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Floquet engineering of Kitaev quantum magnets
Umesh Kumar 1✉, Saikat Banerjee 1 & Shi-Zeng Lin 1,2

In recent years, there has been an intense search for materials realizing the Kitaev quantum

spin liquid model. A number of edge-shared compounds with strong spin-orbit coupling, such

as RuCl3 and iridates, have been proposed to realize this model. Nevertheless, an effective

spin Hamiltonian derived from the microscopic model relevant to these compounds generally

contains terms that are antagonistic toward the quantum spin liquid. This is consistent with

the fact that the zero magnetic field ground state of these materials is generally magnetically

ordered. It is a pressing issue to identify protocols to drive the system to the limit of the

Kitaev quantum spin model. In this work, we propose Floquet engineering of these Kitaev

quantum magnets by coupling materials to a circularly polarized laser. We demonstrate that

all the magnetic interactions can be tuned in situ by the amplitude and frequency of the laser,

hence providing a route to stabilize the Kitaev quantum spin liquid phase.
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Light-matter interaction not only provides an important way
to probe materials’ properties but also offers exciting
opportunities to control the physical properties of quantum

materials1–3. It has been demonstrated experimentally that light
can induce superconductivity4–6, magnetism7,8, topological
states9–11, and other novel quantum states of matter12. One
particular fruitful protocol is the so-called Floquet engineering by
driving materials periodically with a continuous laser. In this
Floquet approach, the coupling between light and matter can tune
the microscopic parameters, generate new interactions, and even
stabilize entirely new states and excitations that do not exist in
equilibrium13,14. Inspired by the success of light control of
quantum states in the past, we investigate the light-driven tran-
sition into the quantum spin liquid in strongly correlated mag-
netic materials.

Quantum spin liquid (QSL) is one class of highly entangled
quantum states of matter, which hosts fractionalized
excitations15,16. The elegant exact solution of the Kitaev spin
model unambiguously shows the existence of a quantum spin
liquid17. The presence of an external magnetic field can open a
gap and the model supports the Majorana fermions which have
the potential for applications in robust topological quantum
computation18,19. Kitaev’s work has motivated tremendous
efforts both theoretically and experimentally to materialize the
Kitaev model in quantum magnets20–22. Jackeli and Khaliullin
showed that one can realize the Kitaev spin interaction in edge-
shared octahedral structure with strong spin-orbit coupling23.
Several candidate materials, including RuCl324 and iridates, have
been identified and have been extensively studied. Encouraging
signs of QSL has been reported25, but unambiguous identification
of the QSL remains a challenge. One obstacle from a theoretical
perspective is that there exist competing magnetic interactions
originated from the different correlation induced exchange pro-
cesses in materials, which drives the model Hamiltonian away
from the ideal Kitaev QSL model26,27. Numerical study shows
that the Kitaev QSL is stable only in a small region of the model
parameter space26. Therefore, it is highly desirable to design a
protocol for continuously in situ tuning the magnetic interactions
in materials to drive the system into QSL phases.

In this work, we propose to use light to tune magnetic inter-
actions in spin-orbit coupled Mott insulators to favor QSL. We
consider the multi-orbital strongly spin-orbit coupled Hubbard
model, which describes several candidate materials including
RuCl3 and iridates. In a simple picture, the coupling of electrons
to light has two effects. First, the periodic modulation of the
hopping of electrons between different sites effectively normalizes
the hopping parameters. Second, electrons can absorb or emit
photons during the virtual hopping process, and as a con-
sequence, the energy barrier due to Coulomb repulsion also gets
modified. Therefore, the strength and even the sign of magnetic
interactions can be controlled by light. In addition, an effective
Zeeman field can be generated by circularly polarized light
through the process called inverse Faraday effect, which provides
a new handle to control the quantum states28,29. Here, we derive a
low-energy spin Hamiltonian from the Hubbard model, both
using the numerical exact diagonalization (ED) method and the
analytical perturbation theory, and explore in detail how the
magnetic interactions can be tuned by the frequency and
amplitude of the light.

Results
Multi-orbital system. We focus on the edge-shared iridates (5d)
and ruthenates (4d) as our target materials. In the octahedral
crystal field, these materials have been proposed to be described by
the J–K–Γ Hamiltonian26 and as possible candidates to realize

Kitaev QSL phase. Here, the t2g manifold of the transition metal
(TM) is known to host a hole in the Jeff= 1/2 sector, which is
separated from Jeff= 3/2 states due to a large spin-orbit coupling
(λ) in the system. The Jeff= 1/2 multiplet is composed of dxy, dyz,
and dzx orbitals of the TM atom. On the other hand, the TM atoms
form a two-dimensional (2D) honeycomb lattice perpendicular to
[111] direction composed of the standard x, y, z-bonds as shown in
Fig. 1a. For subsequent discussion, we constrain our analysis to the
z-bond which is oriented along the [110] direction. The x and y
bonds can be recovered by C3-rotation of this bond. Along the z-
bond, only pz-orbital of the oxygen/chloride ligand is active and
has a finite hopping between the dyz and dzx orbitals as shown in
panels (b) and (c) of Fig. 1, respectively. These multi-orbital sys-
tems are well captured by Hubbard-Kanamori Hamiltonian and
can be mapped to effective spin Hamiltonians using exact diag-
onalization (ED)7 or perturbation theory26,30. The Hamiltonian of
the system is given by HðtÞ ¼ HKðtÞ þ∑i¼1;2HC

i where

HC
i ¼ U

2
∑
α;σ

niασniα�σ þ
U 0

2
∑
α≠β
σ;σ0

ni;α;σniβσ0

� JH
2
∑
α≠β
σ;σ0

dyiασdiασ 0d
y
iβ;σ 0diβσ

þ JP
2
∑
α≠β
σ

dyiασd
y
iα�σdiβσdiβ�σ þ Δ∑

σ
pyiσpiσ :

ð1Þ

Here dyiασ (pyiσ) creates a hole on TM (ligand) in the ith-cell,
which includes a TM and a ligand site with spin σ and orbital
α= {xy, yz, zx}, niασ ¼ dyiασdiασ , U (U 0) is the strength of the intra
(inter)-orbital Coulomb repulsion, JH is the Hund’s coupling for
the orbitals α, β∈ {dxy, dyz, dzx}, and JP(=JH) is the pair hoppings.
Δ parametrizes the ligand charge-transfer energy. Note that we

Fig. 1 Schematics for the edge-shared iridates/ruthenates. Panel (a)
shows the full edge-shared hexagon realized in materials. Here blue and red
circles indicate transition metal (TM) and ligand sites, respectively. Panels
(b) and (c) show the hopping channels for the z-bond mediated by the
oxide/chloride [ligand atoms] p orbitals. Note that only dyz and dzx orbitals
can hop via the ligand pz orbitals at (1,0,0) and (0,1,0), respectively. In
addition, only the upper and lower hopping paths in (b) and (c),
respectively, are non-vanishing.
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have ignored the atomic spin-orbit coupling (SOC) term,
λ=2∑i∑αβ;

σσ0
dyiασðLαβ � Sσσ 0 Þdiβσ 0 , assuming λ � U ;U 0; JH;Δ 26,31.

Focusing on the four-site cluster [two TM atoms oriented
along the z-bond with their two edge-shared ligand sites], we now
write down the tight-binding Hamiltonian in presence of a
circularly polarized light (CPL) as

HK ðtÞ ¼ ∑
α;β;σ

eiδFðtÞtαβd
y
1ασd2βσ

þ tpd ∑
σ

�
eiδFxðtÞdy1zxσp1σ � eiFyðtÞpy1σd2yzσ

þ eiδFyðtÞdy1yzp2σ � eiFxðtÞpy2σd2zxσ

�
þ h:c:;

ð2Þ

where tpd is the hopping amplitude between the p- and d-orbitals.
The hopping matrix between the three d-orbitals tαβ is obtained
through Slater–Koster32 interatomic matrix elements as

tαβd
y
1ασd2βσ ¼ dy1yzσ dy1zxσ dy1xyσ

h i t3 t2 0

t2 t3 0

0 0 t1

2
64

3
75

d2yzσ
d2zxσ
d2xyσ

2
64

3
75:

ð3Þ
The time-dependence of the drive appears as a Peierls phase in

these multi-orbital Hamiltonian as noted in Eq. (2)7,33. For the sake
of simplicity, we have considered the light along [001] direction
with circular polarization, FðtÞ ¼ E0ðx̂ sinωt þ ŷ cosωtÞ=ω. The
phase along the TM–TM bond 1ffiffi

2
p ; 1ffiffi

2
p ; 0

� �
is given by δFðtÞ ¼

ζ sinðωt � π=4Þ and the phases along TM–ligand bonds are given
by δFxðtÞ ¼ ζ sinωt=

ffiffiffi
2

p
and δFyðtÞ ¼ ζ cosωt=

ffiffiffi
2

p
. Here, the

dimensionless parameter ζ is defined as ζ= RijE0/ω [Rij is the bond-
length between the sites for the associated hopping]. The values of
the parameters entering Eqs. (1)–(3) are adapted from the recent
ab-initio34 and photoemission35 studies relevant for α-RuCl3:
t1= 0.044, t2= 0.08, t3= 0.109, tpd=−0.8, U= 3.0, JH= 0.45,
and Δ= 5.

Here, we assumed a reduced value of t2 so as to account for
finite tpd. All the values are in units of eV, unless stated otherwise.
We also use relations, U 0 ¼ U � 2JH and JP= JH in the
Hubbard–Kanamori Hamiltonian, which preserves the rotational
invariant form. Consequently, the Hubbard–Kanamori term in
Eq. (1) can be mapped to

HC
i ¼ U � 3JH

2
Ni � 5
� �2 � 2JHS

2
i �

JH
2
L2i þ Δ∑

σ
npiσ ; ð4Þ

where Ni is electron number, Si is total spin, and Li is total orbital
angular momentum at site i26,31. The above simplified form of the
Hubbard-Kanamori Hamiltonian [Eq. (4)] allows us to evaluate
the energy of the doubly occupied states at the TM sites. Since,
the SOC, λ is ignored, we label the doubly occupied sites in terms
of the orbital and spin angular momentum L, S, respectively, as
j2Sþ1L; Lz; Sz; 0i, where L, S [=(0, 0), (1, 1), (2, 0)] are the orbital
and the spin angular momentum of the doublet, respectively, with
Lz and Sz being their respective z-components. The allowed values
of L and S provides three different energies for the doublets (two
particles on TM site) given by: ES=U+ 2JH, EP=U− 3JH,
ED=U− JH and singly occupied case (one particle in each TM
site), E0= 0.

Effective spin-exchange model. In this section, we present the
effective spin-exchange model derived from the multi-orbital
model in presence of a drive discussed above. We evaluate the
various parameters in the spin-exchange model for two cases;
without ligand and with ligands in the multi-orbital model. In

each case, the results are evaluated numerically using ED and
analytically using pertubation theory. We further present a
comparision between the numerical and analytical results.

Since the tight-binding parameters are small compared to
interaction strengths [tαβ; tpd � U ;U 0; JH;Δ], the model can be
analyzed by a low-energy effective spin-exchange Hamiltonian by
ignoring the high-energy charge degrees of freedom. The static
limit of our model has been extensively studied previously leading
to the well-known J−K−Γ spin Hamiltonian26,36 (also see
Supplementary Note 1). Here, we utilize the Floquet approach to
derive a time-independent effective Hamiltonian from Eqs. (1, 2)
and subsequently perform ED calculations to estimate the various
spin-exchange parameters of the concomitant spin Hamiltonian.
On the other hand, the time-independent version of the latter can
be naturally captured by a minimal magnetic model [based on the
mirror reflection, inversion, and broken time-reversal symmetry of
TM–ligand–TM atomic cluster associated with the z-bond] as

Heff ¼ Sx1 S
y
1 S

z
1

	 
 J Γ Γ0

Γ J Γ0

Γ0 Γ0 J þ K

2
64

3
75

Sx2
Sy2
Sz2

2
64

3
75þ h � ðS1 þ S2Þ: ð5Þ

Since the trigonal distortion is ignored in our model, we have
Γ0 ¼ 026. The emergent Zeeman magnetic field h is an effect of
the broken time-reversal symmetry due to the applied CPL and is
not accounted for in the static version of the associated model.

We now briefly discuss how the mapping of the multi-orbital
model to the spin model is carried out. In the method section, we
discuss how the time-dependent Hamiltonian can be mapped to a
time-independent form. The time-independent matrix in Bloch
structure form is given by, ðϵα þmωÞjψα;mi ¼ ∑m0Hm�m0 jψα;m0 i.
Here, Hm and jψα;mi are Hamiltonian and wavefunction in the
frequency basis formth Floquet sector index [see “Methods” section
for details]. Here index α consists of (i) a single hole in each TM site
and an empty ligand site, (ii) two holes [double occupancy] on a TM
site while the ligand and the other TM site is empty and (iii) one
particle each on a ligand and a TM site (see Supplementary Note 2
for the exact forms). The singly occupied states are a product of
Jeff= 1/2 states on the two TM sites, the doublets consists of states
j2Sþ1L; Lz; Sz; 0i, where L, S[=(0, 0), (1, 1), (2, 0)], as mentioned
earlier.

The full Floquet Hamiltonian (H) can be written in the eigen-
decomposed form as, H ¼ ∑nEnkϕnihϕnj, where, En and
ϕn
�� � ð¼∑α;ma

n
α;mjψα;miÞ are the eigenvalues and eigenvectors,

respectively. Notice that jψα;mi contains all the configurations
for the two-site problem. In order to restrict the basis to m= 0-
Floquet sector and singly occupied basis, one can use a
projector; Ps,0= Pα∈sPm=0. We then have the projected spin
Hamiltonian given by HPG= Ps,0HPs,0. The HPG can be used to
estimate the various parameters in Heff . For examples, J ¼
2 � 1

2 ;þ 1
2

 ��HPG þ 1
2 ;� 1

2

�� �
(see Supplementary Note 3 for addi-

tional details). The spin model is valid only when the Floquet
band for the singly occupied is well separated from the other
Floquet band and the upper Hubbard band. We define Δl ¼
ðEminðm ¼ 0; sÞ � Emin�1Þ=W and Δu ¼ ðEmaxþ1ðm ¼
0; sÞ � Emaxðm ¼ 0; sÞÞ=W for each ζ, i.e., Δu, Δl≪ 1. Here
Eminðm ¼ 0; sÞ and Emaxðm ¼ 0; sÞ are the minimum and
maximum energy for the singly occupied states in the m= 0
Floquet sector, and W ¼ Emaxðm ¼ 0; sÞ � Eminðm ¼ 0; sÞ for a
given ζ.

Figures 2 and 3 plot the estimates using ED for the system
without and with ligand, respectively. Inset in the panels of these
figures plots the energy states for the m= 0 Floquet states with
singly occupied configuration (in black) and its nearby states. The
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Fig. 2 Tuning spin-exchange couplings (J, K, Γ), and emergent magnetic field (h) in model without ligands. Panels a–d show J, K, Γ, h as a function of
drive strength (ζ) for drive frequency ω= 1.2, 2.1, 3.2, and 7, respectively. Inset, in each panel, shows the energy levels (E) in the vicinity of m= 0 Floquet
sector and singly occupied states. The black curve (inset) indicates the states with the largest weights on the singly occupied configurations. Note that the
vertical axis is plotted in different intervals to highlight the relative strength between different parameters.

Fig. 3 Tuning spin-exchange couplings (J, K, Γ) and emergent magnetic field (h) in model with ligands. Panels a–f show J, K, Γ, h as a function of drive
strength (ζ) for drive frequency ω= 1.2, 2.3, 3.2, 4.5, 7, and 12, respectively. Inset in each panel shows the energy levels (E) in the vicinity of m= 0 Floquet
singly occupied states. The black line indicates the states with the largest weights on the singly occupied configurations. Notice that the y-axis are plotted
in the different intervals to highlight the relative strength between different parameters.
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singly occupied states (in black) are separated from other states,
which validates our calculation for the drive frequencies
presented in our work.

Spin-exchange model: ED without ligands. The ligand degrees of
freedom (oxide/chloride p orbitals), in the edge-shared ruthenates
or iridates, are usually integrated out leading to an effective
description of the model in terms of the TM d-orbitals only26. In
this section, we perform ED on the Floquet Hamiltonian obtained
from HðtÞ and analyze the results by integrating out the ligand.
The system without the ligand is simulated by turning off the
direct hopping tpd between TM and ligand sites and rescaling the
TM–TM hopping t2 to t2 þ t2pd=Δ in Eq. (2). Consequently, the
four-site cluster effectively becomes a two-site system. In this
case, the emergent Zeeman magnetic field h term is absent as
there is no residual orbital current along the TM–TM bond.
However, the multi-orbital nature leads to finite non-vanishing
spin-exchange couplings J, K, and Γ.

The corresponding results are shown in Fig. 2. We choose four
distinct light frequencies avoiding the three critical resonant
frequencies ω= {EP, ED, ES}[={1.65, 2.45, 3.9}] of the doublet
states and illustrate the relative variation of J, K, and Γ with
applied laser strength in the four panels [Fig. 2]. Inset in each
panel shows the separation of the m= 0 Floquet singly occupied
states from the adjacent m ≠ 0 states. Panel (a) shows the
variation of the couplings at drive frequency ω= 1.2, below the
doublet EP energy. In this case, we notice that J, K, Γ can all
change their sign and enhance the magnitude, but the relative
tunability is missing. Panel (b) shows the result for ω= 2.1, in
between doublet EP and ED energies and retains the similar
feature as in the prior case. Panel (c) and (d) show the results for
ω= 3.2 [ED < ω < ES] and ω= 7 [ω > ES], respectively. In these
two cases, however, we notice that the sign of the parameters
cannot be changed, and also the magnitudes of the couplings can
be enhanced only mildly. As will be shown by perturbation
calculations below, the ratio of Γ/K is fixed, independent of the
amplitude and frequency of the light.

Spin-exchange model: ED with ligands. We now come to the main
part of our paper. Here, we present the results using the full
Hamiltonian given by Eqs. (1, 2) for the parameters discussed
previously and consider the effect of ligands in full glory.
Recently, the inclusion of ligands has been investigated in a few
studies37. The inclusion of ligand degree of freedom in the multi-
orbital description is crucial primarily for its two-fold sig-
nificance. First, in real materials [iridates/ruthenates] the ligand
effect is unavoidably present and a thorough quantitative
material-specific analysis needs to incorporate it properly. Second
and most importantly, the inclusion of ligand p-orbital along with
the TM d-orbital offers the desired relative tunability of the spin-
exchange couplings—J, K, and Γ [see Fig. 3], which was absent as
we saw in the previous section. Finally, the inclusion of ligand
sites constitutes the full TM–ligand–TM atomic cluster as shown
in Fig. 4, with its associated orbital current which leads to a finite
Zeeman magnetic field through inverse Faraday effect28,29. In
Fig. 3 we show the variation of all the parameters defined in Eq.
(5) with the driving strength (ζ) evaluated using ED calculations.

As before, we again choose six distinct light frequencies
avoiding the four critical resonant frequencies ω= {EP, ED, ES, Δ}
[={1.65, 2.45, 3.9, 5}] of the doublet states and illustrate the
relative variation of J, K, and Γ with applied laser strength in the
six panels (a)–(f) [Fig. 3]. The ED analysis is always performed
away from the Floquet resonances in order to avoid the
breakdown of the spin picture. Inset in each panel shows
the separation of the m= 0 Floquet singly occupied states from

the adjacent m ≠ 0 Floquet states. For field strength ζ= 0 [static
case], we have J= 0.0007, K= 0.005, and Γ= 0.003 in each panel,
whereas the Zeeman magnetic field h is zero. The vanishing of the
magnetic field is due to the preserved time-reversal symmetry of
the multi-orbital system in the absence of CPL.

Panel (a) shows the variation of the various parameters defined
in Eq. (5) with the driving amplitude ζ at the drive frequency
ω= 1.2 eV, below the lowest doublet energy EP. Indeed for the
reasons mentioned earlier, we find a finite Zeeman magnetic field h
in the driven system, in contrast to vanishing h in the case without
ligand. In this case, the parameters J, K, Γ, and h can all change their
sign and their magnitudes can be enhanced. In addition, these
parameters vanish at different values of ζ [compared to the situation
in Fig. 2] allowing for their relative tuning. We also note that the
magnitude of the Kitaev term K and anisotropy Γ can be enhanced
by a few orders of magnitude compared to the Heisenberg exchange
term J. Panel (b) shows the variation of the parameters with ζ for
ω= 2.3 in between the EP and ED doublet. In addition to our
findings in panel (a), we notice that K at ζ= 3.7 can be tuned to a
few orders of magnitudes larger compared to all the other
parameters, making it ideal for realizing the Kitaev QSL phase.
The results for ω= 3.2 [ED <ω < ES] are shown in panel (c). In this
case, the magnetic field h can achieve the largest magnitude
compared to the other parameters. Moreover, we notice limited
tunability at larger drive strength ζ. Panel (d) shows the result for
ω= 4.5, in the regime between ES and Δ. In this case, the system
can be tuned to large J and K, leading to a realization of the Kitaev-
Heisenberg model. In addition, the almost vanishing Zeeman field
provides a promising route to realize gapless Kitaev QSL. For ω= 7
above the largest energy scale Δ, in our model [see panel (e)], we
notice a significant enhancement of K at low drive strength, making
it another frequency regime suited for realizing the Kitaev phase.
Panel (f) shows the result for ω= 12, large frequency, well above Δ.
In this case, we observe that all the parameter values decrease with
the driving strength similar to the case without ligand [see Fig. 2d].
In contrast, the tunability of the signs of these parameters persists.

Spin-exchange model: perturbation theory. So far we analyzed
our model in the Floquet approximation utilizing the ED calcu-
lations and discussed the results in various regimes of the model-
based parameter values. In this section, we derive the low-energy
spin-exchange Hamiltonian based on perturbation theory and
compare the analytical expressions of the couplings J, K, Γ, and h
with the numerical estimates from the ED.

In the absence of ligand degree of freedom, we perform a
second-order perturbation theory (see Supplementary Note 2)
and time-dependent Schrieffer–Wolff transformation28 to obtain

Fig. 4 Schematics for evaluating spin Hamiltonian parameters at the
third-order in perturbation theory. We start with one particle each at the
transition metal (TM) site. In the intermediate states, the particle moves to
a ligand and then to the other TM site creating a doublet. Finally, it returns
to the original site, with or without a spin-flip. We also consider a time-
reversal partner of this hopping path.
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the various couplings defined in Eq. (5) as

J ¼ 4
27

∑
1

m¼�1
J 2

mðζÞ
6t1ðt1 þ 2t3Þ
EP þmω

þ 2ðt1 � t3Þ2
ED þmω

þ ð2t1 þ t3Þ2
ES þmω

� �
;

ð6aÞ

K ¼ 8
9

∑
1

m¼�1
J 2

mðζÞ
JH½ðt1 � t3Þ2 � 3t22�

ðEP þmωÞðED þmωÞ ; ð6bÞ

Γ ¼ 16
9

∑
1

m¼�1
J 2

mðζÞ
JHt2ðt1 � t3Þ

ðEP þmωÞðED þmωÞ ; ð6cÞ

where J mðζÞ is the Bessel function of the first kind of order m.
Notice that the expressions for K and Γ have nodes at the
identical values of the drive strength ζ dictated by the
combination of the Bessel functions and the denominator only
and also are found to follow a constant relative strength as
illustrated in Fig. 2. Therefore, it forbids the relative tunability of
these parameters in the system. The comparison of our ED results
with the analytical expressions for the couplings J, K, and Γ is
shown in Fig. 5a. We find a very good agreement between the two
in this case.

We now focus on the final part of our work and obtain the
spin-exchange model using perturbation theory and time-
dependent Schrieffer–Wolff transformation28. In this case, the
ligand degrees of freedom are taken into consideration and we
have to rely on a third-order perturbation theory to properly
capture the ligand effects. The perturbation theory is performed
utilizing the processes illustrated in Fig. 4 and we obtain the
couplings defined in Eq. (5) as

J ¼
8t2pd
27

∑
1

n;m¼�1
Jm;nðζÞ

sin½ðm� nÞψ0�
Δþmω

2t1 þ t3
ES þ lω

þ t1 � t3
ED þ lω

þ 3
t1 þ t3
EP þ lω

� �� �
;

ð7aÞ

K ¼
8t2pd
9

∑
1

n;m¼�1
Jm;nðζÞ

JH
ðΔþmωÞ

sin½ðm� nÞψ0�ðt1 � t3Þ � 3 cos½ðm� nÞψ0�t2
ðEP þ lωÞðED þ lωÞ

� �
;

ð7bÞ

Γ ¼
8t2pd
9

∑
1

n;m¼�1
Jm;nðζÞ

JH
ðΔþmωÞ

cos½ðm� nÞψ0�ðt1 � t3Þ þ sin½ðm� nÞψ0�t2
ðEP þ lωÞðED þ lωÞ

� �
;

ð7cÞ

h ¼
4t2pd
9

∑
1

n;m¼�1
Jm;nðζÞ

sin½ðm� nÞψ0�
Δþmω

t1 � t3
EP þ lω

þ t1 � t3
ED þ lω

� �
; ð7dÞ

where Jm;nðζÞ ¼ J mþnðζÞJ �mðζrij=RijÞJ �nðζrij=RijÞ, rij is the
bond-length between the TM and ligand sites, l=m+ n and ψ0 is

the angle between the TM–TM and TM–ligand bond. Note that
previously ψ0 was considered to be equal to π/4. We observe that
in the static case ζ= 0 the super-exchange coupling J and the
Zeeman magnetic field h vanish. This vanishing of super-
exchange coupling is consistent with the Jackeli–Khaliluin
formalism23 and the absence of h at ζ= 0 is consistent with the
intact time-reversal symmetry of the multi-orbital system.

We further observe the distinct analytical structure of the
Kitaev term K and the anisotropy Γ [7b, c)] which dictates that
the zeros of these parameters occur at different drive strength ζ.
This is in stark contrast to the results discussed without ligand in
Eq. (6b, c) and is consistent with the variation of these parameters
as shown in Fig. 3. Figure 5b shows the results for the relative
comparison between the perturbation [adding the contributions
from Eq. (6a–c) to Eq. (7a–d)] and ED calculations. In this case,
we find an excellent agreement for the case of the magnetic field
h, but have a relatively poor agreement in the case of the other
parameters. Note that with the inclusion of ligand, there are many
more paths possible for the super-exchange in the high order
processes. Therefore, this deviation can possibly be accounted for
by higher-order contributions, which cannot be neglected due to
larger values of tpd, whereas our perturbation term accounts only
till the third order. On the other hand, the better agreement of the
perturbation results and the ED calculations for the Zeeman
magnetic field h is justified. In this case, there is only one process,
in the next order perturbation, which contributes and is roughly
proportional to t4pd=Δ

2U . Within our parameter choice, this term
is much smaller than the second or third-order contributions and
can safely be neglected.

Discussion
In our discussion above, we have not taken into account the role
of heating due to laser irritation. When the laser frequency is
close to resonances in the system, electrons can be excited
efficiently resulting in severe heating. Under the drive, the
model Hamiltonian can be divided into different Floquet
Hamiltonian sectors according to the number of the photon, m,
the system absorbs/emits. Initially, electrons occupy the
m= 0 sector. The laser drives the electrons to other Floquet
sectors, which causes heating. Meanwhile, the effective Floquet
Hamiltonian at m= 0 sector is modified through hybridization
with other sectors. There are resonances within the same Flo-
quet sector. In our system, at the single-ion level, we have
crystal field splitting between t2g and eg orbitals, and split-
ting between Jeff= 3/2 and Jeff= 1/2 manifold due to the spin-
orbit coupling. The frequency of the laser should be tuned away
from these resonances. In the Mott insulator, one dominant

Fig. 5 Comparison of the exact diagonalization (ED) and perturbation theory results. a The result for the case without ligand at drive frequency ω= 7.
b The comparison in the model with ligands at ω= 12. The solid(dashed) lines represent the numerical(analytical) results, respectively, in the respective
color, except the analytical result for magnetic field (h) which is shown in the magenta dashed line.
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mechanism of heating is the excitation of the doublons by laser.
This resonance occurs when the photon energy is close to the
energy difference between different Hubbard bands. The
population of the doublons increases continuously with time in
the presence of laser irritation, which eventually invalidates the
effective spin Hamiltonian description. It is calculated in ref. 38

that the rate of doublon generation can be very low when the
laser frequency is away from resonance set by the lower and
upper Hubbard band. The effective spin Hamiltonian we
derived here is valid in a long time window, where the effect of
doublons on magnetic interactions is also negligible. This long
time window is known as the Floquet prethermal region, which
can be exponentially long in time before the system enters into
a featureless infinite temperature region due to heating38–45. In
addition, the heating can be mitigated by coupling the driven
system to dissipative bath, such as phonon bath46,47.

We remark that not all the magnetic interactions can be tuned
independently because we only have two tuning parameters, i.e.,
amplitude and frequency, of the incident circularly polarized
light. As demonstrated explicitly in Fig. 3, we can achieve the
region where K is dominant over all other magnetic interactions,
thus realizing a favorite condition for the Kitaev QSL. Further-
more, the Kitaev interaction K can be tuned to be ferromagnetic
or antiferromagnetic by light in a single material. It is believed
that RuCl3 and iridates are described by a ferromagnetic Kitaev
interaction without a light drive. The antiferromagnetic Kitaev
model has attracted considerable interest recently because it may
host a new gapless QSL in the intermediate magnetic field
region48–53. Both the antiferromagnetic Kitaev interaction and
magnetic field can be induced by light, thus the driven system
allows us to access this gapless QSL. We can also tune into a
parameter region where Γ interaction is dominant, where a new
type of QSL has been suggested recently54.

So far, we have focused on the circularly polarized light, our
results can be readily generalized to the case with a linearly
polarized light. In this case, the effective Zeeman field due to the
inverse Faraday effect is absent because the time-reversal sym-
metry is preserved. It is natural to expect one can tune the system
into an anisotropic spin Hamiltonian by linearly polarized light,
which can also support QSL33.

While we are working on the current project, we noticed a few
recent theoretical works29,55,56 on the tuning of magnetic inter-
actions in Kitaev quantum magnets by light, which have some
overlap with our current work. In refs. 55,56, the authors treat the
ligands by an effective hopping between two transition metal
sites, and then employ Floquet theory for the two-site problem. In
this treatment, the ratio between K and Γ interaction is fixed and
cannot be tuned by laser. The effects of time-reversal symmetry
breaking and hence the inverse Faraday effect is absent because
the direct hopping of electrons between two sites does not pro-
duce a net hopping phase associated with the circularly polarized
light. Also, ref. 29 investigated the model with all t2g orbitals and
ligand on a few site cluster using brute force exact diagonalization
and investigated the spin Hamiltonian parameters numerically. In
our work, instead, we use the formalism developed in pioneering
work by Rau et al.26 and solve two-site problem, in which eg
orbitals and Jeff= 3/2-manifold of t2g are integrated out. This
model is usually used as a starting point to understand the Iridate
and Ruthenates. We have added ligands to that formalism, the
details of which are presented in Supplementary Note 4. Inte-
grating out the Jeff= 3/2-manifold degrees of freedom makes our
problem relatively tractable and allows us to provide analytical
forms for the various interactions in the spin Hamiltonian, which
are valuable to see the dependence of magnetic interactions on
drive frequency and amplitude explicitly.

In conclusion, we show that light can tune magnetic interac-
tions in Kitaev quantum magnets by explicitly calculating an
effective spin Hamiltonian from the multi-orbit spin-orbit cou-
pled Hubbard model in the presence of a circularly polarized
light. We employ both the exact diagonalization of the Floquet
Hamiltonian and analytical perturbation theory. We demonstrate
that magnetic interactions favoring the QSL phase can be
achieved by tuning the frequency and amplitude of the light. Our
work points to a promising route to stabilize quantum spin liquid
by coupling quantum magnets to light.

Methods
Floquet theory. We use Bloch wave theory, jψðtÞi ¼ e�iϵα t jψαðtÞi and solve the
Schrodinger equation given by HðtÞjψðtÞi ¼ i ∂∂t jψðtÞi7. Using the Fourier

transform given by Hm ¼ 1
T

R T
0 eimωtHðtÞdt and jψα;mi ¼ 1

T

R T
0 eimωt jψαðtÞi, we can

solve the Schrodinger equation, where the solution is given by,
ϵα þmω
� �jψα;mi ¼ ∑m0Hm�m0 jψα;m0 i. Here, α are the basis states for the singly
occupied, doubly occupied states on the TM and the singly occupied states on
the ligand. The results for the quasi-energies converge quickly for off-resonance
and in our case ∣m∣ < 8, is sufficient to get converged results. We use m= 0-
Floquet sector to estimate the parameters in the spin model.

Formalism for perturbation results. We evaluate the perturbation results for the
system without ligands using the second-order perturbation theory26,33. The
effective Hamiltonian is given by

Hð2Þ
eff ¼ �∑

α;β
∑
n≠0

β
 ��T dd

nj i nh j
En � E0

T dd αj i β
�� �

αh j: ð8Þ

Here, α; β 2 þ 1
2 ;þ 1

2

�� �
; þ 1

2 ;� 1
2

�� �
; � 1

2 ;þ 1
2

�� �
; � 1

2 ;� 1
2

�� �� �
. The t2g-orbitals

have leff= 1. The Jeff= 1/2 states for a site in the orbital basis are given by

þ 1
2

�� � ¼ 1ffiffi
3

p dyyz;# þ idyzx;# þ dyxy;"
� �

0j i, � 1
2

�� � ¼ 1ffiffi
3

p dya;yz;" � idya;zx;" � dya;xy;#
� �

0j i.
nj i are the intermediates states, which consists of double occupancy on a TM site,
are (L, S)= [(0, 0), (1, 1), (2, 0)], here, L and S are the total spin and angular
momentum of the doubly occupied site. Here T dd is the hopping between the
TM sites.

For the system with ligands, the second-order results are the same as Eq. (8).
The third-order corrections are evaluated using

Hð3Þ
eff ¼ ∑

α;β
∑
n≠0

β
 ��T dd

nj i nh j
En � E0

T pd
Lj i Lh j

EL � E0
T pd αj i β

�� �
αjh : ð9Þ

Here, Lj i (EL) are the eigen-states (energies) for the occupancy on the ligand
sites. T pd is the hopping between the TM and the ligand sites. The parameters, J, K,
Γ, and h evaluated using this formalism are given in Eq. (7a–d).
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