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Forces that control self-organization of
chemically-propelled Janus tori
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Control of the individual and collective behavior of self-propelled synthetic micro-objects has

immediate application for nanotechnology, robotics, and precision medicine. Despite sig-

nificant progress in the synthesis and characterization of self-propelled Janus (two-faced)

particles, predictive understanding of their behavior remains challenging, especially if the

particles have anisotropic forms. Here, by using molecular simulation, we describe the

interactions of chemically-propelled microtori near a wall. The results show that a torus

hovers at a certain distance from the wall due to a combination of gravity and hydrodynamic

flows generated by the chemical activity. Moreover, electrostatic dipolar interactions

between the torus and the wall result in a spontaneous tilt and horizontal translation, in a

qualitative agreement with experiment. Simulations of the dynamics of two and four tori near

a wall provide evidence for the formation of stable self-propelled bound states. Our results

illustrate that self-organization at the microscale occurs due to a combination of multiple

factors, including hydrodynamic, chemical, electrostatic and steric interactions.
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Individual and collective behavior of self-propelled micro-
objects (also called agents or motors) is the main topic of a
rapidly expanding field termed active matter1–10. Recent

research on synthetic active particles has demonstrated that they
possess diverse functionalities which are similar to those found in
the living world, such as propulsion and energy conversion11,12,
artificial chemotaxis13–15, rheotaxis16,17, etc. However, most of
the synthetic realizations of self-propelled particles lack the
fidelity and efficiency of biological organisms. The limitations
come mostly from micro-fabrication, resulting in relatively simple
shapes such as spheres18 and rods11, although more complex self-
propelled helices have been made using glancing angle
deposition19. These factors significantly restrict the range of
possible applications of self-propelled micromotors in robotics,
drug delivery, and precision medicine20–22.

Advances in additive manufacturing and nanoscale 3D print-
ing allow the design of particles with practically arbitrary shape,
e.g., tori or propellers23. Functionalization of the tori surfaces by
platinum (Pt) and nickel (Ni) enables propulsion in hydrogen
peroxide (H2O2) solution and a response to an applied magnetic
field. Without a magnetic field, the tori (with sizes between 7 and
10 μm) sediment and hover near the bottom wall at a distance of
the order 1–2 μm. Due to a spontaneous symmetry breaking of
the hovering state, the tori tilt and translate parallel to the bottom
with the speed of the order of few μm/s. The tori also form
multiple rotating and translating bound states. If a dc magnetic
field is applied parallel to the bottom wall, the tori turn perpen-
dicular to the bottom and swim with much higher speed
(10–20 μm/s) in the direction controlled by the magnetic field.

In this work we use molecular simulation to uncover funda-
mental mechanisms governing the organization of chemically
self-propelled Janus tori near walls. There have been a number of
studies of the behavior of active particles near walls24–29 in which
various kinds of dynamical behavior have been observed. For
instance, diffusiophoretically active Janus colloids near a hard
wall have been shown to hover above the wall or slide along it at a
constant height and a preferred tilt angle27,29. Also, there have
been investigations of the dynamics of more complex active
agents, such as rigid swimmers constructed from linked rotating
beads30 and swimmers with conformational dynamics31, near a
wall. In addition, there is body of literature that considers the
dynamics of a torus in bulk solution. There are studies using
analytical and numerical continuum methods of the properties of
inactive tori32,33, as well as investigations of active tori including a
torus propelled by rotation about its centerline34–36, a torus made
from linked rotating beads36 and a torus propelled by a diffu-
siophoretic mechanism37.

Our investigations of the dynamics of Janus tori near a wall use
multiparticle collision dynamics38, a particle-based mesoscale

simulation technique for complex fluids that accurately incor-
porates thermal fluctuations, hydrodynamic interactions, chemi-
cal reactions, and solid inclusions39,40. We show how various
interaction potentials govern the behavior of several tori inter-
acting with each other and the confining walls. We have found
that all of gravitational, hydrodynamic, and chemical interactions
are responsible for the hovering behavior of a torus above the
bottom wall. When electrostatic dipolar interactions between the
torus and the bottom wall are included, the torus tilts sponta-
neously and translates parallel to the bottom, in qualitative
agreement with experiment. We also show how the interplay
among these different interactions along with steric repulsion
results in the formation of bound states of two and four tori.

Results and discussion
Active Janus torus near a wall. The simulations of the dynamics
of a torus near a wall are carried out in a system with a slab
geometry: the top and bottom walls of the simulation volume are
parallel to the (x, y) plane and separated by a distance Lz. Periodic
boundary conditions are applied in the x and y directions with
Lx= Ly. The volume contains one or more tori with centerline
radius a constructed from linked overlapping spherical beads that
form a ring41. The torus beads are Janus spheres with catalytic C
and noncatalytic N hemispherical faces. The solvent comprises A
and B fluid particles. Catalytic reactions A→ B occur on the
catalytic faces of the beads. Figure 1a shows a torus oriented so
that the catalytic side of the torus faces the wall. The symmetry
axis of the torus is indicated by the unit vector û pointing from
the catalytic to noncatalytic sides of the torus. The simulation
algorithm and its implementation are described in Methods.

A torus is heavier than the solvent and, due to the gravitational
force Fg, an inactive torus will sediment to the bottom and
experience a short-range repulsive force from the wall. For an active
torus where chemical reactions occur on its catalytic surface, because
of the asymmetric distribution of reactants A and products B, a
diffusiophoretic mechanism8,42–44 operates to propel the torus in
solution. The magnitude and direction of the diffusiophoretic force
Fd on the torus depends on the interactions of the reactive species
with the torus beads and the displacement from equilibrium.44 We
adopt the following convention: if the diffusiophoresis force Fd is in
the same direction as the û-vector, i.e., towards the noncatalytic
(passive) surface, it is called a backward-moving torus. If it is a
direction opposite to û, it is a forward-moving torus. In experiment,
the backward vs forward mode of propulsion is controlled by the
relative thicknesses of the Pt and Ni layers23. For example, for thin
Pt layers (about 10 nm), the tori swim Pt (catalytic) side forward,
whereas for the Pt layers thicker than 40 nm, the tori swim polymer
(non-catalytic) side forward.

Fig. 1 Schematics of a Janus torus. a Janus torus with catalytic (red) and noncatalytic (blue) faces. The catalytic reaction, A→ B, occurs on the catalytic
surface and converts fuel A particles to product B particles. The symmetry axis of the torus is indicated by the unit vector û pointing from the catalytic to
noncatalytic face of the torus. The vector v̂ is the center of mass (c.o.m.) velocity. b The probability P(z) of the torus c.o.m.-wall distance for a backward-
moving torus with its catalytic surface (red) facing the wall and c the probability distribution p(θ) vs the tilt angle θ of a backward-moving torus for various
values of gravitational strength parameter g.
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If a backward-moving torus is initially oriented so that its
catalytic surface faces the wall as in Fig. 1a, then the gravitational
and diffusiophoretic forces will have opposite signs. Conse-
quently, the torus will be confined to the vicinity of the wall in a
long-lived metastable state provided that Fg > Fd. If Fg < Fd such
an initially oriented torus can easily escape from the wall to the
bulk fluid phase. If the initial orientation is opposite so that its
noncatalytic surface faces the wall, then both forces act in the
same direction to confine the torus to the wall in what we call a
trivial metastable state. These are metastable states since
sufficiently large orientational fluctuations can allow the torus
to change its orientation relative to the wall, thus changing the
probability of residing near the wall. A corresponding set of
statements apply for forward-moving tori; for example, for Fg > Fd
the orientation of a forward-moving torus relative to the wall
must be opposite of that of a backward-moving torus for long-
lived confinement to occur. Consequently, for Fg > Fd it is
interesting to investigate the properties of the long-lived
metastable states as a function of the strength of the confining
gravitational force, and we present these results below.

The probability distribution P(z) of the distance of the center of
mass (c.o.m.) of the backward-moving torus from the wall is
shown in Fig. 1b for several values of the gravitational strength
parameter g (the value of g can be adjusted by the mass density of
the torus material). For the g values in the range (0.1–0.3)
presented in the figure, the torus remains confined to the vicinity
of the wall and, as expected, the mean distance from the wall
increases as g decreases. For g≲ 0.15, the torus beads do not
experience direct repulsive interactions with the wall. This
behavior indicates that the observed hovering is due to
diffusiophoresis generated by chemical reactions rather than the
short-range repulsive forces.

The tilt angle θ of the torus with respect to the bottom plane is
determined from the scalar product of their normal vectors:
cosðθÞ ¼ û � ẑ. The probability distribution of θ ¼ arccosðû � ẑÞ,
p(θ), normalized so that

R π
0 dθ sin θ pðθÞ ¼ 1, is shown in

Fig. 1c. All distributions are peaked at the origin and broaden
as g decreases, indicating larger angular fluctuations as the
confinement to the wall vicinity weakens. For g= 0.3, the torus
interacts strongly with the wall through short-range repulsive
forces and p(θ) (not shown) has a very narrow peak at zero. From
Fig. 1c we also see that large orientational fluctuations have very
low probability because they are suppressed by interactions with
the wall. Except for the largest gravitational strengths these wall
interactions are diffusiophoretic in nature and do not depend
strongly on direct wall repulsive forces. In the bulk fluid phase the
orientational relaxation time is τr ~ 104. In our simulations for
times longer than τr we have never observed escape from these
long-lived metastable states, although such escape is possible.

The forms of the concentration and fluid velocity fields that
accompany the diffusiophoretic mechanism provide additional
insight into the origin of torus hovering. The cB concentration and
v(r) velocity fields in the (x, z) plane near the hovering backward-
moving torus with g= 0.15 are shown in Figs. 2a and b. The fields
are displayed in a laboratory reference frame. In this frame, for the
concentration, we measure the average number of product B particles
in a thin slab in the (x, z) plane with thickness Δ= 1 whose y= L/2
coordinate lies at the torus c.o.m. The z direction in this frame is the
same as the û vector of the torus. Similarly, the velocity field was
calculated by averaging the velocities of all particles in volume
elements with thickness Δ= 1 in the (x, z) plane. Consequently, the
fields are averages over the vertical and angular displacements that
the torus experiences in its motion along the wall.

As expected, Fig. 2a shows the increased product concentration
in the torus hole and near the catalytic surface. In the velocity

field plot (Fig. 2b) we observe that the solvent particles near the
C−N interface of the torus flow from the N to C surface. We also
see that there is a suction above the torus. The solvent particles
flow out along the torus bottom after they flow into the hole
because the wall limits the fluid flow. There are also re-circulation
regions with vortices slightly above the torus. For a hovering
forward-moving torus, comparison of Fig. 2c, a shows that the
magnitude of the B-particle concentration field is significantly
different because the catalytic surface no longer faces the wall.
Also, comparison of the corresponding fluid velocity field near a
hovering forward-moving torus surface in Fig. 2d with Fig. 2b
shows that the solvent particles near the C−N interface flow
from the C to N surfaces. In addition, there is a suction above the
torus hole that pushes the fluid particles along the torus bottom
surface because the wall limits the flow.

The corresponding concentration and velocity fields for backward
and forward-moving tori in the bulk fluid are shown in Fig. 2e–h.
Comparison of the concentration fields reveals the distortions in
these fields due to the phoretically-induced interaction with the wall.
The distortion of the concentration gradient affects the diffusio-
phoretic force and, correspondingly, the propulsion. The flow fields
have a different form for hovering tori and those in the bulk fluid
where for a backward-moving torus in the bulk phase the fluid flows
outward from the noncatalytic surface of the torus and, after
circulation, inward to the catalytic surface. While the near field
velocity flow pattern for a torus bead in a cross-section of the torus
is similar to that seen for a Janus colloid, the flow patterns in the
vicinity of the entire torus differ from those for a spherical Janus
colloid. The direction of the fluid velocity of the forward-moving
torus is opposite to that for a backward-moving torus.

From these results we see that while the torus exhibits a
hovering state above the wall in the presence of a gravitational
field, the tilt angle distribution in Fig. 1c is centered at zero and
the distribution becomes less sharply peaked as g decreases,
consistent with weaker confinement that leads to enhanced
thermal orientational fluctuations. Orientational fluctuations are
suppressed by interactions with the wall since, if the torus tilts at
fixed z, a portion of the torus will move closer to the wall and be
repelled by it. Gravitational confinement prevents large changes
in z as seen in Fig. 1b. The result is a dynamic hovering state
where the torus is on average parallel to the wall but executes
active diffusive motion due to thermally driven orientational
fluctuations that produce fluctuating diffusiophoretic force
components parallel to the wall.

The hovering and sliding dynamical states seen for Janus
colloids near walls in the presence of a gravitational field have
been shown to depend on whether the surface mobility is uniform
or non-uniform27,29. We have assumed uniform mobility since
the solvent species have the same interactions with the catalytic
and noncatalytic torus surfaces and find hovering and sliding
states. Also, spherical Janus colloids will not experience the same
shape-dependent effect on the orientational fluctuations as torus
colloids. Nevertheless, the essential factors are wall modulations
of the concentration and velocity field effects arising from self
diffusiophoresis in both cases.

Effect of electrostatic forces on the torus interaction with the
wall. We now show that the experimentally observed states where
the torus moves along the wall with a preferred tilt angle can be
modeled in the simulations by including a charge-dipolar inter-
action between the torus and the wall. These results are sum-
marized in Figs. 2a–l and 3.

Experimental results reported in Baker et al.23 suggest that a
torus acquires an electric dipolar moment resulting from the
electrochemical reactions occurring on the Pt surface of a torus.
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Fig. 2 Concentration and velocity fields of a torus near the wall. a–d The concentration cB(r) (a) and fluid velocity field v(r) (b) for a hovering backward-
moving torus for g= 0.15. The concentration is shown in pseudocolour representation and the fluid velocity orientation is shown by the vectors; the colour
indicates the velocity magnitude. Corresponding colour bars for the concentration and fluid velocity are displayed at the bottom of the figure. c, d are the
same fields for a hovering forward-moving torus for g= 0.07. The dashed line indicates the location of the wall at z= 0. e–h (e) and (f) The concentration
cB(r) (e) and fluid velocity field v(r) for a backward-moving torus in the bulk fluid (no gravitational force); g, h The same fields for a forward-moving torus
in the bulk fluid. i–l Same as (a–d) but including the effect of charge-dipole interactions with strength ϵcd= 0.2. The+ symbols indicate the sign of electric
charge density on the surface. For figures where a wall is present, indicated by dashed horizontal lines, the ordinates refer to the z distance from the wall,
while the abscissas gives the distance x along a plane parallel to the torus orientation vector that cuts the torus through its center. The black arrows
indicated the direction of motion of moving tori in all panels. The blue colour corresponds to the non-catalytic surface, and the red colour corresponds to
the catalytic surface, respectively.

Fig. 3 The dependencies of the tilt angle and self-propelled velocity. a The probability distribution p(θ) versus tilt angle θ for various values of ϵcd for a
backward-moving torus with g= 0.15. The symbols are the simulation data and the solid lines are fit according to Eq. (7) with fit parameters γ1 and γ2.
(ϵcd: βγ1, γ2): (0.0:94, 0), (0.1:1635, 0.988), (0.15:3132, 1.015), (0.2:3686, 1.024). b The dependence of the tilt angle θmax versus the strength of charge-
dipole interactions ϵcd. c The torus velocity �V

u
k versus the tilt angle θmax. The probability distributions were constructed from 30–50 realizations of the

dynamics. The symbols are the mean values from the 30–50 realizations, and the error bars are the standard deviations.
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While direct experimental measurements of the electric dipole are
not possible at this time, the supporting evidence for the dipole is
two-fold: (i) A torus collected negatively charged 1 μm poly-
styrene spheres along its Pt surface and accumulated 2 μm
positively charged latex spheres along its polymer surface,
implying that the torus’s platinum and polymer sides acquire
opposite electric charges. (ii) Adding salt to the solution kills the
effect of self-propulsion and, consequently, the ability to collect
beads by the torus. This behavior is consistent with the
electrohydrodynamic propulsion of the torus and the onset of
the dipolar moment.

In addition, the bottom glass plate also acquires an electric
charge in H2O2 solution. Since the torus platinum cap is
conducting, due to interaction with the absorbed charges in the
glass plate, the electric dipole deviates from the axial direction
and orients in-plane of the torus. This interaction, in turn, results
in a constant tilt angle.

Our modeling of the torus dynamics near the wall does not
take into account all of the effects described above that are
postulated to give rise to wall charge-torus dipolar interactions.
Instead, we assume the existence of such interactions and
investigate if these interactions in the presence of a gravitational
force can lead to the onset of torus tilt for some specific values of
the strengths of gravitational and dipolar-wall interactions. Thus,
we included electric point dipoles with the strength ϵcd in the
model: each bead i in the torus interacts with a uniformly charged
wall through the interaction potential V ðbÞ

cd ðziÞ whose explicit form
is given in the Methods section. The potential gives rise the force
Fcd ¼ �ð∂V ðbÞ

cd =∂ziÞẑ � F cdγðiÞẑ, where γðiÞ ¼ cosð2πi=ðNb � 1ÞÞ
controls the sign and relative magnitude of the dipole of the Nb

beads in the torus.
As one sees from Fig. 3a, for a given gravitational force, a

sufficiently large electrostatic interaction results in a symmetry
breaking of the horizontally hovering state and the shift of θmax,
the tilt angle at the maximum in p(θ), from θmax ¼ 0 to θmax > 0.
Figure 3b plots θmax versus the charge-dipole strength ϵcd where it
is seen that θmax rises sharply from values near zero in a narrow
transition region to a domain where it has large θmax values that
increase with further increases in ϵcd. The plot is suggestive of a
bifurcation to a tilted torus beyond a critical value ϵ�cd � 0:12 that
is smoothed by thermal fluctuations. This observation is
consistent with the plots in the bottom panels of Fig. 2i–l that
display the concentration and velocity field plots for backward
and forward moving tori with charge-dipole interactions. These
fields show the asymmetries that are expected in view of tilted
geometries that break the symmetry of the horizontal state.

Furthermore, a tilted torus translates parallel to the bottom
wall with a velocity that depends on the tilt angle �θ. To examine
this effect we consider the velocity component �Vu

k defined as
follows: the projections of the motor velocity V and orientation
vector û onto the surface plane are V∥=V ⋅ 1∥ and uk ¼ û � 1k,
respectively, where 1k ¼ 1� ẑ ẑ and 1 is the unit tensor. The
mean velocity can be defined as �Vu

k ¼ Vk � ûk
� �

. Figure 3c shows
that �Vu

k increases as θmax increases from zero in the presence of
thermal fluctuations since any tilt from horizontal will induce
motion parallel to the wall. Such orientational fluctuations are
responsible for the non-zero values of �Vu

k , even at the values of
the average θmax near zero seen in the figure. In the transition
region �Vu

k increases weakly since this region encompasses a small
range of ϵcd, followed by a sharper increase that is proportional to
θmax.

Next, we develop a simple phenomenological theory for p(θ),
the probability distribution of the torus tilt angle. First, we

consider the system in the absence of charge-dipole interactions
where the torus hovers above the wall at some distance due to
hydrodynamic and diffusiophoretic forces and is subject to a
gravitational force. The orientation vector of the torus is
û ¼ ðsin θ cos ϕ; sin θ sinϕ; cos θÞ. In the Cartesian frame with ẑ
normal to the wall ẑ � û ¼ ûz ¼ cos θ that defines the tilt angle θ.
The dynamics of the orientation vector is governed by the
Langevin equation describing the dynamics of the torus,

du
dt

¼ ζ�1 � ðTg þ TflðtÞÞ ´ u: ð1Þ

The external torque due to the diffusiophoretic forces and
gravitational field is denoted by Tg ¼ γu ´ ẑ, where γ depends on
the strength of the gravitational field, Tfl is the fluctuating torque
and ζ is the rotational friction tensor. The Langevin equation for
the dynamics of the tilt angle can be determined from that for uz
and is given by

dθ
dt

¼ � γ

ζ r
sin θ þ 1

ζ r
~T flðtÞÞ; ð2Þ

where the fluctuating force is ~T fl ¼ T fl;x sinϕ� T fl;y cos ϕ that

satisfies the fluctuation-dissipation relation h~T flðtÞ~T flðt0Þi ¼
2kBTζ rδðt � t0Þ. Here ζr is the component of the rotational
friction tensor for uz and the corresponding rotational diffusion
coefficient is Dr= kBT/ζr. The Fokker-Planck equation reads

∂tpðθ; tÞ ¼ ∂θ
γ

ζ r
sin θ p

� �
þ Dr∂

2
θ p; ð3Þ

whose stationary solution is

pðθÞ ¼ N eβγ cos θ; ð4Þ
where β= 1/kBT and the normalization is determined fromR π
0 dθ sin θ pðθÞ ¼ 1. This result may also be derived from
Fokker-Planck equation that accounts for the effective orienta-
tional potential energy corresponding to uz, UrðθÞ ¼ �γ cos θ.
The expression for p(θ) in Eq. 4 is in accord with the simulation
data in Fig. 1c and shows that the angle corresponding to the
maximum in this distribution is θmax ¼ 0.

When the electric dipolar interaction is included the torque on
the torus changes and includes another contribution Tcd, that
contributes to the previous torque and contains and additional
contribution that is proportional to cos θ. The Langevin equation
is now given by

dθ
dt

¼ � γ1
ζ r
sin θð1� γ2 cos θÞ þ

1
ζ r

~T flðtÞÞ; ð5Þ

and the corresponding Fokker-Planck equation is

∂tpðθ; tÞ ¼ ∂θ
γ1
ζ r
sin θð1� γ2 cos θÞ p

� �
þ Dr∂

2
θ p; ð6Þ

whose stationary solution is

pðθÞ ¼ N eβγ1 cos θð1�ðγ2=2Þ cos θÞ: ð7Þ
In this case the corresponding rotational potential energy is

UrðθÞ ¼ �γ1 cos θð1� ðγ2=2Þ cos θÞ and has a contribution
proportional to cos2θ that is responsible for breaking symmetry.
In contrast to the situation where there are no charge-dipole
interactions, now the probability distributions indicate that the
angle corresponding to the maximum in the distribution is at
θmax > 0, provided the charge-dipole strength γ2 is sufficiently
large. Figure 3a compares the angle probability distributions p(θ)
for different values of the electric dipolar strength ϵcd obtained
from the simulations with the predictions of Eq. 7. The
simulations results are in good agreement with the analytical
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expression in Eq. 7 showing that this simple model captures the
origin of the symmetry-breaking mechanism.

Dynamics of several tori near the wall. We now consider the
dynamics of two and four interacting tori in the vicinity of the
wall. The tori are subject to all the interactions discussed above
for a single torus, as well as a short-range steric repulsion between
beads on different tori. To accommodate several tori in config-
urations where they can separate sufficiently far from each other
and behave independently, the size of the simulation box is
increased to 60 × 60 × 40. Periodic boundary conditions are again
used in directions parallel to the walls.

Two tori. The simulation results for two tori near the wall are
summarized in Fig. 4a–l. Using the same parameter values,
g= 0.15 and ϵcd= 0.2, as in Fig. 2 for a single hovering backward-
moving torus near the wall, the results for a pair of such tori are
given in Fig. 4a–d. This figure shows the probability distributions
P(z) vs their c.o.m. distances from the wall, z, sample trajectories
of the c.o.m. positions of the two tori, and the probability dis-
tributions of the tilt angles θ for each of the two tori, p(θ). We
observe that for both tori the P(z) and distributions practically
coincide. The p(θ) distributions also very closely correspond, and
the average tilt angles are about the same as that for a single torus
under the same conditions presented earlier. The trajectories
show that the distances between the tori centers of mass, D, are
concentrated between D= 18 and 28. These results, along with
the instantaneous configuration in Fig. 4d and Supplementary
Video 1, support the conclusion that the tori behave indepen-
dently without forming a long-lived metastable bound state. This
behavior is analogous to that for backward-moving sphere-
dimer45 and Janus46 colloids which also show little or no ten-
dency to cluster.

By contrast, two forward-moving tori near the wall can form
long-lived bound states, as we now describe. We first consider
systems with ϵcd= 0.2 and two values of the gravitational force:

g= 0.07 (again the same parameter values as in Fig. 2 for a single
torus), and a larger value g= 0.09. The results for g= 0.07 in
Fig. 4e–h indicate that the P(z) and p(θ) distributions of the
individual tori are no longer the same, as was the case for
backward-moving tori. On average, one torus lies at a distance
farther from the wall than the other; also the tilt angle is larger for
the upper torus. The plot of the probability density, P(D), in
Fig. 5a, shows that the D values are concentrated between D= 7.0
and 10.0. Since a torus has a centerline radius a= 5, this indicates
that the two tori form a stacked bound state. These features are
evident in the instantaneous configuration in Fig. 4e–h, see also
Supplementary Video 2.

For g= 0.09, the character of the metastable bound pair
changes and adopts a predominantly side-by-side structure
parallel to the wall. (See Supplementary Video 3) This observa-
tion is quantified in Fig. 4i–l where we see that the P(z) and p(θ)
distributions for the two tori coincide, so both tori lie at similar
distances from the wall, and their tilt angles are close. In contrast
to the corresponding tilt angle distribution for a single forward-
moving torus, p(θ) is peaked at the origin, and the tilt angles
differ from that for a single torus near the wall. The P(D)
distribution in Fig. 5b is sharply peaked at D ≈ 14, characteristic
of a well-defined bound pair. The trajectories indicate that the
bound state translates and rotates. An instantaneous configura-
tion is shown in Fig. 4i–l.

Simulations have also been carried out for a lower value of
ϵcd= 0.1 and the same two values of g as above. The results show
that for g= 0.09 the bound state again has a predominantly side-
by-side structure, while for g= 0.07 the dynamics fluctuates
between stacked and side-by-side bound states. A quantitative
characterization of this behavior is given in Figs. 5c, d that plot
the P(z) and p(θ) distributions. One can see that the P(z)
distributions in Fig. 5c are intermediate between those in Figs. 4e
and i, corresponding to stacked and side-by-side bound pairs: in
particular the probability distribution of torus 1 has a smaller
amplitude than that in Fig. 4e and a shoulder that extends into

Fig. 4 Bound states of two tori near the wall. a–d Backward-moving tori with g= 0.15 and ϵcd= 0.2; e–h forward-moving tori with g= 0.07 and ϵcd= 0.2;
f–l forward-moving tori with g= 0.09 and ϵcd= 0.2. The panels (a, e, i) are the probability distribution P(z) versus the hovering height z, b, f, j are
the trajectories of the centers of mass of the two tori, c, g, k are the probability distribution p(θ) versus the tilt angle θ, d, h, l an instantaneous configuration
of the two tori. The probability distributions were constructed from 30–40 realizations of the dynamics. The red colour indicates the catalytic surface. The
blue/green facets correspond to the non-catalytic surface. The torus moves with the blue facet forward.
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the high probability region of torus 2. The p(θ) distribution is
similar to those in Fig. 4k. This behavior can be rationalized by
noting that stronger gravitational confinement suppresses
orientational fluctuations and causes the tori to adopt nearly
side-by-side configurations parallel to the wall, while larger ϵcd
values tend to induce tilt. Thus, smaller g and larger ϵcd will favor
the stacked bound state.

The bound states of two forward-moving tori near the wall may
be compared to the dynamics of two such tori in bulk solution in
the absence of a gravitational force. Stacked bound long-lived
metastable states are also observed, but they have rather different
characters. Figure 6a, b show the two predominate configurations
we observed. The tori that stack with their catalytic surfaces in the
same direction and propagate along the common axis of the two
tori are indicated by the arrow in Fig. 6a. By contrast, Fig. 6b
illustrates the other configuration where the catalytic surfaces point
towards each other with the noncatalytic surfaces on the outside of
the bound pair. Since a forward-moving torus propagates in the

direction of its catalytic surface, this bound state does not propagate
but only executes active Brownian motion with rotation. Similar
bound states were observed experimentally in Baker et al.23,
Supplementary Video 6 from that paper.

Four tori. A greater variety of clustered metastable states is
observed for four tori near the wall. We confine our attention to
the same gravitational and charge-dipole interactions as for two
tori described above, in particular, we consider ϵcd= 0.2 with
g= 0.07 and g= 0.09 for forward-moving tori.

Figure 7a–c shows images of two cluster configurations drawn
from different realizations of the dynamics. In one of these
clusters in panels (a) and (b), side and top views, respectively, one
sees two side-by-side tori, where one torus is interacting with two
tilted tori. A distinctive feature of this configuration is that one of
these two tiled tori has flipped its orientation and its catalytic
surface is now oriented towards the wall. (The dynamics of this
bound state is shown in Supplementary Video 4). The other
cluster shown in top view in panel (c) comprises a pair of stacked
tori similar to those in Fig. 4h. Quantitative characterization of
these clusters is given in Fig. 7d, e that show the P(z) and p(θ)
probability densities. The P(z) distribution has a double-peaked
structure characteristic of a stacked configuration but it more
closely resembles that for ϵcd= 0.1 with g= 0.07 in Fig. 5c. The
p(θ) distribution is also similar to that in Fig. 5d, except that it
extends to large angles and has a small maximum near θ ≈ 150o

indicating that some tori have flipped their orientation to the
wall. Thus, the statistically predominate cluster is a bound pair of
two stacked tori whose structure is modified due to interactions
among the four tori.

Turning next to systems of four tori with g= 0.09 and
ϵcd= 0.2, we see in Fig. 8a, b, side and top views, respectively,
clusters comprising stacked and side-by-side torus pairs, and (c)
two staggered interacting side-by-side pairs. (The dynamics
giving rise to the bound state in Fig. 8c is shown in
Supplementary Video 5.) The P(z) and p(θ) probability distribu-
tions shown in Fig. 8d, e resemble those in Fig. 4i and k,
indicating that clusters with two staggered interacting side-by-
side pairs dominate the dynamics.

Fig. 5 Probability distributions for two tori near the wall. Probability distributions P(D) for forward-moving tori with ϵcd= 0.2 and g= 0.07 (a) and
g= 0.09 (b). Probability distributions P(z) (c) and p(θ) (d) for the parameters ϵcd= 0.1; and g= 0.07.

Fig. 6 Bound states of two tori in bulk solution. Instantaneous
configurations showing two types of metastable bound state of two tori in
bulk solution without a gravitational force: a propagating stacked tori with
their catalytic surfaces pointing in the same direction. The black arrow
indicates the direction of motion. b Tumbling (randomly rotating) stacked
tori with their catalytic surfaces pointing towards each other. The red/blue
colours correspond to catalytic/non-catalytic surfaces.
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Thus, for these two and four tori systems, a number of different
long-lived bound metastable states exist whose structure depends
both on parameters that control their interactions with the wall
and on steric forces that reflect the torus geometry. The geometry
of the torus influences the concentration and flow fields in its
vicinity and their interactions with the walls and other tori. This
gives rise to multi-torus configurations that differ from those of
simple spheres or dimer motors.

Conclusions
We have shown that a variety of forces control the behavior of
chemically-propelled torus colloids near walls. They include
gravitational, steric-repulsive, diffusiophoretic, hydrodynamic,

and electrostatic forces. If we neglect any of the forces, then the
experimentally observed behavior cannot be reproduced. For
example, no persistent horizontal translation near the wall can be
obtained without electrostatic interaction. Our simulations also
make a prediction that backward moving tori do not form bound
states (see Fig. 4a–d). Another important prediction from our
work is that, depending on the gravitational strength, a transition
from stacked bound states (Fig. 4e–h) to flattened side-by-side
bound states (Fig. 4i–l) occurs. In turn, the effective mass density
can be controlled by depositing more catalyst (Pt), making the
particles heavier. Alternatively, 3D printing hollow particles will
make them lighter. The existence of metastable bound states of
different types for four tori that depend on the magnitudes of the
gravitational and charge-dipole interactions, suggests that

Fig. 7 Bond states of four tori near the wall for g= 0.07,7D2 ϵcd= 0.2. a–c Instantaneous configurations of metastable bound states of four forward-
moving tori near the wall; a and b top and side views at the same time instant, c top view from another realization of the dynamics at a given time instant.
d–e P(z) and p(θ) probability distributions constructed from 25 realizations of the dynamics, the symbols show the mean values. The red colour indicates
the catalytic surface. The blue/green facets correspond to the non-catalytic surface. The torus moves with the blue facet forward.

Fig. 8 Bound state for four tori near the wall for g= 0.09,7D2 ϵcd= 0.2. a–c Instantaneous configurations of metastable bound states of four forward-
moving tori near the wall; a and b top and side views at the same time instant, c top view from another realization of the dynamics at a given time instant.
d–e P(z) and p(θ) probability distributions constructed from 25 realizations of the dynamics, the symbols show the mean values. The red colour indicates
the catalytic surface. The blue/green facets correspond to the non-catalytic surface. The torus moves with the blue facet forward.
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interesting regular and more complex collective tori states could
be found in systems with large numbers of interacting tori near a
wall. The algorithms developed here can be applied to particles of
different shapes (e.g., propellers, helices, etc.) or more complex
chemical reactions. In addition to electrostatic forces, magnetic
interactions can be included as well.

Methods
Details of the MPCD algorithm. The simulations are carried out using a meso-
scopic particle-based method. The dynamics of the torus motors and fluid particles
are explicitly taken into account by combining molecular dynamics with multiparticle
collision dynamics for the interactions among the fluid particles. Chemical reactions
on the catalytic part of the torus surface and in the bulk of the fluid are also incor-
porated in this dynamical method. On long distance and time scales, the method has
been shown to yield the Navier-Stokes and reaction-diffusion equations with ana-
lytical expressions for the transport coefficients38–40,47. Consequently, all relevant
properties such as local velocity and concentration fields, as well as torus dynamical
properties, can be extracted directly from the simulations from averages of the particle
dynamics. Additional details of the simulation methods are given below.

The simulation box has dimensions Lx= Ly= Lz= 40 (or Lx= Ly= 60 and
Lz= 40 for systems with more than a single torus) and contains NS=NA+NB

solvent particles with mass m. A torus is constructed from linked spherical beads as
described earlier41. Briefly, a torus is made from Nb spherical beads with radius rb
linked to form a ring. Although there are soft repulsive potential interactions
between the beads and solvent particles, the solvent cannot penetrate into a bead
closer than rb, which is used to define its radius. The tori with a centerline radius
a= 5 considered in this work were made from Nb= 39 beads, and the segmented
structure that results from the overlapping linked beads with radius rb is visible in
Fig. 1a. The neighboring beads in this ring are connected by harmonic springs with
spring constant ks= 500. The equilibrium bond length between the ith and (i+ j)th
beads is ri;iþj

0 ¼ 2a sinðjπ=NbÞ; j ¼ 1; 2; ¼ ;Nb=2. The torus has mass
M39= 3890. While, the frictional and propulsion properties of a torus in bulk
solution we described earlier, here we consider situations that are similar to the
experimental studies where one or more tori experience gravitational and charge-
dipolar interactions with a wall, which lead to new phenomena. The interactions
the tori experience are given below.

The A and B fluid particles undergo bounce-back collisions with the walls, and
interact with each bead in a torus motor through short-range repulsive Lennard-
Jones potentials. The particles interact among themselves through multiparticle
collisions38. The torus motor interacts with the bottom wall through a short-range
repulsive Lennard-Jones wall potential energy function. We also consider situations
where the wall has a positive charge density and a torus has nonuniform
distribution of point dipoles. In this case we also have charge density-dipole
interactions for each bead with the wall. To account for the effect of gravity on the
motor and the possible inhomogeneous distribution of mass due to the different
compositions of the catalytic and noncatalytic portions of the beads, we have a
gravitational potential energy function.

More specifically, these potential energy functions have the following forms:
The α= {A, B} particles interact with the torus beads through the potential V ðbÞ

α ðrkiÞ
with strength εα, where rki= rk− ri is the vector from the center of torus bead i to
fluid particle k of species α. The short range potential function has the form

V ðbÞ
α ðrkiÞ ¼ 4ϵα

σ

rki � rb

� �12

� σ

rki � rb

� �6

þ 1
4

" #
; ð8Þ

for rki ≤ rc where rc ¼ rb þ 2
1
6σ and zero for rki > rc. We take σ= 1.0, rb= 1.0. For

backward-moving tori we take ϵA= 0.1ϵ, ϵB= ϵ, while for forward-moving tori
these potential strengths are interchanged and ϵA= ϵ, ϵB= 0.1ϵ. Although the
reactants and products interact with the torus beads with different potentials, the
potentials we consider do not take into account the more generic situation where
the interactions may differ for the catalytic and noncatlaytic faces. Such more
general interactions have been considered in particle-based simulations collective
Janus colloid dynamics46 and for a Janus colloid interacting with a wall27. Each
torus bead i interacts with the bottom wall through a repulsive Lennard-Jones wall
potential energy function,

V ðbÞ
w ðziÞ ¼ ϵw

1
15

σw
zi

� �9

� 1
2

σw
zi

� �3
" #

; ðz ≤ zminÞ; ð9Þ

and zero otherwise. Here zi is the vertical distance of motor bead i from the lower
wall at z= 0. We take σw= 3.0 and ϵw= 1.0. The potential is truncated at the

minimum of the potential energy function at zmin ¼ ð2=5Þ1=6σw ¼ 2:575 so that
the wall force vanishes for z ≥ zmin. A similar expression applies to the upper wall.
The torus beads also interact with the bottom wall through charge density-dipole
potential energy functions,

V ðbÞ
cd ðziÞ ¼

ϵcd
2
ln ðL2z þ z2ciÞ=z2ci
� 	

cosð2πi=ðNb � 1ÞÞ; ð10Þ

where each torus bead is labeled by i= 0,…,Nb− 1 and zci is the vertical distance
of motor bead i from the center of mass of the catalytic hemisphere to the bottom
wall. The gravitational potential acting on a bead is given by V ðbÞ

g ðzciÞ ¼ �gzci
where g accounts for the mass and the acceleration due to gravity.

The total interaction energy is then given by

VðrNb ; rNS
s Þ ¼ ∑

Nb

i¼1
V ðbÞ

w ðziÞ þ V ðbÞ
cd ðziÞ þ V ðbÞ

g ðziÞ

 �

þ ∑
Nb

i¼1
∑
B

α¼A
∑
NS

k¼1
θαkV

ðbÞ
α ðrkiÞ;

ð11Þ

where θαk is an indicator function that is one if particle k is species α and zero
otherwise.

For the simulations involving several tori, we also included short-range
repulsive interactions between the beads i, j of different tori,

V ðbÞ
m ðrijÞ ¼ 4ϵm

σm
rij

 !12

� σm
rij

 !6

þ 1
4

" #
; ð12Þ

for rij ≤ rc where rc ¼ 2
1
6σm and zero for rij > rc, where rij= ri− rj is the vector from

the center of torus bead i to that of bead j. We take σm= 2(rb+ σ), ϵm= ϵ in order
to prevent binding due to solvent exclusion effects.

An irreversible chemical reaction, C+ A→ C+ B, takes place on the C
hemispherical surface of each motor bead that converts species A to product B. The
reactive events occur with probability p when an A or B particle crosses a reaction
radius Rr= rc. We have taken p= 1 but the reaction rate may be varied by
changing the value of p. The fluid phase reaction that is used to maintain the
system in a nonequilibrium state has rate constant kb= 0.001 and is carried out
using the reactive version of multiparticle collision dynamics where reactions are
carried out probabilistically in each multiparticle collision cell, and the dynamics
yields the reaction-diffusion equations on long distance and time scales48.

Simulation parameters. The molecular dynamics portion of the evolution uses the
velocity-Verlet algorithm with a molecular dynamics time step, δt= 0.001, and the
multiparticle collision dynamics portion uses a multiparticle collision time of
τ= 0.5. The collision rotation angle is π/2. Grid shifting is used to insure Galilean
invariance49. The system temperature is kBT= 0.2. The solvent density is c0 ≈ 10, so
that the approximate number of fluid particles is given by Ns= c0LxLyLz ≈ 1.44 ×
106. For τ= 0.5 the fluid dynamic viscosity is η= 1.43, the kinematic viscosity is
ν= η/ρ= 0.143, and the common diffusion coefficient for the A and B species is
D= 0.117. For a torus with velocity V= 0.006, the Reynolds number is
Re= Va/ν ≈ 0.2, the Peclet number is Pe= Va/D ≈ 0.25, the Damköhler number of
Da= κ+a/D ≈ 2 signals that the reaction on the torus surface with rate constant κ+
per unit surface ares is in the diffusion-influenced regime, and the Schmidt number
is Sc ≈ 1.2 so that momentum transport is greater than mass transport. From the
scaling that enters mesoscopic dynamics50, simulations of systems with such
dimensionless numbers, where fluid particles interact with solute particles through
intermolecular potentials, behave as low Reynolds number fluids with liquid-like
properties. This has been confirmed by simulations with a multiparticle collision
time of τ= 0.1 where the Reynolds number is an order of magnitude smaller and
the Schmidt number is an order of magnitude larger41.

Results are reported in dimensionless units with mass m, length σ, energy ϵ, and
time t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
.
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