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Quantum simulation for topological Euler insulators
Wending Zhao1,2, Yan-Bin Yang 1,2, Yue Jiang1,2, Zhichao Mao 1, Weixuan Guo 1, Liyuan Qiu1,

Gangxi Wang1, Lin Yao1, Li He1, Zichao Zhou 1✉, Yong Xu 1✉ & Luming Duan 1✉

Although recent studies have established a powerful framework to search for and classify

topological phases based on symmetry indicators, there exists a large class of fragile topology

beyond the description. The Euler class characterizing the topology of two-dimensional real

wave functions is an archetypal fragile topology underlying some important properties.

However, as a minimum model of fragile topology, the two-dimensional topological Euler

insulator consisting of three bands remains a significant challenge to be implemented in

experiments. Here, we experimentally realize a three-band Hamiltonian to simulate a topo-

logical Euler insulator with a trapped-ion quantum simulator. Through quantum state

tomography, we successfully evaluate the Euler class, Wilson loop flow, entanglement

spectra and Berry phases to show the topological properties of the Hamiltonian. The flexibility

of the trapped-ion quantum simulator further allows us to probe dynamical topological

features including skyrmion-antiskyrmion pairs and Hopf links in momentum-time space from

quench dynamics.
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Topological phases have seen a rapid progress over the past
two decades1–5. In particular, the ten-fold classification
based on the K-theory represents a cornerstone in the

description of topological phases6–8. Besides the internal sym-
metries, crystalline symmetries greatly enrich the classification of
topological phases9–12. Remarkably, recent efforts have led to the
development of a powerful framework based on symmetry indi-
cators to categorize topological crystalline insulators13–15. How-
ever, a large class of topological phases falls outside the
description16–22. Such a phase belongs to the category of so-called
fragile topology that can be trivialized by adding trivial bands16,
in stark contrast to a stable topology which remains nontrivial
upon adding trivial bands. In this context, a class of topological
phases protected by space-time inversion symmetry is
highlighted20,22–29. Among them, the Euler class characterizing
the topological property of two-dimensional real wave functions
underlies the failure of the Nielsen-Ninomiya theorem20 and the
existence of Wilson loop winding22. Yet, adding a trivial band can
annihilate crossing nodes through braiding and remove the
Wilson loop winding, showing a fragile topology of the Euler
class. Such a fragile topology is theoretically shown to protect the
nonzero superfluid weight in twisted bilayer graphene30. Despite
recent important progress on experimental characterizations of
the fragile topology in an acoustic metamaterial31, the imple-
mentation of the topological Euler insulator32,33 as a minimum
model of fragile topology poses a significant experimental
challenge.

Quantum simulators have been proven to be powerful plat-
forms for experimentally studying topological phases. During the
past decade, there have been great advances in simulating various
topological phases via different quantum simulators including
cold atom systems34–40, solid-state spin systems41–45, and
superconducting circuits46–49. Trapped ions provide an alter-
native flexible platform to perform quantum simulations due to
its state-of-the-art technologies to control and measure50,51,
enabling us to use it to simulate exotic topological phases and
directly probe their intriguing topological properties through
measurements with high precision.

In the article, we experimentally implement a three-band
topological Euler Hamiltonian in momentum space using a single
171Yb+ ion trapped in an electrode-surface trap as shown in
Fig. 1. By measuring the momentum-resolved eigenstates through
quantum state tomography, we evaluate the Euler class ξ, Wilson
loop flow, and entanglement spectra to identify the band topol-
ogy. With the Euler class, there are 2ξ protected crossing nodes
between the two lowest energy bands. Such nodes can be anni-
hilated either by closing the gap between the second and third
bands or by adding a trivial band, followed by intricate braiding
of crossing nodes20,26,29. Our further measurements of the Berry
phases along four distinct closed trajectories illustrate the exis-
tence of four crossing points. Apart from the equilibrium topo-
logical properties, it has been theoretically demonstrated that
skyrmion-antiskyrmion pairs and Hopf links appear in
momentum-time space from quench dynamics for the post-
quench three-band topological Euler Hamiltonian32. We experi-
mentally observe the skyrmion-antiskyrmion pairs and Hopf
links by measuring the time-evolving states under the Euler
Hamiltonian.

Results
Model Hamiltonian and experimental realization. We start by
considering the following three-band Hamiltonian for Euler
insulators in momentum space, which will be experimentally
engineered,

HðkÞ ¼ 2nðkÞ � nðkÞT � I; ð1Þ

where

nðkÞ ¼ nxðkÞ; nyðkÞ; nzðkÞ
� �T

¼ 1
N m� cosðkxÞ � cosðkyÞ; sinðkxÞ; sinðkyÞ

� �T ð2Þ

is a real unit vector at k= (kx, ky) in the two-dimensional (2D)
Brillouin zone. Here, N is the normalization factor, and m is a
parameter with ∣m∣ ≠ 0, 2 for H(k) to be well-defined. The
Hamiltonian is a real symmetric matrix and thus respects C2T
(composition of twofold rotational and time-reversal operators)
symmetry, which can be represented by the complex conjugation
K in a suitable basis26. For simplicity, we have flattened the
spectrum of the Hamiltonian without affecting the band topology.
The Hamiltonian has two degenerate bands ju1;2ðkÞi ¼ u1;2ðkÞ
with eigenenergy E1,2=− 1 and one band ju3ðkÞi ¼ nðkÞ ¼
u1ðkÞ ´ u2ðkÞ with eigenenergy E3= 1. The eigenstates are real
unit vectors because of the reality of the Hamiltonian.

We implement the Euler Hamiltonian H(k) in momentum
space through microwave operations on three hyperfine states
1j i ¼ F ¼ 0;mF ¼ 0

�� �
, 2j i ¼ F ¼ 1;mF ¼ �1

�� �
, and 3j i ¼

F ¼ 1;mF ¼ 0
�� �

in the 2S1/2 manifold using a single 171Yb+ ion
trapped in an electrode-surface chip trap as shown in Fig. 1 (see
Subsection "Experimental setup" in Methods for details).
Specifically, we drive the transition between the 1j i and 2j i levels
or the transition between the 1j i and 3j i levels by near resonant
microwaves and drive the transition between the 2j i and 3j i levels
by two far-detuned microwaves through microwave Raman
transitions. In the experiment, we implement the Hamiltonian
HexpðkÞ which has the same eigenstates as H(k) and thus is
topologically equivalent to H(k) (see Subsection "Microwave
operations in the trapped-ion system" in Methods for details). To
measure the band topology of HexpðkÞ, we first prepare the ion in
the 1j i state and then slowly vary the Hamiltonian to HexpðkÞ.
Since 1j i is the highest energy eigenstate u3ðk�Þ

�� �
of our initial

Hamiltonian H(k*) at high-symmetry points k* in momentum
space, the state can evolve to its highest energy eigenstate u3ðkÞ

�� �
of HexpðkÞ at the momentum k over the adiabatic passage (see
Subsection "Adiabatic passage" in Methods for details). At the
end, we employ quantum state tomography to measure the
density matrix ρ(k) (see Subsection "Quantum state tomography
for a qutrit system" in Methods for details) and take the real state
closest to ρ(k) as the measured state for u3ðkÞ

�� �
(see Subsection

"The real state from the measured density matrix" in Methods for
details). For the adiabatic preparation, the average fidelities are
F ¼ 97:1% and F ¼ 96:9% for the topologically nontrivial
(m= 1) and trivial phases (m= 3), respectively (see Subsection
"The fidelity of the measured state" in Methods for detailed
discussion). Since u3ðkÞ

�� �
contains full information of the

flattened Hamiltonian H(k), we can thus determine the
topological properties of the Euler Hamiltonian using these
measured states.

Euler class. The band topology of a Euler insulator can be
characterized by the Euler class20,23,24,26

ξ ¼ 1
2π

Z
BZ
d2kðh∂kxu1j∂kyu2i � h∂kyu1j∂kxu2iÞ ð3Þ

for the two occupied bands u1
�� �

and u2
�� �

. It is enforced to be
quantized by the reality of eigenstates due to C2T symmetry. To
well define the Euler class, we require that the two occupied bands
form an orientable real vector bundle, which is ensured by the
vanishing of Berry phases along any noncontractible loops for the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01001-2

2 COMMUNICATIONS PHYSICS |           (2022) 5:223 | https://doi.org/10.1038/s42005-022-01001-2 | www.nature.com/commsphys

www.nature.com/commsphys


occupied space20,22,26. For a three-band Euler Hamiltonian, the
Euler class can be reduced to another form26

ξ ¼ 1
2π

Z
BZ
d2k½n � ð∂kxn ´ ∂kynÞ�; ð4Þ

showing that ξ is equal to twice of the winding number (Pon-
tryagin number) of n(k) over the 2D Brillouin zone (see Sup-
plementary Note 1). In other words, the Euler class is determined
by twice of times that n(k) wraps the sphere S2, which also implies
that the Euler class for a three-band Hamiltonian should be an
even integer. Note that if the orientations of all vectors n(k) are
reversed, we obtain the same Hamiltonian but the opposite
winding for n(k), showing that the sign of ξ is ambiguous and
only its absolute value characterizes the topology22. With the
relation between the Euler class ξ and the winding number of
n(k), we can obtain the phase diagram that the Euler Hamiltonian
H(k) in Eq. (1) is topologically nontrivial with ξ= 2 for
0 < ∣m∣ < 2 and trivial with ξ= 0 for ∣m∣ > 2.

Our experimentally measured vectors n(k) in a topological
phase indeed exhibit a skyrmion structure over the Brillouin zone
[see Fig. 2(a)] wrapping the entire sphere once [see Fig. 2(b)],
which suggests that the Euler class ξ= 2 for the experimentally
realized Hamiltonian. To be more quantitative, we map the
measured vectors to a two-band Chern insulator by HC(k)= n(k)
⋅σ with Pauli matrices σ= (σx, σy, σz). The fact that the Euler class
is equal to twice of the Chern number of HC(k) allows us to
determine the Euler class by computing the Chern number, which
is much more efficient than directly performing the integral for
Eq. (4) (see more details in Supplementary Note 1). We find that
the Chern number calculated using the measured n(k) is equal to
1 so that ξ= 2. In comparison, we also display the measured
vectors n(k) in a trivial phase, which do not form a skyrmion

Fig. 1 Experimental scheme for observing topological Euler insulators with a trapped ion. a Schematic of our experimental setup. A single 171Yb+ ion is
trapped in a surface-electrode chip trap. b The energy level structure of the 171Yb+ ion. The three states 1j i, 2j i, and 3j i for the Hamiltonian are encoded in
the hyperfine states F ¼ 0;mF ¼ 0

�� �
, F ¼ 1;mF ¼ �1
�� �

, and F ¼ 1;mF ¼ 0
�� �

, respectively. Quantum operations and adiabatic evolutions are implemented
by microwaves. Two far-detuned microwave pulses (denoted by yellow and green arrows) are used for Raman transitions between the levels 2j i and 3j i.
The quantum state projected to 2j i or 3j i generates fluorescence detected by a 370 nm detection beam. c Schematic of our microwave setup. The
microwaves are generated by an arbitrary waveform generator (AWG) controlled by a computer according to the sequence mixed with a high-frequency
microwave signal. They are shone on the ion through a microwave horn. d Experimental sequences. The ion is firstly cooled through the Doppler cooling for
2 ms and then initialized to the dark state by optical pumping, which typically takes 2−3 μs. We then follow the adiabatic passage to slowly tune the
Hamiltonian by microwave operations so as to drive the state to an eigenstate of H(k) at any momentum point in the 2D Brillouin zone. The adiabatic
passage typically takes 200−300 μs, and at some momentum points it may take up to 500 μs (see Subsections "Microwave operations in the trapped-ion
system" and "Adiabatic passage" in Methods for more details). At the end, we perform the quantum state tomography to obtain the full density matrix of
the final state (see Subsection "Quantum state tomography for a qutrit system" in Methods for more details).
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Fig. 2 Measurements of the Euler class. a The experimentally measured
vectors n(k) for the Euler Hamiltonian H(k) in Eq. (1) with m= 1
(corresponding to a nontrivial Hamiltonian) over a 20 × 20 discretized
Brillouin zone and b their distribution on the sphere S2. c The
experimentally measured vectors n(k) for the Euler Hamiltonian H(k) in Eq.
(1) with m= 3 (corresponding to a trivial Hamiltonian) over a 20 × 20
discretized Brillouin zone and d their distribution on the sphere S2. In the
nontrivial case, the vectors n(k) exhibit a nontrivial skyrmion structure and
cover the entire sphere once, yielding a nonzero Euler class ξ= 2, whereas
in the trivial case, the vectors cover parts of the sphere, yielding a zero
Euler class.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01001-2 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:223 | https://doi.org/10.1038/s42005-022-01001-2 |www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


structure [see Fig. 2(c)] and cover only parts of the sphere [see
Fig. 2(d)], indicating that ξ= 0.

Wilson loops and entanglement spectra. The Wilson loop
provides a powerful framework to characterize the fragile
topology17,19,20,22. However, it is very challenging to make an
experimental measurement of it. In the trapped-ion quantum
simulator, the quantum state tomography technique allows us to
evaluate the Wilson loop based on the measured eigenstates of a
Euler Hamiltonian.

Specifically, the x-directed Wilson loop Wx with the base point
k0= (kx, ky) can be computed in a N ×N discretized Brillouin
zone as52,53

½Wx�mn ¼ umðk0Þ
� �� YkN k1

kj

PoccðkjÞ unðk0Þ
�� �

; ð5Þ

where kj ¼ ðkx þ 2πj
N ; kyÞ, N is the number of discrete momenta

on the loop, and Pocc(kj) is the projector on the occupied bands at
the momentum kj. The Wilson loop operator Wx is unitary so
that its eigenvalues take the form of eiθxðkyÞ which only depends on
ky; θx(ky) as a function of ky is known as the Wilson loop
spectrum for Wx . The y-directed Wilson loop Wy and the
corresponding spectrum θy(kx) can be defined similarly. For our
three-band model, we only need the experimentally measured
highest energy eigenstates to construct the occupied projectors in
the Wilson loop,

PoccðkjÞ ¼ I � ju3ðkjÞihu3ðkjÞj: ð6Þ
The Wilson loop spectrum can be determined by diagonalizing

the matrix

P ¼
YkN k0

kj

PoccðkjÞ; ð7Þ

which gives us three eigenvalues as feiθð1Þx ; eiθð2Þx ; 0g. Discarding the
zero eigenvalue contributed by the unoccupied subspace, we
obtain the Wilson loop eigenvalues fθð1Þx ; θð2Þx g for the two
occupied bands.

For the Euler Hamiltonian with two occupied bands, due to the
reality of eigenstates, the Wilson loop operator takes the form of
eiθσy , which has a pair of eigenvalues e±iθ. For a topological Euler
insulator, both θx(ky) and θy(kx) exhibit a nontrivial winding,
indicating an obstruction to the Wannier representation. The
winding number is equivalent to the Euler class ξ22.

Figure 3(a, b) shows the experimentally measured Wilson loop
spectra θx(ky) [θy(kx) has similar behaviors], which are evaluated
based on the measured highest energy eigenstates. In the
topological phase, each branch of the Wilson loop spectra
exhibits a winding number (±2), whereas in the trivial phase, the
winding patterns are not observed. All the experimental results
are in excellent agreement with the theoretical ones. We remark
that such a winding can be removed by adding a trivial band,
which reveals the fragile topology feature of the system (see
Supplementary Note 2 for more details).

Although we experimentally realize the topological Euler
Hamiltonian in momentum space, we can extract the edge state
information through the single-particle entanglement spectra
evaluated based on the measured states; such spectra can exhibit
more robust nontrivial features than those for physical bound-
aries in a topological band insulator10,54,55.

Figure 3c displays the entanglement spectra ESx(ky) obtained
by partially tracing out the right part of the system using the
experimentally measured unoccupied eigenstates u3ðkÞ

�� �
for the

Euler Hamiltonian H(k) (see Supplementary Note 3 for more
details). In the topological phase, an in-gap spectrum with mid-
gap modes near ξn= 0.5 arises in the entanglement spectra, which
agrees very well with the theoretical prediction. The experimental
results also support the theoretical prediction of the parabolic
dispersion for the entanglement spectra near the mid-gap modes.
In the trivial phase, our experimental results do not reveal the
existence of gapless entanglement spectra, indicating that the
phase is adiabatically connected to a trivial phase with zero
entanglement entropy.

Dirac points. The Euler class ξ is also manifested in the existence
of 2ξ stable Dirac points between the two occupied bands20,26.
They are protected by the C2T symmetry and cannot be anni-
hilated without the gap closing with the third band. To see this
feature, we consider the following model by adding an extra term
to H(k) in Eq. (1) with m= 1,

H0ðkÞ ¼ HðkÞ þ diagðh0ðkÞ; hþðkÞ; h�ðkÞÞ ð8Þ

with h0ðkÞ ¼ 0:1½cosðkyÞ � cosðkxÞ� and h±(k)= h0(k) ± 0.5. The
additional term lifts the degeneracy of the two occupied bands for
the flattened Hamiltonian H(k) except at the Dirac points as
shown in Fig. 4(a). Due to the C2T symmetry, a Dirac point
between the two lowest bands yields a quantized Berry phase
γ= π for the lowest eigenstates u1ðkÞ

�� �
along a closed path l

enclosing it.
Since the energy gap between the two lowest eigenstates on a

path enclosing the Dirac point is opened, we can still use the
adiabatic passage to realize the eigenstate u1ðkÞ

�� �
at the momenta

on the closed path. After that, we measure the states by quantum
state tomography and then evaluate the Berry phase based on the
measured states. We find that the experimentally evaluated Berry
phase γ= π on the four closed paths [see Fig. 4(b)], indicating the
presence of a Dirac point inside each closed path.
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Fig. 3 Observation of Wilson loop spectra and entanglement spectra.
a, b The experimentally measured Wilson loop spectra (solid circles) in
comparison with the numerically calculated ones (solid lines). c, d The
experimentally measured entanglement spectra (circles) in comparison
with the numerical ones (solid lines). We consider the nontrivial Euler
Hamiltonian H(k) in Eq. (1) with m= 1 in a, c and the trivial one with m= 3
in b, d.
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Quench dynamics. Besides the equilibrium features, it has been
theoretically shown that nonequilibrium dynamics provides
another tool to uncover the static band topology of an Euler
insulator32. Let us start from an initial state ψ(k, t= 0)= ψ0=
(0, 0, 1)T for each momentum k, which can be seen as the
eigenstate of a topologically trivial Euler Hamiltonian H0(k)=
diag(−1, −1, 1). We consider the quench dynamics for the trivial
initial state evolving under a postquench Euler Hamiltonian H(k)
in Eq. (1). Due to the flatness of H(k) in Eq. (1), the state evolves
as

ψðk; tÞ ¼ ½cosðtÞ � i sinðtÞHðkÞ�ψ0; ð9Þ
which is periodic about time t with a period T= π. The peri-
odicity of the evolving state both in time t and momentum k in
2D Brillouin zone makes the space of (kx, ky, t) form a 3-torus T3.
In analogy to the quench dynamics of a two-band Chern
insulator56, one can construct a map f from the (kx, ky, t) space as
a T3 to a 2-sphere S2 as follows. For a point (kx, ky, t) on T3, the
image of the map f(kx, ky, t) is a unit vector p̂ ¼ ðpx; py; pzÞ on S2

as p̂ ¼ ψyðkx; ky; tÞμψðkx; ky; tÞ, where μ= (μx, μy, μz) with μν
(ν= x, y, z) being a 3 × 3 matrix32 (see Supplementary Note 4).
Because the map f from any T2 cross-section of (kx, ky, t) space to
S2 is trivial with zero Chern number, the map f is equivalent to
the form of a Hopf map from S3 to S2 classified by an integer
called Hopf invariant57,58. In the quench dynamics of a topolo-
gical Euler Hamiltonian, the Hopf invariant determines the
linking number of a linking structure for the inverse images of the
Hopf map32.

The nontrivial linking structure for the quench dynamics of an
Euler insulator is directly related to the static band topology of the
postquench Hamiltonian32. To see this relation, we write the
evolving state as

ψðk; tÞ ¼ cosðtÞψ0 � i sinðtÞaðkÞ: ð10Þ
Here a(k)=H(k)ψ0= iψ(k, t= π/2), which defines a map from

the 2D Brillouin zone to S2. Based on the static Hamiltonian H(k) in
Eq. (1), we obtain aðkÞ ¼ ð2nxðkÞnzðkÞ; 2nyðkÞnzðkÞ; 2n2zðkÞ � 1ÞT .
By parameterizing n(k) with spherical coordinates as nðkÞ ¼
ðsin α cos β; sin α cos β; cos αÞ, we have aðkÞ ¼ ðsin 2α cos β;
sin 2α cos β; cos 2αÞ. For a nontrivial Euler Hamiltonian with
ξ= 2, n(k) fully cover the S2 so that there exist 1D curves with
nzðkÞ ¼ cos αðkÞ ¼ 0 in the Brillouin zone on which a(k)= (0, 0,
−1); the curves divide the entire Brillouin zone into two patches.

The curves also serve as fixed points for the dynamics where the
initial state only picks up a global phase during the time evolution.
By shrinking the curve into a single point, each of the two patches
can be seen as a sphere. In this case, a(k) defines a map from S2 to
S2 characterized by the winding number for each of these patches.
Though the winding number of a(k) over the entire Brillouin zone
is zero since the state ψ(k, t= π/2) is trivial, a(k) can wrap the
sphere S2 once in each patch32. The nontrivial winding of a(k) over
each patch is associated with the Hopf link in the quench dynamics
of the patch, similar to the correspondence between the static Chern
number and the existence of the dynamical Hopf link for quench
dynamics of a Chern insulator (see Supplementary Note 4).

Figure 5 shows our experimentally measured vectors a(k) and
linking structures. Specifically, we first prepare the ion in the 3j i
level and then measure the density matrix ρ(k, t) of the time-
evolving state for a momentum in the Brillouin zone via quantum
state tomography after the unitary time evolution under the
experimentally engineered Euler Hamiltonian. We then evaluate
a(k) and the images of the Hopf map, that is, hμii ¼ Trðρðk; tÞμiÞ
with i= x, y, z based on the measured density matrices. For the
nontrivial postquench Euler Hamiltonian, the experimentally
measured a(k) exhibit a nontrivial skyrmion and antiskyrmion
structure in the upper and lower halves of the Brillouin zone
divided by the curves ky= 0, π with nz(k)= 0, as shown in
Fig. 5(a). To quantitatively identify the skyrmion and antiskyr-
mion structure of the measured a(k), we construct a model
HC(k)= a(k)⋅σ for each of the two patches and find that the
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and green arrows. c, d Quench dynamics for the trivial postquench
Hamiltonian H(k) with m= 3. The vectors a(k) have a topologically trivial
distribution and the inverse images of p̂1 and p̂2 do not link with each other.
In a and c, the color bar describes az, the component of the vectors a(k)
along the z direction.
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Fig. 4 Measurements of the Berry phase. a The theoretical energy
spectrum of the Hamiltonian H0ðkÞ in Eq. (8) over the Brillouin zone,
showing the existence of four Dirac points between the two lowest energy
bands located at k= (kx, ky)≈ (±0.26π, ± 0.4π). (b) The experimentally
measured Berry phases for the lowest energy eigenstate u1ðkÞ

�� �
along four

closed paths composed of discrete momenta (blue lines and points) in the
Brillouin zone enclosing the corresponding Dirac points (red crosses). For
each Dirac point, the measured Berry phase is γ= π.
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Chern numbers are equal to ±1, which are in excellent agreement
with the theoretical results. The pair of skyrmions in the Brillouin
zone leads to a pair of links with opposite signs for the inverse
images in the corresponding regions of the (kx, ky, t) space (see
Supplementary Note 4), which are experimentally demonstrated
in Fig. 5(b). This also indicates the nontrivial band topology of
the postquench Hamiltonian. For a trivial postquench Hamilto-
nian, the measured a(k) do not fully cover S2 for the two patches
of the Brillouin zone, and the inverse images have no linking
structures, as shown in Fig. 5(c) and (d).

Conclusions
We have experimentally realized a minimum Bloch Hamiltonian for
topological Euler insulators protected by C2T symmetry in a
trapped-ion qutrit system and identified its band topology by eval-
uating the Euler class, Wilson loop flow, entanglement spectra and
the Berry phases based on the measured states via quantum state
tomography. We further observed the nontrivial dynamical topo-
logical structures including the skyrmion-antiskyrmion structures
and Hopf links during the unitary evolution under the topological
Euler Hamiltonian. Our work opens the door for further studying
fragile topological phases using quantum simulation technologies.

Methods
Experimental setup. We use 399 nm and 370 nm laser beams to ionize the ytterbium
(Yb) atom and use a linear radio-frequency Paul trap driven at 20.27MHz (realized by
a surface-electrode chip) to trap a single 171Yb+ ion. The surface trap is designed and
fabricated in our group at CQI, IIIS, Tsinghua University by following previous
works59–61. In our case, we make some modifications to dimensions of electrodes and
the number of segmented electrodes in order to achieve a higher ability in controlling
ion’s motion (see detailed presentation in Section A of Supplementary Note 5). The
Doppler cooling, the optical pumping and the detection are implemented by 370 nm
laser beams, which are modulated by acousto-optic modulators and electro-optic
modulators. We also shine a 935 nm laser beam to repump the ion from the 2D3/2

manifold back to the 2S1/2 manifold in case that the ion decays to the 2D3/2 manifold
through spontaneous emission. After the ion is prepared in the dark state via optical
pumping, we slowly vary the Hamiltonian through microwave operations. In the
experiment, a magnetic field is applied to the system to split the 2j i and 3j i levels so
that we can individually control the couplings between the hyperfine states through
microwave operations. To control the amplitude and phase of microwaves, we use an
arbitrary waveform generator mixed with a high-frequency signal to modulate them.
In order to implement an arbitrary experimental sequence, a field programmable gate
array is employed to control acousto-optic modulators, electro-optic modulators,
arbitrary waveform generators and a photo-multiplier tube. At the end, we perform
measurements by collecting the state-dependent fluorescence emission by an objective
with a 0.33 numerical aperture and a photo-multiplier tube; the detection fidelities for
the dark state and the bright state are 99.4% and 98.1%, respectively (see Section C of
Supplementary Note 5 for detailed discussions on how the detection fidelities and their
statistical uncertainties are estimated). For more detailed discussion on laser and
microwave setups and detection, see Section B and C of Supplementary Note 5.

Microwave operations in the trapped-ion system. In our trapped-ion system, we
simultaneously shine microwave radiations with four different frequencies on the
trapped ion to implement the three-band Hamiltonian. The microwave pulses are
generated by a high-frequency generator and modulated by an arbitrary waveform
generator mixed by an in-phase and quadrature mixer. In the presence of a
magnetic field and the microwaves, the trapped-ion qutrit system is described by
the Hamiltonian

Ĥ ¼ Ĥ0 þ ĤAL; ð11Þ
where the atomic part is

Ĥ0 ¼ _ðωhf � ωzÞ 2j i 2h j þ _ðωhf þ ωqÞ 3j i 3h j ð12Þ
with ωhf being the central transition frequency between 1j i and 3j i, and ωz (ωq)
being the frequency of the first-order (second-order) Zeeman energy determined
by magnetic fields. The interaction part due to the microwaves is

ĤALðtÞ ¼ ∑
4

n¼1
∑

j¼2;3
_ΩðnÞ1j cosðωnt þ ϕnÞσ̂ðjÞx ; ð13Þ

where σ̂ðjÞx ¼ 1j i j
� ��þH:c:, ωn and ϕn are the frequency and initial phase of each

microwave, and ΩðnÞij is the Rabi frequency for the ij i $ j
�� � transition driven by the

nth microwave. We then derive the effective Hamiltonian Hexp (see Eq. S41 in
Supplementary Note 6) by following the method introduced in ref. 62 (see the

detailed derivation in Supplementary Note 6). To ensure that the Rabi rate is
always a linear function of the power of a radio-frequency signal, we set the
maximum Rabi rates in our experiments as Ω12= (2π) × 55.6 kHz and
Ω13= (2π) × 50.2 kHz. The errors of Ω12 and Ω13 are 0.036 kHz and 0.038 kHz,
respectively, obtained by fitting the Rabi oscillations with time (the time step is
0.5 μs and the number of repetitions at each data point is 5000).

To simulate the Hamiltonian H(k) at each k, in the experiment, we in fact
implement the Hamiltonian

HexpðkÞ ¼ cðkÞ½HðkÞ � bI3� ð14Þ
where I3 is the 3 × 3 identity matrix. Clearly, this Hamiltonian has the same
eigenstates as H(k) and thus is topologically equivalent to H(k). Here, c(k) is a real
positive parameter that needs to be numerically determined, and it may be different
at different k. Given the fact that the required evolution time for the adiabatic
passage in the experiment is proportional to 1/c(k) and our coherent time is finite,
for a fixed H(k), we find the minimum of 1/c(k) [or the maximum of c(k)] by
solving Eq. (14) via the fmincon function in MATLAB. Since HexpðkÞ is a function
of the Rabi frequencies, the detuning and the phases of microwaves, by solving Eq.
(14), we obtain their values. In solving the equation, we also add some constraints
on the microwave parameters. The far detuning for the Raman transition is set in
the range from (2π) × 175.7 kHz to (2π) × 326.3 kHz, and the near detuning is set
below (2π) × 10.0 kHz in most cases. In light of the fact that the Rabi frequency of
the Raman transition is only about 1/10 of the direct resonant Rabi flopping, we
usually need much higher power for the far detuning microwaves than that of the
near detuning microwaves. Based on this fact, we set the power of the two far
detuning microwaves below W1(2), where W1(2) corresponds to the maximal power
of a resonant microwave used to generate the maximal Rabi rate Ω12(13).
Meanwhile, we set the two near detuning microwaves below 0.2W1(2) in most cases.
With these constraints, we obtain a set of microwave parameters, and based on
these parameters we realize the Hamiltonian HexpðkÞ in experiments.

In addition, the maximum value of the coupling between 2j i and 3j i that we can
reach in the experiment is much smaller than the values of the couplings between
1j i and 2j i or 1j i and 3j i, since the former coupling is realized through microwave
Raman transitions. When H23 is much larger than H12 or H13 in H(k), the energy
scale c is very small so that a much longer period of time is required for the
adiabatic evolution. To overcome the difficulty, we apply a π-rotation between 1j i
and 2j i (or 1j i and 3j i) at an appropriate moment during the adiabatic passage to
change the basis for the qutrit system. The resultant effective Hamiltonian relative
to the new basis has a smaller entry H23 so that a larger value of the coefficient c is
obtained, which effectively reduces the time for the adiabatic evolution. Meanwhile,
we continue the adiabatic passage for the Hamiltonian relative to the new basis and
apply another π-rotation in detections for quantum state tomography.

Adiabatic passage. To measure the topological properties of the engineered Euler
Hamiltonian, we first prepare the ion in the dark state 1j i, which is the highest
energy eigenstate of the Hamiltonian H(k) at high-symmetry points in momentum
space,

k� ¼ ðkx ; kyÞ 2 fð0; 0Þ; ð0; πÞ; ðπ; 0Þ; ðπ; πÞg: ð15Þ
To prepare the ion in the highest energy eigenstate of H(k), we choose a starting

point k* in the set of high-symmetry points so that the path in the Brillouin zone
from k* to the final point k is the shortest. We then slowly vary the Hamiltonian to
the final one HexpðkÞ through the shortest path. Specifically, we divide the path into

N= ∣k− k*∣/Δk parts (Δk ¼ π
ffiffiffi
2
p

=400), and at each part kn= [(k− k*)/∣k− k*∣]
nΔk+ k* with n= 1, 2,⋯ ,N, the associated Hamiltonian is HexpðknÞ, where c(kn)
is numerically calculated by solving Eq. (14). We then vary the microwave
parameters so that at time tn ¼ ∑n�1

j¼1 Tj [Tj indicates the duration over which the
Hamiltonian stays at Hexpðkjþ1Þ], the implemented Hamiltonian is HexpðknÞ. To
optimize the adiabatic evolution, we set Tn= αn/c(kn) where αn may vary from 10
to 50. Each segment typically takes 1–2 μs. The total process typically takes
200–300 μs, and at some momentum points it may take up to 500 μs. After the
adiabatic passage, we obtain a state which is very close to the highest eigenstate of
HexpðkÞ. We then measure the final states by quantum state tomography, based on
which the topological properties are identified.

Quantum state tomography for a qutrit system. At the end of microwave
operations, we perform a quantum state tomography to obtain the full density
matrix of the qutrit system42,63. The density matrix can be written in terms of eight
unknown real variables as

ρ ¼
a cþ id g þ ih

c� id b eþ if

g � ih e� if 1� a� b

0
B@

1
CA: ð16Þ

Since the probability P1 in the dark state relative to eight different bases realized
by applying π or π/2 or both rotations on Bloch spheres is a linear function of these
variables (see Table I in Supplementary Note 7), we can determine them by solving
the linear equations after we obtain the probabilities. In experiments, each
probability is measured by counting the number of occurrences of the dark state
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over 4400 repeated experiments; the dark state is experimentally identified through
the threshold method (see Section C of Supplementary Note 5 and the references
therein for the introduction of the threshold method). We also employ the
maximum likelihood estimation to find the best estimate for the physical density
matrix. For the quantum state tomography and the maximum likelihood
estimation, see Supplementary Note 7 for more details.

The fidelity of the measured state. We calculate the fidelity for the measured
density matrix by

FðkÞ ¼ ψðkÞ� ��ρðkÞ ψðkÞ�� �
; ð17Þ

where ψ(k) is the theoretically obtained state, and ρ(k) is the measured density matrix
optimized by the maximum likelihood estimation. With the optimization, the
average fidelities over 20 × 20 momentum points are F ¼ 97:1% and F ¼ 96:9% for
the topologically nontrivial (m= 1) and trivial phases (m= 3), respectively (see the
details on how to determine the average fidelity in Supplementary Note 7).

The infidelity may arise from the detection infidelity of the dark state or the
bright state, microwave pulse errors caused by nonlinear effects of experimental
equipments and environment fluctuations. In addition, de-coherence is also a
factor for infidelity when the microwave operations take a long period of time.
Note that de-coherence usually does not occur significantly within 600 μs in our
trapped-ion system, which is mainly restricted by the Zeeman state. In the
experiment, we perform calibrations and optimize the experiment setups per hour
in order to obtain a high fidelity.

The real state from the measured density matrix. To identify the band topology
of the Euler Hamiltonian, we need to transform the measured density matrix ρ into
a real state ψ

�� � ¼ ðα; β; γÞT by maximizing the function

f ðα; β; γÞ ¼ j ψ� ��ρ ψ
�� �j ð18Þ

so that ψ
�� �

is the closest real state to the measured density matrix ρ. We find that
the average fidelities between the real state ψ

�� �
and the density matrix ρ are 97.4%

and 97.1% when m= 1 (nontrivial) and m= 3 (trivial), respectively. We also find
that the fidelities between the closest complex pure states and the density matrix
are 97.5% and 97.3%, respectively. We see that the infidelity resulted from the
restriction to a real state rather than a general complex pure state in the above
maximization is below 1%, suggesting that the measured density matrix may not
correspond to a pure state due to decoherence and detection errors.

Data availability
The data that support the findings of this study are available from the authors upon
request.
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