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Quantum operations with indefinite time direction
Giulio Chiribella 1,2,3✉ & Zixuan Liu1

The fundamental dynamics of quantum particles is neutral with respect to the arrow of time.

And yet, our experiments are not: we observe quantum systems evolving from the past to the

future, but not the other way round. A fundamental question is whether it is possible, at least

in principle, to conceive a broader set of operations that probe quantum processes in the

backward direction, from the future to the past, or more generally, in a combination of the

forward and backward directions. Here we introduce a mathematical framework for opera-

tions that are not constrained to a definite time direction. More generally, we introduce a set

of multipartite operations that include indefinite time direction as well as indefinite causal

order, providing a framework for potential extensions of quantum theory.
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The experience of time flowing in a definite direction, from
the past to the future, is deeply rooted in our thinking. At
the microscopic level, however, the laws of Nature seem to

be indifferent to the distinction between past and future. Both in
classical and quantum mechanics, the fundamental equations of
motion are reversible, and changing the sign of the time coor-
dinate (possibly together with the sign of some other parameters)
still yields a valid dynamics. For example, the CPT theorem in
quantum field theory1,2 implies that an evolution backwards in
time is indistinguishable from an evolution forward in time in
which the charge and parity of all particles have been inverted. An
asymmetry between past and future emerges in thermodynamics,
where the second law postulates an increase of entropy in the
forward time direction. But even the time-asymmetry of ther-
modynamics can be reduced to time-symmetric laws at the
microscopic level3, e.g. by postulating a low entropy initial state4.

While the microscopic world is time-symmetric, the way in
which we interact with it is not. As a matter of fact, we operate
only in the forward time direction: in ordinary experiments, we
initialise physicals system at a given moment, let them evolve
forward in time, and perform measurements at a later moment.
Still, the asymmetry in the structure of our experiments does not
feature in the dynamical laws themselves. This fact suggests that,
rather than being fundamental, time asymmetry may be specific
to the way in which ordinary agents, such as ourselves, interact
with other physical systems5–8.

An intriguing possibility is that, at least in principle, some
other type of agent could perform experiments in the opposite
direction, by initialising the state of physical systems in the future,
and by observing their evolution backward in time. This possi-
bility is implicit in a variety of frameworks wherein pre-selected
and postselected quantum states are treated on the same
footing9–19. Building on these frameworks, one can even conceive
agents with the ability to deterministically pre-select certain sys-
tems and to deterministically post-select others, thus observing
physical processes in an arbitrary combination of the forward and
backward direction. Such agents may or may not exist in reality,
but can serve as a useful fiction to shed light on the operational
significance of the constraint of a fixed time direction, by con-
trasting the information-theoretic capabilities associated to
alternative ways to operate in time.

Here we establish a mathematical framework for operations
that use quantum devices in arbitrary combinations of the for-
ward and backward direction. We first characterise the processes
that could in principle be accessed in both directions. Then, we
construct a set of operations that act on these processes without

being constrained to a definite time direction. As an example, we
introduce an operation, called the quantum time flip, that uses
processes in a coherent superposition of the forward and back-
ward directions, and we demonstrate its advantage in an
information-theoretic task. Our work initiates the exploration of
quantum operations with indefinite time direction, and provides a
rigorous framework for analysing their information-theoretic
power. The framework also allows for multipartite operations
with both indefinite time direction and indefinite causal
order20–22, raising the open question whether these operations
may be physically accessible in new regimes, such as quantum
gravity, or whether they are prevented by some yet-to-be-
discovered mechanism.

Results
Bidirectional devices and their characterisation. We start by
identifying the set of quantum devices that are in principle
compatible with two alternative modes of operation: either in the
forward time direction, or in the backward time direction.

Consider a process that takes place between two times t1 and
t2 ≥ t1, corresponding to two events, such as the entry in and exit
from a Stern-Gerlach apparatus, respectively. Ordinary agents can
interact with the process in the forward time direction: they can
deterministically pre-select state of an incoming system S1 at time
t1, and later measure an outgoing system S2 at time t2. The overall
input-output transformation from time t1 to time t2 is described
by a quantum channel C, that is, a trace-preserving, completely
positive (CPTP) map transforming density matrices of system S1
into density matrices of system S223. Now, imagine a hypothetical
agent that operates in the opposite time direction, by determi-
nistically post-selecting the system at time t2 and performing
measurements at time t1, as illustrated in Fig. 1. For such a
backward-facing agent, the role of the input and output systems is
exchanged, and the two systems at times t1 and t2 may even
appear to be different from S1 and S2, e.g. they may have opposite
charge and opposite parity. In the following we denote the
systems observed by the backward-facing agent as S�1 and S�2 , and
we assume that they have the same dimensions of S1 and S2,
respectively. If the overall input-output transformation observed
by the backward-facing agent is still described by a valid quantum
channel (CPTP map), we call the process bidirectional.

To determine whether a given process is bidirectional, one has
to specify a map Θ, converting the channel C observed by the
forward-facing agent into the corresponding channel ΘðCÞ
observed by the backward-facing agent. We call the map Θ an
input-output inversion. The set of bidirectional processes is then
defined as the set of all quantum channels C with the property
that ΘðCÞ is a quantum channel. In the following, the set of
bidirectional channels will be denoted by B(S1→ S2).

We now characterise all the possible input-output inversions
satisfying four natural requirements. Specifically, we require that
the map Θ be

1. order-reversing: ΘðDCÞ ¼ ΘðCÞΘðDÞ for every C 2
BðS1 ! S2Þ and D 2 BðS2 ! S3Þ,

2. identity-preserving: ΘðI SÞ ¼ I S� , where I S (S*) is the
identity channel on system S (S*).

3. distinctness-preserving: if C ≠D, then ΘðCÞ≠ΘðDÞ,
4. compatible with random mixtures: Θðp C þ ð1� pÞDÞ ¼

pΘðCÞ þ ð1� pÞΘðDÞ for every pair of channels C and D
in B(S1→ S2), and for every probability p∈ [0, 1].

Requirement 1, illustrated in Fig. 2, is the most fundamental:
for every sequence of processes, the order in which a backward-
facing agent sees the processes should be the opposite of the order
in which a forward-facing agent sees them. Requirement 2 is also

Fig. 1 Bidirectional devices. A bidirectional device is in principle compatible
with two alternative modes of operation. In the forward mode (a), an agent
prepares an input system at time t1 and obtains an output system at time
t2≥ t1. In the backward mode (b), a hypothetical agent could prepare an
input at time t2 and obtain an output at time t1. These two modes of using
the device correspond to two different input-output transformations C and
ΘðCÞ, respectively.
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quite fundamental: if the forward-facing agent does not see any
change in the system, then also the backward-facing agent should
not see any change. Requirement 3 is a weak form of symmetry:
processes that appear distinct to a forward-facing agent should
appear distinct also to a backward-facing agent. A stronger
requirement would have been to require that applying Θ twice
brings every process back to itself. This condition is stronger than
our Requirement 3, because it implies not only that Θ must be
invertible, but also that Θ is its own inverse. Finally, Requirement
4 is that if a process has probability p to be C and probability
1− p to be D for the forward-facing agent, then the process has
probability p to be ΘðCÞ and probability 1− p to be ΘðDÞ for the
backward-facing agent.

Our notion of input-output inversion is closely related with the
notion of time-reversal in quantum mechanics24,25 and in
quantum thermodynamics26. It is worth stressing, however, that
input-output inversion is more general than time-reversal,
because it can include combinations of time-reversal with other
symmetries, such as charge conjugation and parity inversion (see
Supplementary Note 1 for more discussion). Moreover, the input-
output inversion can also describe situations that do not involve
time-reversal, including, for example, the use of optical devices
where the roles of the input and output modes is exchanged, as
discussed later in the paper.

In the following, we will focus on the scenario where the
systems S1 and S2 have the same dimension. We will assume that
all unitary dynamics are bidirectional, that is, that the set
B(S1→ S2) contains all possible unitary channels. For unitary
channels, Requirements 1-3 completely determine the action of
the input-output inversion. Specifically, we show that the input-
output inversion of the unitary channel associated to a unitary
operator U must either be unitarily equivalent to the adjoint U†,
or to the transpose UT (Supplementary Note 1).

For general quantum channels, we show that the set of
bidirectional processes coincides with the set of bistochastic
channels27,28, that is, channels C with a Kraus representation
CðρÞ ¼ ∑iCiρC

y
i satisfying both conditions ∑iC

y
i Ci ¼ IS1 and

∑iCiC
y
i ¼ IS2 (see Methods). Also in this case we find that, up to

unitary equivalence, there exist only two possible choices of input-
output inversion: the adjoint Cy, defined by CyðρÞ :¼ ∑iC

y
i ρCi, and

the transpose CT , defined by CT ðρÞ ¼ ∑iC
T
i ρCi, with Ci :¼ ðCT

i Þ
y
.

For two-dimensional quantum systems the adjoint and
transpose are unitarily equivalent, and therefore the input-
output inversion is essentially unique. For higher dimensional
systems, however, the adjoint and the transpose exhibit a

fundamental difference: unlike the transpose, the adjoint does
not generally produce quantum channels (CPTP maps) when
applied locally to bipartite quantum processes (see Methods).
Technically, the difference is that the adjoint is not a completely
positive map on quantum channels.

Quantum operations with indefinite time direction. The stan-
dard operational framework of quantum theory describes
sequences of operations performed in the forward time directions.
We now define a more general type of operations, which employ
quantum devices in arbitrary combinations of the forward and
backward direction. Our approach is based on the framework of
quantum supermaps22,29–31, a mathematical framework to
describe candidate operations that could in principle be per-
formed on a given set of quantum devices. In general, a quantum
supermap from an input set of quantum channels B to an output
set of quantum channels B0 is a map that preserves convex
combinations, and can act locally on the dynamics of composite
systems, transforming any extension of a channel in B into an
extension of a channel in B022.

The possible operations on bidirectional devices correspond to
quantum supermaps transforming bistochastic channels into
ordinary channels (CPTP maps). Some of these supermaps
employ the devices in the forward direction: they are of the form
SfwdðCÞ ¼ BðC � I auxÞA, where C is the bistochastic channel
describing the device of interest, and A and B are two fixed
channels, possibly involving an auxiliary system aux29. Other
supermaps could be realised by using the device is the backward
direction: they are of the form SbwdðCÞ ¼ B0ðΘðCÞ � I aux0 ÞA0,
where A0 and B0 are two fixed channels and Θ is (unitarily
equivalent to) the transpose.

A complete characterization of the possible supermaps acting
on bistochastic channels is provided in Methods. As we will see in
the following, the set of these supermaps contains operations that
are neither of the forward type nor of the backward type, nor of
any random mixture of these two types. We call these
transformations quantum operations with indefinite time direc-
tion. These operations are the analogue for the time direction of
the operations with indefinite causal order20–22, also known as
causally inseparable operations21,32,33.

In Methods, we also extend our construction from operations
on a single bistochastic channel to more general multipartite
operations, described by quantum supermaps S that transform a
list of bistochastic channels ðC1; C2; ¼ ; CN Þ into an ordinary
channel SðC1; C2; ¼ ; CN Þ. This general type of supermaps can
exhibit both indefinite time direction and indefinite causal order,
and provide a broad framework for potential extensions of
quantum theory.

The quantum time flip. We now introduce a concrete example of
an operation with indefinite time direction, called the quantum
time flip. This operation is an analogue of the quantum
SWITCH20,22, previously introduced in the study of indefinite
causal order. The quantum time flip takes in input a bidirectional
device, and produces as output a controlled channel10,34–37,
which acts as C if a control qubit is initialised in the state 0j i, and
as ΘðCÞ if the control qubit is initialised in the state 1j i.

The construction of the quantum time flip is as follows. For a
fixed set of Kraus operators C= {Ci}, we consider the controlled
channel FC of the form FCðρÞ ¼ ∑iFiρF

y
i , with

Fi :¼ Ci � 0j ih0j þ θðCiÞ � j1i 1h j; ð1Þ

where the map θ : Ci↦ θ(Ci) is either unitarily equivalent to the
adjoint or to the transpose. In passing, we observe that the

Fig. 2 The order-reversing condition. If a system experiences a sequence
of processes C1; ¼ ; CN in the forward-time representation (in blue), then
the system should experience the opposite sequence ΘðCNÞ; ¼ ;ΘðC1Þ in
the backward-time representation (in red).
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channel FC is itself bistochastic, and therefore it also admits an
input-output inversion.

We observe that (i) FC is a valid quantum channel (CPTP
map) if and only if the input channel C is bistochastic, and (ii) the
definition of FC is independent of the Kraus representation if and
only if the map θ is unitarily equivalent to the transpose
(Supplementary Note 2). When (and only when) these two
conditions are satisfied, the map F : C ! FC satisfies all the
requirements of a valid quantum supermap. We call this
supermap the quantum time flip and we write the controlled
channel as F ðCÞ.

The quantum time flip is an example of an operation with
indefinite time direction: it is impossible to decompose it as a
random mixture F ¼ pSfwd þ ð1� pÞSbwd where p is a prob-
ability, and Sfwd (Sbwd) is a forward (backward) supermap. In
Supplementary Note 3 we show that, if such decomposition
existed, then there would exist an ordinary quantum circuit that
transforms a completely unknown unitary gate U into its
transpose UT, a task that is known to be impossible38,39. We
also show that the quantum time flip cannot be realised in a
definite time direction even if one has access to two copies of the
original channel C. It is worth noting that this stronger no-go
result holds even if the two copies of the channel C are combined
in an indefinite order: as long as all copies of the channel are used
in the same time direction, there is no way to reproduce the
action of the quantum time flip.

Realisation of the quantum time flip through teleportation. We
have seen that the quantum time flip cannot be perfectly realised
by any quantum circuit with a definite time direction. This no-go
result concerns perfect realisations, which reproduce the quantum
time flip with unit probability and without error. On the other
hand, the quantum time flip can be realised with non-unit
probability in an ordinary quantum circuit, using quantum
teleportation40.

The setup is depicted in Fig. 3. An unknown bistochastic
channel C is applied on one side of a maximally entangled state,
say the canonical Bell state jΦi ¼ ∑d

i¼1 jii � jii=
ffiffiffi
d

p
, and the

resulting state is used as a resource for quantum teleportation.
The transpose is realized by swapping the two copies of the
system: for example, when the channel C is unitary, the
application of the channel to the Bell state Φj i yields another
maximally entangled state ΦU

�� �
:¼ ðI � UÞ Φj i, where U is a

unitary matrix, and swapping the two entangled systems produces

the state jΦUT i, where the unitary U is replaced by its transpose
UT. Coherent control of the choice between the forward channel
C and the backward channel ΘðCÞ is then realized by adding
control to the swap. Finally, a Bell measurement is performed and
the outcome corresponding to the projection on the state Φj i is
post-selected. When this outcome occurs, the circuit reproduces
the quantum time-flipped channel F ðCÞ, as shown in the
following.

Let us denote by jϕiS the initial state of the target system and by
jψiC ¼ α 0j iC þ β 1j iC the initial state of the control qubit. Then,
the joint state of all systems after the controlled swap is
α jϕiS � jΦU i � j0i þ β jϕiS � jΦUT i � j1i. When the Bell mea-
surement is performed, the target system and the control collapse to
one of the states αUUmjϕiS � j0iC þ βUTUmjϕiS � j1iC , where
m∈ {1,…, d2} is the measurement outcome and fUmgd

2

m¼1 are the
unitaries associated to the Bell measurement. For the outcome
corresponding to the state Φj i, one obtains the overall state
transformation jϕiS � jψiC 7!αUjϕiS � j0iC þ βUT jϕiS � j1iC ,
corresponding to the time-flipped channel F ðCÞ. More generally,
each outcome of the Bell measurement gives rise to a conditional
transformation that uses the gate U in an indefinite time direction.
This fact is not in contradiction with the definite time direction of
the overall setup in Fig. 3: averaging over all outcomes of the Bell
measurement yields an overall operation that uses the gate U in a
well-defined direction (the forward one).

In the teleportation setup, the quantum time flip is realised
probabilistically. However, in principle the quantum time flip
could also be implemented deterministically and without error by
some agent who is not constrained to operate in a well-defined
time direction. For example, Fig. 3 shows that an agent with the
ability to deterministically pre-select a Bell state, and to
deterministically post-select the outcome of a Bell measurement
would be able to deterministically achieve the quantum time flip.
Note that not all circuits built from deterministic pre-selections
and deterministic postselections are compatible with quantum
theory. In this respect, the framework of quantum operations
with indefinite time direction provides a candidate criterion for
determining which postselected circuits can be allowed and which
ones should be forbidden.

An information-theoretic advantage. We now introduce a game
where the quantum time flip offers an advantage over arbitrary
setups with definite time direction. The structure of the game is
similar to that of another game, previously introduced by one of
us to highlight the advantages of the quantum SWITCH41.
However, the variant introduced here exhibits a fundamental
difference: in this variant of the game, the quantum time flip
offers a perfect win, but no perfect win can be achieved by the
quantum SWITCH, nor by any of the processes with indefinite
causal order considered so far in the literature.

The game involves a referee, who challenges a player to
discover a property of two black boxes. The referee promises that
the two black boxes implement two unitary gates U and V
satisfying either the condition UVT=UTV, or the condition
UVT=−UTV. The goal of the player is to discover which of
these two alternatives holds.

A player with access to the quantum time flip can win the game
with certainty. The winning strategy is to apply the quantum time
flip to both gates, exchanging the roles of 0j i and 1j i in the
control for gate V. In this strategy, one time flip generates the gate
SU ¼ U � j0ih0j þ UT � j1ih1j, while the other generates the
gate SV ¼ VT � j0ih0j þ V � j1ih1j. The strategy is to prepare
the target and control systems in the product state jψi � jþi,
where jψi is arbitrary, and ±j i :¼ ð 0j i± 1j iÞ= ffiffiffi

2
p

. Then, the

Fig. 3 Probabilistic realisation of the quantum time flip. An unknown
channel C is applied locally on a maximally entangled state Φ, which then
undergoes a controlled SWAP operation and is used as a resource for
quantum teleportation. The probabilistic realisation of the quantum time
flip is heralded by a specific value of the outcome m of the Bell
measurement in the teleportation protocol.
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target and control are sent first through the gate SV and then
through the gate SU, obtaining the state

SUSV ðjψi � jþiÞ ¼ UVT þ UTV
2

jψi
� �

� þj i

þ UVT � UTV
2

jψi
� �

� �j i:
ð2Þ

If U and V satisfy the condition UVT=UTV, then the second
term in the sum vanishes, and the control qubit ends up in the
state þj i. Instead, if U and V satisfy the condition UVT=−UTV,
then the first term vanishes, and the control qubit ends up in the
state �j i. Hence, the player can measure the control qubit in the
basis f þj i; �j ig, and figure out exactly which condition is
satisfied.

Overall, the transformation of the gate pair (U, V) into the
controlled-gate SUSV is an example of a bipartite supermap with
indefinite time direction, of the type discussed in Methods. A
player that implements this supermap can in principle win the
game with certainty.

The situation is different for players who can only probe the
two unknown gates in a definite time direction. In Supplementary
Note 4 we show that every such player will have a probability of at
least 11% to lose the game. This limitation applies not only to
strategies that use the two gates U and V in a fixed order, but also
to all strategies where the relative order of U and V is indefinite.

Photonic realisation of the superposition of a process and its
input-output inverse. A coherent superposition of a unitary pro-
cess and its input-output inverse can be realised with polarisation
qubits, using the interferometric setup illustrated in Fig. 4. In this
setup, a beamsplitter puts the photon in a coherent superposition of
two paths, which lead to an unknown polarisation rotator from two
opposite spatial directions, respectively. Along one path, the passage
through the polarisation rotator induces an unknown unitary gate
U. Along the other path, the role of the input and output modes is
exchanged and the passage through the same rotator induces the
unitary gate GUTG†, where G is a fixed unitary gate depending on
the choice of basis used for representing polarisation states (in the
standard representation of the Poincaré sphere, G is the Pauli
matrix Z ¼ 0j ih0j � j1i 1h j). By undoing the unitary gate G, one
can then obtain a quantum process with coherent control over the
gates U and UT, as described by Eq. (1).

Note that the above realisation is not in contradiction with our
no-go result on the realisation of the quantum time flip in a
quantum circuit with a fixed time direction. The no-go result
implies that it is impossible to build the controlled unitary gate
U � 0j ih0j þ UT � j1i 1h j starting from an unknown and uncon-
trolled gate U as the initial resource. However, it does not rule out
the existence of a device that directly implements the controlled
gate U � 0j ih0j þ UT � j1i 1h j in the first place. Such devices do
exist in nature, as shown above, and the unitary U appearing in
them can be either known or unknown. A similar situation arises
in the implementation of other controlled gates, which cannot be
constructed from their uncontrolled version38,42–44, but can be
directly realised in various experimental setups45,46.

Discussion
In this work we established a framework for quantum operations
with indefinite time direction. This class of operations is broader
than the set of operations considered so far in the literature, and
in the multipartite case it includes all known operations with
definite and indefinite causal order. Quantum operations with
both indefinite time direction and indefinite causal order provide
a framework for describing the interactions of an agent with the

fundamentally time-symmetric dynamics of quantum theory, and
for composing local processes into more complex structures. This
higher order framework is expected to contribute to the study of
quantum gravity scenarios, as envisaged by Hardy13. Such
applications, however, are beyond the scope of the present paper
and remain as a direction for future research.

The characterization of the bidirectional quantum channels
provided in this paper also reveals an interesting connection with
thermodynamics. We showed that the set of bidirectional quan-
tum processes coincides with the set of bistochastic channels. On
the other hand, bistochastic channels can also be characterised as
the set of entropy non-decreasing processes: any entropy non-
decreasing process must transform the maximally mixed state
into itself, and therefore be bistochastic; vice-versa, every bis-
tochastic channel is entropy non-decreasing47. Putting everything
together, we conclude that the processes admitting an input-
output inversion are exactly those that are compatible with the
non-decrease of entropy both in the forward and in the backward
time direction. This conclusion is worth noting, because no
entropic consideration was included in the derivation of our
results. A promising direction for future research is to further
investigate the role of input-output inversion in the search of
axiomatic principles for quantum thermodynamics48,49.

Finally, another interesting direction is to explore general-
isations of quantum thermodynamics to the scenario where
agents are not constrained to operate in a definite time direction.

Fig. 4 Photonic realisation of the superposition of a process and its input-
output inverse. Using a beamsplitter, a single photon is coherently routed
along two paths, one (in blue) traversing an unknown waveplate from top
to bottom, and the other (in red) traversing it from bottom to top. Along
one path, the photon polarisation experiences a unitary gate U, while on the
other path it experiences the transpose gate UT, up to a change of basis G
that is undone by placing suitable polarisation rotations before and after the
waveplate. a The two paths are finally recombined in order to allow for an
interferometric measurement on the control qubit. b By concatenating two
setups with the above structure, one can probe two unitary gates U and V in
a superposition of time directions, implementing the winning strategy in
Eq. (2).
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A first step in this direction has been recently taken by Rubino,
Manzano, and Brukner50, who explored thermal machines using
a coherent superpositions of forward and backward processes.
Their notion of backward process is different from ours, in that it
is defined in terms of the joint unitary evolution of the system
and an environment, rather than the dynamics of the system
alone. An interesting direction of future research is to explore the
thermodynamic power of the operations introduced in our work,
taking advantage of recent insights on quantum thermodynamics
with indefinite causal order51–53.

Methods
Characterisation of the input-output inversions of bistochastic channels. The
foundation of our framework is the characterisation of the bidirectional quantum
devices. The logic of our argument is the following: first, we observe that the input-
output inversion must be linear in its argument (Supplementary Note 5). Hence,
the action of the map Θ on the unitary channels uniquely determines the action of
the map Θ on every channel in the linear space generated by the unitary channels.
This linear space is characterised by the following theorem from28, for which we
provide a new, constructive proof in Supplementary Note 6.

Theorem 1. The linear span of the set of unitary channels coincides with the linear
span of the set of bistochastic channels.

Theorem 1 implies that the action of the map Θ on of bistochastic channels is
uniquely determined by the action of the map Θ on unitary channels. For unitary
channels, we have seen that there are only two possible choices: either the action of
Θ on the bistochastic channels is unitarily equivalent to the adjoint, or it is unitarily
equivalent to the transpose. In either case, ΘðCÞ is a valid quantum channel (CPTP
map) for every bistochastic channel C. Hence, all bistochastic channels are
bidirectional.

Characterisation of the bidirectional channels. We now show that the set of
bidirectional channels coincides with the set of bistochastic channels. The key of
the argument is the following result:

Theorem 2. If a channel C admits an input-output inversion satisfying Require-
ments 1, 2, and 4, then its input-output inversion ΘðCÞ is a bistochastic channel.

The proof is provided in Supplementary Note 7. Theorem 2, combined with
Requirement 3 (the input-output inversion maps distinct channels into distinct
channels), implies that only bistochastic channels can admit an input-output
inverse. Indeed, if a non-bistochastic channel had an input-output inversion, then
the input-output inverse would coincide with the input-output inversion of a
bistochastic channel, in contradiction with Requirement 3.

In Supplementary Note 8 we show that, even if Requirement 3 is dropped,
defining a non-trivial input-output inversion satisfying requirements 1, 2, and 4 is
impossible for every system of dimension d > 2. For d= 2, instead, a map Θ
satisfying conditions (1), (2), and (4) can be defined on all channels, but it maps all
channels into bistochastic channels, in agreement with Theorem 2.

Summarising, the set of bidirectional channels is the set of bistochastic channels,
and the input-output inversion is either equivalent to the adjoint or to the transpose.
The adjoint and the transpose exhibit a fundamental difference when applied locally to
bipartite processes. Suppose that a composite system S⊗ E undergoes a joint evolution
with the property that the reduced evolution of system S is bistochastic for every initial
state of system E. Then, one may want to apply the input-output inversion only on the
S-part of the evolution, while leaving the E-part unchanged. In Supplementary Note 9
we show that, when the dimension of system S is larger than two, the local application
of the input-output inversion generates valid quantum evolutions (CPTP maps) if and
only if the input-output inversion is described by the transpose.

Characterisation of the operations on bistochastic channels. A basic way to
interact with a bidirectional quantum device is described by a particular type of
quantum supermap22 that transforms bistochastic channels into ordinary channels
(CPTP maps).

Hereafter, we will denote by LðH;KÞ the set of linear operators on a generic
Hilbert space H to another generic Hilbert space K, and we will use the shorthand
notation LðHÞ :¼ LðH;HÞ. Also, we will denote by Map(Si, So) the set of linear
maps from LðHSi

Þ to LðHSo
Þ, by Chan(Si, So)⊂Map(Si, So) the set of all quantum

channels (CPTP maps), and by BiChan(Si, So) the subset of all bistochastic
channels. The set of density matrices of system S will be denoted as St(S).

A quantum supermap transforming bistochastic channels in BiChan(Ai, Ao)
into channels Chan(Bi, Bo) is a linear map S : MapðAi ; AoÞ ! MapðBi;BoÞ. The
map S is required to produce valid channels even when acting locally on part of
bipartite processes. Explicitly, the requirement is that ðS � IEiEo

Þ ðCÞ must be a
valid quantum channel in Chan(BiEi , BoEo) for every C 2 ChanðAiEi ; AoEoÞ
satisfying the condition that the reduced channel Cσ : ρ 7!TrEo

½Cðρ� σÞ� is in
BiChan(Ai, Ao) for every density matrix σ∈St(Ei)22.

A convenient way to represent quantum supermaps is to use the Choi
representation54. A generic linear map M : LðHSi

Þ ! LðHSo
Þ is in one-to-one

correspondence with its Choi operator ChoiðMÞ 2 LðHSo
�HSi

Þ, defined by
ChoiðMÞ :¼ ∑m;nMð mj i nh jÞ � mj i nh j, where f nj ig is a fixed orthonormal basis.
For a bistochastic channel C 2 BiChanðAi;AoÞ with Ai≃ Ao, the Choi operator C
satisfies the conditions

TrAi
½C� ¼ IAo

and TrAo
½C� ¼ IAi

: ð3Þ
Equivalently, the operator C can be decomposed as

C ¼ IAo
� IAi

d
þ T; ð4Þ

where d is the dimension of systems Ai and Ao, and T is an operator such that

TrAi
½T� ¼ 0 and TrAo

½T� ¼ 0: ð5Þ
and ∥T∥≤1/d.

Now, every supermap S : MapðAi ; AoÞ ! MapðBi;BoÞ is itself a linear map, and,
as such, it can be represented by Choi operator S 2 LðHBo

�HBi
�HAo

�HAi
Þ. The

operator S is completely specified by the relation

ChoiðSðMÞÞ ¼ TrAoAi
½ðIBoBi

� ChoiðMÞAoAi
ÞT S� ; 8M 2 MapðAi;AoÞ; ð6Þ

where M is an arbitrary map in Map(Ai , Ao), and T denotes the transpose with
respect to the basis f nj ig. This relation can be used, for example, to compute the
Choi operator of the quantum time flip. In the case of the quantum time flip, the
systems Ai and Ao have the same dimension, and the systems Bi and Bo are of the
bipartite form Bi= BitBic and Ai= AitAic, where Bit (Bot) is a target system, of the
same dimension as Ai and Ao, and Bic (Boc) is a two-dimensional control system.
Using this notation, we can express the Choi operator of the quantum time flip as

F ¼ Vj i Vh j; ð7Þ
with

Vj i :¼ Ij iiBotAo
� Ij iiBitAi

� 0j iBoc
� 0j iBic

þ Ij iiBotAi
� Ij iiBitAo

� 1j iBoc
� 1j iBic

;
ð8Þ

and Ij ii :¼ ∑m mj i � mj i. (Here the vector Vj i belongs to the Hilbert space
HBotBoc

�HBitBic
�HAo

�HAi
, and it is understood that the Hilbert spaces in the

r.h.s. have to be reordered consistently according to the systems’ labels).
In the Choi representation, the requirement that S be applicable locally on part

of a larger process is equivalent to the requirement that the operator S be positive
semidefinite22,29. The requirement that S transforms any bistochastic channel into
a CPTP map is equivalent to the condition

TrBo
TrAoAi

½ðIBoBi
� CAoAi

ÞT S� ¼ IBi
; ð9Þ

where C is an arbitrary Choi operators of a bistochastic channel C 2 BiChanðAi;AoÞ.
The normalisation condition (9) can be put in a more explicit form by

decomposing the operator S into orthogonal components, in a similar way as it was
done in21 for the characterisation of the operations with definite time direction.

Choosing T= 0 in Eq. (4) and inserting the operator C ¼ IAo
� IAi

=d into
Eq. (9), we obtain

TrBoAoAi
½S�

d
¼ IBi

: ð10Þ

Choosing an arbitrary T, instead, we obtain

TrBoAoAi
½ðIBoBi

� TAoAi
ÞS� ¼ 0: ð11Þ

The combination of conditions (10) and (11) is equivalent to the original
condition (9).

We will now cast condition (11) in a more explicit form. Condition (11) is
equivalent to the requirement that S be orthogonal (with respect to the Hilbert-
Schmidt product) to all operators of the form IBo

� JBi � TAoAi
, where JBi

is an
arbitrary operator on HBi

and TAiAo
is an arbitrary operator satisfying Eq. (5). This

condition implies that S can be decomposed into the sum of four mutually
orthogonal operators, namely

S ¼ GBoBi
� IAo

� IAi
þ KBoBiAo

� IAi
þ LBoBiAi

� IAo
þWBoBiAoAi

; ð12Þ
where GBoBi

is an arbitrary operator onHBo
�HBi

, and the remaining operators on
the right hand side satisfy the relations

TrAo
½KBoBiAo

� ¼ 0

TrAi
½LBoBiAi

� ¼ 0

TrAi
½WBoBiAoAi

� ¼ 0

TrAo
½WBoBiAoAi

� ¼ 0

TrBo ½WBoBiAoAi
� ¼ 0:

ð13Þ

(The operator LBoBiAi
� IAo

in Eq. (12) is understood as acting on
HBo

� Bi �HAo
�HAo

, with an implicit reordering of the Hilbert spaces
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according to the systems’ labels. In the following, this implicit reordering will
be used).

We now express the first three operators in the right-hand side of Eq. (12) in
terms of the partial traces of S. Explicitly, we have

GBoBi
¼ TrAoAi

½S�
d2

KBoBiAo
¼ TrAi

½S�
d

� GBoBi
� IAo

LBoBiAi
¼ TrAo

½S�
d

� GBoBi
� IAi

:

ð14Þ

Inserting the above relations into Eq. (12), we obtain

S ¼ TrAo
½S� � IAo

d
þ TrAi

½S� � IAi

d
� TrAoAi

½S� � IAo

d
� IAi

d
þWBoBiAoAi

; ð15Þ

or equivalently,

S� TrAo
½S� � IAo

d
� TrAi

½S� � IAi

d
þ TrAoAi

½S� � IAo

d
� IAi

d
¼ WBoBiAoAi

: ð16Þ

In other words, the left-hand side of the equation should be an operator that
satisfies the last three conditions of Eq. (13). The first two conditions are
automatically guaranteed by the form of the right-hand side of Eq. (16), while the
third condition reads

TrBo
½S� ¼ TrBoAo

½S� � IAo

d
þ TrBoAi

½S� � IAi

d
� TrBoAoAi

½S� � IAo

d
� IAi

d
: ð17Þ

Summarising, we have shown that the normalisation of the supermap S is
expressed by the two conditions (10) and (17).

As an example, one can easily verify that the Choi operator of the quantum time
flip, provided in Eq. (7) satisfies conditions (10) and (17). In fact, the quantum time
flip satisfies these conditions even when the roles of Bi and Bo are exchanged. This
additional property expresses the fact that the quantum time flip supermap
transforms bistochastic channels into bistochastic channels.

Multipartite quantum operations on bistochastic channels. Multipartite
operations with indefinite time direction can also be described as quantum
supermaps on the set of N-partite no-signalling bistochastic channels, that is, the
set of N-partite quantum channels of the form

N ¼ ∑
j
cj A1;j �A2;j � � � � �AN;j: ð18Þ

where each cj is a real coefficient, each Ai;j is a bistochastic channel. We denote the
set of channels of this form as BiNoSig(A1i, A1o ∣A2i, A2o ∣ ⋯ ∣ANi, ANo) where Ani

(Ano) is the input (output) of channel An;j , for every possible n and every possible j.
A quantum supermap on no-signalling bistochastic channels is then defined as

a linear map S : MapðA1iA2i � � �ANi ; A1oA2o � � �ANoÞ ! MapðBi;BoÞ, where Bi
(Bo) is the input (output) of the channel produced by S. The map S is required to
transform no-signalling bistochastic channels into CPTP maps even when acting
locally on part of a composite process. Explicitly, this means that the map ðS �
IEiEo

Þ ðN Þ must be a valid quantum channel in Chan(Bi, Bo) for every N 2
ChanðA1i A2i � � � ANi Ei; A1o A2o � � � ANoEoÞ satisfying the condition that the
reduced channel N σ : ρ 7!TrEo

½N ðρ� σÞ� belongs to BiNoSig(A1i, A1o ∣ A2i, A

2o ∣ ⋯ ∣ANi, ANo) for every density matrix σ∈ St(Ei).
Quantum supermaps on bistochastic no-signalling channels describe the most

general way in which N bidirectional quantum processes can be combined into a
single channel. In general, this combination can be incompatible with a definite
direction of time, and, at the same time, incompatible with a definite ordering of
the N channels.

Here we provide three examples of bipartite supermaps. To specify each
supermap, we specify its action on the set of product channels, which by definition
are a spanning set of the set of bipartite bistochastic no-signalling channels. The
first supermap, S1, is defined as

S1ðA1 �A2ÞðρÞ :¼ ∑
m;n

S1mnρS
y
1mn

S1mn :¼ A1mA
T
2n � 0j ih0j þ AT

1mA2n � j1i 1h j;
ð19Þ

where {A1m} and {A2,n} are Kraus operators of channels A1 and A2, respectively.
This supermap can be generated by applying two independent quantum time flips
to channels A1 and A2, respectively: indeed, one has
S1ðA1 �A2Þ ¼ F ðA1Þ � F 0ðA2Þ, where F 0 is the variant of the quantum time flip
in which the roles of the control states 0j i and 1j i are exchanged.

The supermap S1 describes the winning strategy in Eq. (2). This strategy cannot
be realized by using the two channels A1 and A2 in a definite time direction, but is
compatible with a definite causal order: the channel A1 (AT

1 ) always acts after
channel AT

2 (A2).

The second supermap, S2, is the quantum SWITCH 20,22, defined as

S2ðA1 �A2ÞðρÞ :¼ ∑
m;n

S2mnρS
y
2mn

S2mn :¼ A1mA2n � 0j ih0j þ A2nA1m � j1i 1h j:
ð20Þ

Note that here the quantum SWITCH is restricted to act on the set of bistochastic
no-signalling channels. Interestingly, however, this definition determines the action
of the quantum SWITCH on arbitrary channels (and on arbitrary linear maps as
well): the reason is that the set of bistochastic no-signalling channels includes the
set of all products of unitary channels, and it is known that the quantum SWITCH
is uniquely determined by its action on such channels55. In the quantum SWITCH,
the order of the channels A1 and A2 is indefinite, but each channel is used in the
forward time direction.

Finally, our third example is a supermap S3 arising from the combination of the
quantum time flip with the quantum SWITCH. It is defined as follows:

S3ðA1 �A2ÞðρÞ :¼ ∑
m;n

S3mnρS
y
3mn

S3mn :¼ A1mA2n � 0j ih0j þ AT
2nA

T
1m � j1i 1h j:

ð21Þ

This supermap describes a coherent superposition of the process A1 �A2 and its
input-output inverse ΘðA1 �A2Þ ¼ AT

2 �AT
1 . Such supermap is incompatible with

both a definite time direction and with a definite causal order.

Choi representation of multipartite operations. An equivalent way to represent
quantum supermaps on bistochastic no-signalling channels is to use the Choi
representation. When this is done, one obtains a generalisation of the notion of
process matrix21, originally used for supermaps that combine processes in an
indefinite order while using each process in a definite time direction.

Since S is a linear map, it has a Choi operator S∈ L(BoBiA1oA1iA2oA2i ⋯ ANoANi),
uniquely determined by the relation

ChoiðSðMÞÞ ¼ TrA1oA1iA2oA2i ���ANoANi
½ðIBoBi

� ChoiðMÞÞT S�; ð22Þ
where M is an arbitrary map in Map(A1iA2i⋯ANi , A1oA2o⋯ANo).

As in the N= 1 case, the requirement that S be applicable locally on part of a
larger process is equivalent to the requirement that the operator S be positive
semidefinite. The requirement that S transforms any bistochastic no-signalling
channel into a CPTP map is equivalent to the condition

TrBo
TrA1oA1iA2oA2i ���ANoANi

½ðIBoBi
� NÞT S� ¼ IBi

; ð23Þ
where N is the Choi operator of an arbitrary bistochastic no-signalling channel in
BiNoSig(A1i, A1o ∣ A2i, A2o ∣ ⋯ ∣ANi, ANo). A more explicit characterization can be
obtained using an orthogonal decomposition of the operator S as illustrated earlier
in the N= 1 case.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and in the supplementary information files.
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