplicative phase by studying its electronic structure for open
boundary conditions. We will find that the multiplicative phase
harbors topological gapless boundary modes quite similar to
those of the Hopf insulator, both in appearance and in their
robustness against surface perturbations.

An established model for the Hopf insulator sufficient for our
purposes here may be written as38

HðkÞ ¼ ν � σ; ð7Þ

where νi= z†σiz, z ¼ z"; z#
� �>

, z" ¼ sin kx þ i sin ky , z# ¼
sin kz þ iðcos kx þ cos ky þ cos kz �mÞ, and σ is the vector of
Pauli matrices. Here, kx, ky, and kz are momentum in the x̂-, ŷ-,
and ẑ-directions, respectively, and m is the single free parameter
of the model that may be used to tune between the topologically
trivial and non-trivial phases realized by the model.

Let us call the Hopf insulator in Eq. (7) Hp1ðkÞ. We may then
also construct a time-reversed partner of Hp1ðkÞ, Hp2ðkÞ, using
the time-reversal operator T ¼ iσyK, where σy is the second Pauli
matrix and K is complex conjugation, as

Hp2ðkÞ ¼ T Hp1ðkÞT �1 ð8Þ
We construct a multiplicative Hopf insulator Hamiltonian
HMHðkÞ from the matrix elements of these two parent
Hamiltonians, and first compare the bulk electronic structure of
the Hopf insulator, shown in Fig. 2a, and the corresponding bulk
electronic structure of the multiplicative Hopf insulator, shown in
Fig. 2b. Along the high-symmetry line shown, there is a clear
relationship between the eigenvalues of the multiplicative Hopf
insulator and those of the Hopf insulator. Taking the lower-
energy band of the electronic spectrum of the Hopf insulator to be
λL(k), and the higher-energy band to be λH(k), the lower-energy,
doubly degenerate bands of the multiplicative Hopf insulator
spectrum have momentum-dependence γLðkÞ ¼ sgnðλLðkÞÞλ2LðkÞ,
and the higher-energy, doubly degenerate bands of the multi-
plicative Hopf insulator spectrum have momentum-dependence
γHðkÞ ¼ sgnðλHðkÞÞλ2HðkÞ. This clearly reflects the product form of
the multiplicative Hopf insulator Hamiltonian, with the two-fold
degeneracy of eigenvalues further reflecting the protection of the
phase by time-reversal symmetry.

To further explore the properties of the multiplicative Hopf
insulator, we consider signatures of its topology in a slab

Fig. 2 Comparison of parent bulk dispersion with child bulk dispersion.
Bulk spectrum along a high-symmetry line for the Hopf insulator
Hamiltonian, shown in a for m= 1.5 as blue lines, and for the multiplicative
Hopf insulator Hamiltonian, shown in b, for m= 1.5. The dashed blue and
orange bands of the spectrum in b are doubly degenerate.
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calculation, with open boundary conditions in the ẑ-direction. An
especially distinctive feature of the Hopf insulator is the Fermi
ring of topologically protected gapless boundary states on the
surfaces of a slab with N layers and open boundary conditions in
the ẑ-direction, shown in Fig. 3a, bringing up the possibility that
the multiplicative Hopf insulator should possess similar gapless
boundary states. Indeed, we find a similar Fermi ring of
topologically protected states for the multiplicative Hopf
insulator. Computing the slab spectrum for HMHðkÞ for open
boundary conditions in the {001} direction, we find a four-fold
degenerate Fermi ring of topologically protected gapless bound-
ary states for the appropriate value of m of 1.5, shown in Fig. 3b.
The bright green region highlighting the Fermi rings is wider here
than in Fig. 3a: if we plot the slab spectra along high-symmetry
lines in the surface Brillouin zone, as shown in Fig. 3d, we see this
is due to the surface bands dispersing quadratically away from
zero energy, while the bands disperse linearly from zero energy
for the Hopf insulator, as shown in Fig. 3c. As expected and
highlighted by the dashed blue and orange lines, we find the
surface bands forming the Fermi rings are double-degenerate
away from zero energy rather than non-degenerate as in the case
of the Hopf insulator.

We can further see how similar the behavior of the multi-
plicative Hopf insulator is to that of the parent Hopf insulators by
considering additional perturbation terms near the surfaces of the
slab Hamiltonian with open boundary conditions in the {001}
direction. First, we add hard boundary terms breaking time-
reversal symmetry to the first and last layers. Taking the 4 × 4
matrix representation of the terms on the diagonal of the slab
Hamiltonian for layer i to be HMH;i, this means taking the
diagonal block for the i= 0, or first layer, asHMH;0 þHμ, and the
diagonal block for the i=N− 1 layer, or the last layer, as
HMH;N�1 þHμ. Here, we take the hard boundary perturbation
term Hμ to be a Zeeman field term diag μ;�μ; μ;�μ

� �
. The slab

dispersion for the multiplicative Hopf insulator along high-
symmetry lines in the surface Brillouin zone with μ= 0.5 is
shown in Fig. 4a. Notably, in contrast to a conventional
topological insulator protected by time-reversal symmetry, only
some of the surface states are gapped out by the perturbation (in
agreement with past work on the Hopf insulator39) rather than all
of them, indicating these topologically protected surface states are
more robust than typically expected for a time-reversal invariant
topological phase.

Instead of hard boundary perturbation terms, we may also
consider soft, or adiabatic boundary perturbation terms. This
involves taking HMH;i ! HMH;i þHi;α;‘, where Hi;α;‘ ¼
diag αð‘� iÞ;�αð‘� iÞ; αð‘� iÞ;�αð‘� iÞð Þ for i ≤ ℓ and Hi;α;‘ ¼
diag ω;�ω;ω;�ωð Þ for i ≥N− 1− ℓ with ω= α(N− 1− i+ ℓ).
Hi;α;‘ ¼ diag 0; 0; 0; 0ð Þ for other values of i. This corresponds to
linearly increasing perturbation terms near the boundaries of the
slab. The physics of the soft boundary perturbation term is far
richer than that of the hard term. As shown in Fig. 4b, it results in
proliferation of topologically protected degeneracies in the slab
spectrum, where each such degeneracy is highlighted by a red
circle. Such a boundary term has also previously been considered
by others38–40 for the Hopf insulator and Chern insulator and has
the same effect there as observed here, again indicating the
multiplicative Hopf insulator behaves as expected, although a
smaller value of ℓ is used here. As discussed in past work38,39,41,
the degeneracies stem from the topology of the parent Hopf
insulators: the two-fold degeneracies are protected by transla-
tional invariance of the adiabatic edges that are smooth relative to
the lattice length: as we still have translational invariance in the
ẑ-direction because our edge is adiabatic, we may still think about
a Bloch Hamiltonian defined over a three-dimensional Brillouin
zone, now for each value of the adiabatically varying parameter
defining the adiabatic edge, and a two-fold degeneracy in a
band-structure over a three-dimensional Brillouin zone, such as a

Fig. 3 Comparison of bulk-boundary correspondence for parent topological phase with that of the child topological phase. a The two middle bands of
the surface spectrum for a Hopf insulator slab with open boundary conditions in the {001} direction for m= 1.5, showing the distinctive Fermi ring of
topologically protected gapless boundary states, and b the four middle bands of the surface spectrum for a multiplicative Hopf insulator slab with open
boundary conditions in the {001} direction for m= 1.5, showing a double-degenerate Fermi ring of topologically protected gapless boundary states. The
number of layers in each slab calculations is N= 80, and the step size in k-space is 0.02. The energy scales in a and b are highlighted by color ranging from
blue to red. c The full slab spectrum for the Hopf insulator along high-symmetry lines with open boundary conditions in the {001} direction, with
topologically protected gapless boundary states of the two middle bands in energy highlighted in dark blue. d the full slab spectrum for the multiplicative
Hopf insulator along high-symmetry lines with open boundary conditions in the {001} direction, with topologically protected gapless boundary states of the
four middle bands highlighted as dashed blue and orange lines. Each dashed blue and orange line is doubly degenerate. The number of layers in each slab
calculations is N= 80, and the step size in k-space is 0.001.
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Weyl node, does not require additional symmetry-protection, as
can be seen from a simple k ⋅ p Hamiltonian for this case. (In the
case of a three-dimensional topological insulator protected by
time-reversal symmetry, in comparison, such adiabatic boundary
conditions would yield gap-closings in the slab spectrum which
are three-dimensional Dirac nodes, protected by translational
invariance and time-reversal symmetry: if time-reversal symmetry
were broken at this adiabatic boundary, one could lose these
Dirac nodes as a gap-closing is then no longer required to
transition from the strong topological insulator phase protected
by time-reversal symmetry to the trivial vacuum.) The additional
symmetries of the multiplicative topological phase are then just
protecting the multiplicative structure stabilizing two Hopf
insulators in a four-band system.

Multiplicative Chern insulator. We now present an example of a
multiplicative topological phase, which exhibits signatures of
non-trivial topology not realized in previously known topological
phases, to illustrate the potential for novel phenomena in mul-
tiplicative topological phases. For this reason, we choose to
combine Hamiltonians for two Chern insulators into a single
Hamiltonian modeling a multiplicative Chern insulator phase of
matter. We will show the multiplicative Chern insulator phase
realizes unusual band connectivity not observed previously to the
best of our knowledge.

We take the well-known model for a Chern insulator on a
square lattice42, but with small adjustments. We write the model
at a particular momentum k= (kx, ky) as

HðkÞ ¼ sinðkxÞσx þ sinðkyÞσy þ εðkÞσz; ð9Þ
where {σi} are the three Pauli matrices and
εðkÞ ¼ B½2þM � cosðkxÞ � cosðkyÞ�. Setting B= 1, this Chern
insulator has a topologically non-trivial phase with Chern
number C=+1 for−4 <M <−2 corresponding to a pair of
topologically protected bands in the slab spectrum that are

linearly dispersive at low energy and cross at the boundary of the
slab Brillouin zone, and a second topologically non-trivial phase
with Chern number C=−1 for−2 <M < 0 corresponding to a
pair of topologically protected bands in the slab spectrum that are
linearly dispersive at low energy and cross at the center of the slab
Brillouin zone.

Taking the first Chern insulator to have free parameters B and
M, we construct a second Chern insulator as the time-reversed
partner of the first, but with free parameters B0 and M0, with B0

not necessarily equal in value to B and M0 not necessarily equal in
value to M. For B ¼ B0 and M ¼ M0, we can generate a
multiplicative Chern insulator Hamiltonian HMCðkÞ.

We can also consider more interesting cases where M0 ≠M,
however (taking B ¼ B0 for the cases considered here). Especially
interesting is a case taking advantage of the difference in the
location of the crossing of topologically protected edge states
depending on which topological phase is realized. WhenM∈ (−4,
−2) and M0 2 ð�2; 0Þ as in the case shown in Fig. 5, the resulting
topologically protected gapless states of the MCI cross linearly at
both the edge and the center of the slab Brillouin zone as shown
in Fig. 5c, with two of the states localized on each edge as
shown in Fig. 5d, clearly inheriting the crossings of the parent
Chern insulators shown in Fig. 5a, b. Even more strikingly,
however, these topologically protected edge states do not extend
into the masses of bulk valence and conduction bands. There is
instead an energy gap separating the edge states from the bulk
states, which does not scale with system size, controlled by B, as
open boundary conditions produce deviations from the multi-
plicative form of the bulk near the boundary. As these boundary
conditions do not break the symmetries protecting the topological
phase, this result serves as an example of novel band connectivity
for gapped, non-interacting topological phases of matter, unlike in
previous works, which disconnect gapless boundary states from
the bulk valence and conduction bands in systems with trivial
spectral flow in combination with breaking of symmetries
protecting certain topological phases of matter43–45: it is consistent
with standard band connectivity for the parent phases if the
multiplicative structure exists in the bulk but not at the surface.

If one only examines band dispersions for single points in
phase space, it is not clear how the disconnected boundary states
of the MCI differ from disconnected boundary states due to
breaking of a protecting symmetry at the boundary. Instead, to
distinguish between the disconnected bands of the multiplicative
topological phases and those of past works considering floating
bands associated with trivial spectral flow, it is important to
consider how the disconnected states can be removed. In the case
of the MCI, the disconnected states can only be removed by
closing the bulk gap, and are therefore topologically robust, while
previously studied disconnected states can be removed without
closing the bulk gap, and are therefore not topologically robust.
Given the richness of topology protected in part by crystalline
point group symmetries, we warn here that co-existing topolo-
gical states—protected by different combinations of symmetries—
confuse the issue of mechanisms for realizing floating boundary
states in the literature: a topological state may co-exist with
another trivial state ultimately yielding the floating boundary
states, when a symmetry which could protect another topologi-
cally non-trivial state, such as spatial inversion symmetry in the
case of weak stacks of SSH chains43,45,46, is ill-defined due to
open boundary conditions. (We discuss mechanisms for realizing
such floating boundary states in greater detail in the Supplemen-
tary Note III, as the issue is subtle).

Concerning diagnostics for multiplicative topological phases,
we note that the parity eigenvalues of the multiplicative phase are
products of the parity eigenvalues of the parent phases. Thus
band inversions could happen in the parent Hamiltonians,

Fig. 4 Effects of surface perturbations on the multiplicative Hopf
insulator phase. a Slab spectrum for the multiplicative Hopf insulator along
high-symmetry lines in the surface Brillouin zone with hard boundary
perturbation term Hμ, where here μ= 0.5 and m= 1.5. The four middle
bands in energy that were two-fold degenerate for μ= 0, highlighted by
dashed orange and blue lines in Fig. 3d, are here highlighted alternatingly in
blue and orange to emphasize the breaking of this two-fold degeneracy and
the gapping out of one pair of the gapless boundary states to become
topologically trivial, while the other pair remains topologically protected,
and b slab spectrum for the multiplicative Hopf insulator along high-
symmetry lines in the surface Brillouin zone with soft, or adiabatic,
boundary perturbation term Hα;‘, with Zeeman field strength α= 0.05 and
number of slab layers over which the boundary perturbation increases
ℓ= 4, with m= 1.5. The four middle bands in energy are highlighted in blue
with two-fold degeneracies highlighted by pink circles. Each dispersion here
is for a slab calculation with N= 80 layers and the step size in k-space
is 0.001.
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corresponding to change in sign of parent parity eigenvalues of
occupied states, while still leaving the sign of the child parity
eigenvalues unchanged, and we show this in the Supplementary
Note I. We also note that Wilson loops may also fail to detect the
non-trivial topology of multiplicative phases in the same
situations, as the Wilson loop eigenvalues of the child are
products of the Wilson loop eigenvalues of the parent phases (see
Supplementary Note II). This work therefore serves to initiate
efforts to develop new methods that can identify these topological
insulator phases overlooked by established approaches utilizing
such band inversion diagnostics47,48.

Conclusions
In conclusion, Hamiltonians describing symmetry-protected
topological phases of matter may be combined to construct

multiplicative topological phases of matter that exhibit properties
of their parent phases as well as phenomena beyond our current
understanding of non-trivial topology in materials. As any sym-
metries may be used, in principle, to protect multiplicative topo-
logical phases, they should be broadly realizable in materials and
cold atom systems49. Similar physics may also be realizable in
twisted bilayer graphene, however, given that models for this
system can realize an approximate SO(4) symmetry50. Counter-
parts of these topological phases are also expected in systems that
are not purely electronic and/or not in equilibrium. Multiplicative
topological phases can be realized by combining Hamiltonians
with other symmetries beyond those discussed here, by combining
more than two Hamiltonians, and also by combining Hamilto-
nians for lower-dimensional systems to form a higher-dimensional
multiplicative phase. Given the exception to band connectivity
discovered here in the case of the multiplicative Chern insulator, a
foundational diagnostic of non-trivial topology in condensed
matter systems, it is especially important to fully understand the
phenomena that may result from this multiplicative topology.

Methods
Expressing the multiplicative child Hamiltonian in terms of the parent
Hamiltonians. We begin by constructing an example of a multiplicative Hamil-
tonian that is the child of two parent Hamiltonians, H1ðkÞ and H2ðkÞ. We first
determine the expressions for the matrix elements of the multiplicative Hamilto-
nian in terms of the matrix elements of the parent Hamiltonians. To do this, we
consider action of an element of semisimple group G= SU(2) × SU(2), isomorphic
to the double cover of SO(4), on an element in the space of special unitary 2 × 2
matrices,

g1; g2
� � � g3 :¼ g1g3g

�1
2 ; ð10Þ

where g1; g2
� � 2 G and g3 is in the space of complex 2 × 2 matrices. We may also

think of this action as quaternionic multiplication, an action which preserves vector
length and which is linear in g351. This, in combination with g1; g2

� �
and

�g1;�g2
� �

giving the same linear transformation of R4, reflects the fact that the
action is an element of Spin(4).

We can write this action with respect to a particular basis {b11, b12, b21, b22},
where

b11 ¼ 1 0

0 0

� �
; b12 ¼

0 1

0 0

� �
;

b21 ¼ 0 0

1 0

� �
; b22 ¼

0 0

0 1

� �
:

ð11Þ

We take g1 ¼ H1ðkÞ ¼ a b
c d

� �
and g2 ¼ H2ðkÞ ¼ α β

κ δ

� �
, with momentum

dependence suppressed. The expressions can of course be simplified further given
hermiticity of H1ðkÞ and H2ðkÞ, which gives c= b* and κ= β*, ensuring
hermiticity of the child Hamiltonian, but we leave the expressions more general for
ease in following the construction. The action on each of the basis elements is

�bij ¼ g1bijg
�1
2 : ð12Þ

We can express these actions as vectors instead of 2 × 2 matrices

�b11 ¼ aδ;�aβ; cδ;�cβ
� �> ð13Þ

�b12 ¼ �aκ; aα;�cκ; cαð Þ> ð14Þ

�b21 ¼ bδ;�bβ; dδ;�dβ
� �> ð15Þ

�b22 ¼ �bκ; bα;�dκ; dαð Þ>: ð16Þ
We can then represent these actions as a matrix Hc ¼ �b11; �b12; �b21; �b22

� �
, where

HcðkÞ ¼

aδ �aκ bδ �bκ

�aβ aα �bβ bα

cδ �cκ dδ �dκ

�cβ cα �dβ dα

0
BBB@

1
CCCA; ð17Þ

which is the matrix representation of the multiplicative Hopf insulator
Hamiltonian in terms of the matrix elements of the Hopf insulator with matrix
representation g1 and its time-reversed partner with matrix representation g2.
While the Hopf insulator models considered, H1ðkÞ and H2ðkÞ, include only
nearest-neighbor hopping terms, the multiplicative Hopf insulator instead includes
nearest- and next-nearest-neighbor hopping terms. The isomorphism between
Spin(4) and SU(2) × SU(2) further guarantees an inverse mapping exists.

Fig. 5 Emergence of novel phenomena in the child topological phase.
a Slab spectrum for the parent Chern insulator with N= 80 layers and open
boundary conditions in the x̂-direction and periodic boundary conditions in
the ŷ-direction, with free parameters B and M and B= 2 and M=− 3,
showing linearly dispersing topologically protected gapless edge states
highlighted in blue crossing at the edge of the slab Brillouin zone. b Slab
spectrum for the parent Chern insulator with N= 80 layers and open
boundary conditions in the x̂-direction and periodic boundary conditions in
the ŷ-direction, with free parameters B0 and M0 and B0 ¼ 2 and M0 ¼ �1,
showing linearly dispersing topologically protected gapless edge states
highlighted crossing at the center of the slab Brillouin zone. c Slab spectrum
for the multiplicative Chern insulator constructed from the Chern insulators
whose slab spectra are shown in a and b, with N= 80 layers and open
boundary conditions in the x̂-direction and periodic boundary conditions in
the ŷ-direction. The two-fold degenerate bands corresponding to
topologically protected gapless edge states are highlighted as dashed
orange and blue lines. The step size for a, b, and c in k-space is 0.01.
d Probability density ∣〈ψ(i)〉∣2 vs. layer index i for each of the four edge
states computed for ky= π/4 in the slab spectrum shown in c, with the two
states lower in energy labeled as ϵ158 (orange) and ϵ159 (red), and the two
states higher in energy labeled as ϵ160 (blue) and ϵ161 (green), showing
localization of each state at an edge of the slab. We also see that each edge
possesses two counter-propagating edge states as expected for a time-
reversal invariant system.
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Stabilizing multiplicative topological phases up to closing of the bulk gap in
systems with more than four bands. Stabilizing the multiplicative phases in the
presence of more than four bands may be done in the same way that the Hopf
insulator is stabilized in the presence of more than two bands. In the case of the
Hopf insulator as discussed in Liu et al.34, the non-trivial homotopy group with
only translational invariance and charge conservation for the n+m band Bloch
Hamiltonian with n filled bands and m unfilled bands is π3(Gr(n,m+ n)). For
n=m= 1, this has Z classification, and trivial classification if one or both of n and
m are greater than 1. To stabilize the Hopf insulator for n+m > 2, then, the
homotopy group must change to some π3(M) ≠ 0: without a non-trivial homotopy
group, a Hopf insulator could be adiabatically deformed to a topologically trivial
state. Then, in a system with more than two bands realizing a Hopf insulator phase,
one must close the bulk gap to transition to a topologically trivial phase.

This non-trivial homotopy group for more than two bands can be achieved
through additional symmetry-protection. Importantly, the Hopf insulator
Hamiltonian should be allowed by the additional symmetry constraints. One way
to ensure this is by verifying that π3(M) reduces to π3(Gr(1, 2)) for n=m= 1.

For the Hopf insulator, a suitable M is Sp(2n)/U(n), as Sp(2)/U(1) ≅Gr(1, 2),
and π3(Sp(2n)/U(n)) ≠ 0. This homotopy group requires an additional generalized
particle-hole symmetry C0 . With this constraint, the Hopf insulator phase is robust
in systems with more than two bands up to closing of the bulk gap.

As we need some generalization of the quotient SO(4)/SO(2) in the case of these
first examples of multiplicative topological phases, there could be multiple avenues
to symmetry-protection of the multiplicative topological phase in the presence of
more than four bands. We discuss one option here that is similar to the case of the
Hopf insulator. In this case, symmetries enforced at the level of the child
Hamiltonian are time-reversal symmetry with T 2 ¼ 1 and spatial inversion
symmetry I .

This child then corresponds to a row of Table C2 of Ryu et al.52, with projector
space OðnþmÞ= OðnÞ ´OðmÞð Þ. This is isomorphic to O(n+m)/O(n) × O(n+m)/
O(m). Enforcing an additional class D particle-hole symmetry on each parent, the
projector space is reduced to SO(n+m)/SO(n) × SO(n+m)/SO(m). This is
isomorphic to SO(4)/SO(2) for n=m= 2.

We emphasize that, although spatial inversion symmetry is used in this example
to stabilize the phase in the presence of more than four bands, the symmetry-
protection we already considered also applies. For n=m, OðnþmÞ= OðnÞ ´OðmÞð Þ
is furthermore isomorphic to O(2n)/O(n) and SO(2n)/SO(n). Thus Table C2 also
effectively gives us the homotopy groups for a child Hamiltonian in class DIII of
the ten-fold way with additional class D symmetry enforced for each parent. With
either of these combinations of symmetries, therefore, the four-band multiplicative
phase is robust even in the presence of band mixing, up to closing of either parent
bulk gap.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
The code that supports the findings of this study is available from the corresponding
author upon request.
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