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Signatures of discrete time-crystallinity in transport
through an open Fermionic chain
Subhajit Sarkar 1,2✉ & Yonatan Dubi 1,3

Discrete time-crystals are periodically driven quantum many-body systems with broken

discrete time translational symmetry, a non-equilibrium steady state representing self-

organization of motion of quantum particles. Observations of discrete time-crystalline order

are currently limited to magneto-optical experiments and it was never observed in a transport

experiment performed on systems connected to external electrodes. Here we demonstrate

that both discrete time-crystal and quasi-crystal survive a very general class of environments

corresponding to single-particle gain and loss through system-electrode coupling over

experimentally relevant timescales. Using dynamical symmetries, we analytically identify the

conditions for observing time-crystalline behavior in a periodically driven open Fermi-

Hubbard chain attached to electrodes. We show that the spin-polarized transport current

directly manifests the existence of a time-crystalline behavior. Our findings are verifiable in

present-day experiments with quantum-dot arrays and Fermionic ultra-cold atoms in optical

lattices.
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Spontaneous symmetry breaking represents a unifying con-
cept which ubiquitously spans from condensed matter and
atomic physics to high energy particle physics1. Examples

include superconductors, Bose-Einstein condensates, (anti)ferro-
magnets, all the crystals, and even (Higgs) mass generation for
fundamental particles2–6. However, time-translation symmetry
has always been special: Schödinger’s equation, which governs
quantum physics, is indeed time-translation invariant. In spite of
that, time-translation symmetry breaking has been shown to be
possible under special circumstances, leading to the discrete time-
crystal (DTC) behavior. Periodically driven (Floquet) closed
quantum systems that never reach a thermodynamic equilibrium
can indeed exhibit a DTC behavior7–14. The breaking of discrete
time translation symmetry is manifested in the sub-harmonic
oscillations of the order parameter and typically rely on disorder
and localization to avoid reaching a stationary state of infinite
temperature that opposes time crystalline order8,15–17. The sig-
nature of DTC was reported in strongly interacting spin
systems13,14, measured using spin-dependent fluorescence (opti-
cal measurements)13,14,18. Subsequently, DTCs have been realized
in variety of systems19–23. Recent advances in the fabrication and
control of exchange coupled quantum-dot arrays24–28 led to the
theoretical proposal of observing a DTC29 and subsequent
experimental realization of the same leading to stable quantum
information processing30–32.

Observations of DTCs have been limited to closed Floquet
quantum systems (i.e., periodically driven quantum system
without dissipation), as a transient phenomenon restricted to
optical detection from spin-dependent fluorescence or magneti-
zation measurements13,14,18,33. Consequently, in spite of the
recent observation of DTC in various platforms13,14,18,20–22,30,31

the experimental observations of DTCs in dissipative quantum
many body systems rarely has been reported until recent obser-
vation in the atom-cavity system34.

Opening the system to an environment indeed presents a
challenge in defining the notion of DTC. Nevertheless, plausible
criteria, based on the spectrum of the Floquet map (i.e., the one
period time evolution operator), to define and characterize DTC,
has been put forward35,36 in open systems governed by a Mar-
kovian Lindblad master equation37–40. It relies on the existence of
several non-decaying states of the Floquet map with eigen-values
EDTC 2 fEμg such that EDTC ≠ 1 but ðEDTCÞp ¼ 1 for some integer
‘p’35. Coupling to the external environment makes the DTCs
fragile13,14,41, but dissipation engineering has shown promise. In
this regard, the mechanisms that stabilize DTCs in open quantum
systems can be classified into three broad categories. These are,
mean-field based DTCs which are stable only in the thermo-
dynamic limit36,42–44; symmetry-based mechanism45,46; and
meta-stable DTCs that neither requires any symmetry nor
disorder47.

The mean-field-based DTCs require a well-defined semi-clas-
sical limit and are found to be fragile to quantum
fluctuations35,36,44,48. The symmetry-based mechanism can
accommodate quantum fluctuations. However, it requires a very
specific choice of system-environment coupling that satisfies the
existence of dark state space to stabilize DTCs in a dissipative
quantum-many body system45,46,49–52. Indeed, as detailed in
Ref. 45, dissipation (in the form of on-site dephasing) is essential
for stabilizing the DTC behavior, because it allows for coupling
(and hence synchronization) of different sectors in the Floquet
Hamiltonian which would otherwise remain decoupled in
absence of dephasing.

However, most of the realistic environment—specifically, a
transport setup in which the system is open to charge transfer
from electrodes—does not satisfy the dark state criterion. How

DTCs survive or die out due to coupling with this type of
environment is currently unknown. We show that a DTC and
discrete-time quasi-crystal (DTQC)53–55 can indeed survive a
very general class of environment, viz., the single-particle trans-
port through system-electrode coupling, over a sufficiently long
time when the system environment coupling is weak. With
stronger system-lead coupling, the system reaches a set of tran-
sient states distinct from the usual Floquet steady-state (FSS).
Strikingly enough, the spin-polarized transport current through
the paradigmatic Floquet Fermi-Hubbard chain connected to
electrodes can manifest DTC/DTQC order, linking the DTC
physics with electrical transport.

In the following, we first establish, supported by numerical cal-
culations, that even if the system is connected to external electrodes
(leads), there emerges a unique “weak local symmetry," to be
described later, that remains preserved as long as the system-lead
coupling is weak. The DTC (and the DTQC) manifests itself in a
sharp peak of the Fourier transform of the expectation value of the
spin-current that respects the “weak local dynamical symmetry".
The temporal oscillation of the spin-current is locked at a frequency
which provide a direct measure to the DTC (and the DTQC) sub-
harmonic frequency. For strong system-lead coupling both DTC
and DTQC indeed decay, however, for an intermediate strength the
system reaches a (possibly degenerate) transient manifold56 and
show long-lived (and arguably pre-thermal18,33) DTC(DTQC)
behavior before it decays. To this end, we clarify that the notion of
transient manifold we use pertains to the finite lifetime of the DTC,
in contrast to the meta-stable manifold corresponding to the van-
ishing gap of the spectrum of Liouvillian/Floquet map47. We further
show, from the spectrum of the Floquet map, that the decay of DTC
(DTQC) scales linearly with the system-electrode coupling with the
slope being twice the driving period. The phase of DTC eigenvalues
of the Floquet map further shows the frequency locking phenomena
observed in the oscillating spin-current. This frequency locking is a
consequence of the emergence of the weak local dynamical sym-
metry. The scaling behavior and frequency locking phenomena we
obtain is independent of the values of the system parameters, the
magnitude of the external drive, the choice of the initial state, and
system size.

Results and discussions
System. In order to be specific, we consider a quantum-dot array
consisting of N dots (numerical simulations are done with N= 3)
attached to external electrodes, see Fig. 1. Such a quantum-dot
array set-up can realize a one-dimensional Fermi-Hubbard
model57. However, our results are equally valid for Fermi-
Hubbard model routinely realized in optical lattices58. Each site of

V(t) V(t) V(t)

Left-lead

Right-lead

Fig. 1 Schematic arrangement of the quantum-dot array set-up. t,U, and K
are the hopping, onsite and nearest-neighbor interactions, respectively. V(t)
represents the external time-periodic drive. γL and γR are the system left-lead
and system right-lead couplings, respectively (note the direction of the arrow
indicating the one-way electron transfer, i.e., an infinite bias condition) which
is taken to be the same for both spin-up and spin-down electrons. Onsite
dephasing is given by Γ.
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the Fermi-Hubbard chain is irradiated with a laser (electro-
magnetic wave) of frequency ω whose magnetic component of
field strength B affects only the spin-dynamics of the system.
Apart from its connection to the electrodes we also subject the
system to onsite dephasing. As we shall show, the magnitude of
the onsite dephasing has no effect of the DTC(DTQC) sub-
harmonic frequency. The Hamiltonian of the system is described
in the methods section. We start by analyzing the Markovian
dynamics of the open Fermi-Hubbard chain within the Lindblad
master equation37–40, see methods for further details.

Weak local Floquet-dynamical symmetry. In absence of system-
lead coupling (i.e., γL= γR= 0) the appearance of the TC in the
system is stabilized by the presence of a Floquet-dynamical
symmetry (FDS)45,46,49–52,59, defined as follows. Given a Floquet

map ÛF ¼ T exp
R T
0 L̂sds

h i� �
[and Û�1

F ¼ T exp � R T
0 L̂sds

h i� �
where T is time ordering] if there exists an operator A (in this
case it is the total spin raising operator Sþ ¼ ∑jS

þ
j ) which

satisfies ÂðTÞ ¼ ÛFÂÛ
�1
F ¼ eiλTÂ, and all the Lindblad operators

Vμ satisfy ½Vμ;AðtÞ� ¼ ½Vy
μ;AðtÞ� ¼ 0, then the system exhibits

the FDS and A(t) oscillates in the long-time limit. We follow the
notations: Â represents a super-operator which operates on the
vectorized density matrix ρ

�� �i, and A is a normal operator which
acts on the desnity matrix as Aρ in the form of a matrix multi-
plication, where the density matrix ρ satisfies Lindblad Eq., (5).
While the oscillations in A(t) were shown to be protected against
dephasing46, this is not the case for system-lead coupling; this
form of dissipation breaks the FDS. However, even if the FDS is
not fully protected against the system-lead coupling, a DTC
behavior can still emerge as a transient phenomenon. To
demonstrate this, consider the “local" operator Sþloc ¼ Sþ1 þ SþN

� �
,

which satisfies

ðUFÞpðSþlocρÞ ¼ eipλTð1þiγ=λÞSþlocðUFÞpðρÞ; ð1Þ
[see Supplementary Note 1 for a proof] after p driving periods for
density matrix ρ satisfying Lindblad Eq. (5), given ½VLðRÞ; S

þ
loc� / γ

(γL= γR= γ is assumed). In the long time limit (corresponding to
p→∞) (1) represents an approximate FDS as long as γ≪ λ. We
call it a “weak local Floquet dynamical symmetry" (weak local
FDS), an emergent FDS in the long time limit near FSS (see
Supplementary Note 2). The notion of the locality comes from the
fact that Sþloc ¼ Sþ1 þ SþN

� � ¼ ð½Sþ1 � I2 � � � � � IN � þ ½I1 � I2 �
� � � � SþN �Þ is local because this is diagonal in the site-basis.
The notion of weak dynamical symmetry comes from the
fact that ½VLðRÞ; S

þ
loc�ð/ γÞ≠ 0. The local (unitary) operator Sþloc

satisfies UFð½Sþloc�
m
ρ½Sþy

loc �
nÞ ¼ eiðm�nÞλTe�ðmþnÞγT ½Sþloc�

mUFðρÞ½Sþy
loc �

n
,

(see Supplementary Note 1 for a proof) a Floquet analogue of the
weak dynamical condition put forward in Ref. 60, see Supple-
mentary Note 3. For γ ≈ λ the FDS is indeed not preserved during
the time evolution in the sense that any oscillation in the
observable would decay in their respective amplitudes. However,
the frequency of the oscillation remains unchanged even at γ ≈ ω.

In the Floquet basis (i.e., in the rotating frame) the equation of
motion for Sþloc can be shown to be generated by a Floquet
Lindbladian LF whose coherent part is governed by a Floquet
Hamiltonian HF ¼ H0 þ h � S, where h ⋅ S is a Zeeman term
arising from an effective homogeneous and static magnetic field,
h= (B, 0, ω) at each site [see Supplementary Note Eq. S10]. Given
such a Zeeman term we construct, from the local operator
Sþloc;jhj ¼ ðSþ1;jhj þ SþN;jhjÞ in the Floquet basis (rotating the axis of

quantization along h), a set of coherent states ρm;n ¼
ðSþloc;jhjÞ

m
ρFSSðS�loc;jhjÞn (with integer values of m, n) from the

Floquet steady state ρFSS, satisfying,

UFðρm;nÞ ¼ eiðm�nÞλTe�ðmþnÞγTρm;n; ð2Þ
where λ ¼ jhj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ ω2

p
(modulo ω), and ρm,n are the Floquet

coherent states with an oscillatory component (with a character-
istic energy scale λ) and a decaying part (with a characteristic
energy scale γ). Here λ satisfies the usual FDS structure46, viz., if
λ/ω= q/p with co-prime integers p ≥ 2 and q, a DTC emerges
with a period TDTC= pT, otherwise DQTC emerges, and γ/λ
determines the decay of the of the DTC (and DTQC).

For γ ≠ 0, (2) shows that the Floquet steady state (FSS)
corresponds to m= n= 0, i.e., ρ0,0= ρFSS, and the rest of the
states corresponding to m= n are purely decaying states (in the
sense that these do not exhibit any coherent part). However, for
γ= 0 there exists multiple FSS corresponding to m= n46. Clearly
for m ≠ n and γ= 0, (2) indicates ρm,n are degenerate eigenstates
of UF since the same value of (m− n) can be obtained from
different combinations of m, n-pair. Finite value of γ lifts this
degeneracy.

A DTC density matrix (as well as DQTC) can be written as
ρDTC ¼ ρFSS þ∑ m;n

m;n≠0
cm;nρm;n, where cm;n ¼ jTr½ρyinρm;n�j, ρin

being the density matrix of the initial state, are the real
coefficients of the superposition. For γ≪ λ, only a few coherent
states ρm,n decay sufficiently slowly and most of the other
coherent states (corresponding to larger integer values of n)
decay in the long time limit. The time evolution of ρDTC is
obtained by UðtÞρDTC½UðtÞ��1. In the long time limit, the time
dependent dissipative DTC density matrix is given by,

ρDTCðtÞ ¼ ρFSS þ∑ m;n
m;n≠0

cm;ne
iðm�nÞλtρm;n þ h:c

� �
e�ðmþnÞγt . Then,

observable value of any operator Sα ¼ Q
jS
α
j , corresponding to

local operator Sαj acting on j0th site, follows from ρDTC(t) as

hSαðtÞi ¼ Tr½SαρFSS� þ Tr½SαρDTCðtÞ�¼ ∑ m;n
m;n≠0

2Tr½Sαρm;n�e�ðmþnÞγt

cosð½m� n�λtÞ þ const.. For γ= 0 [no system-lead cou-
pling],〈Sα(t)〉 exhibits persistent oscillation, and for non
zero γ it develops a decaying envelop with decay time ~ γ−1

leading to meta-stable DTC, see Supplementary Note 1.

Numerical analysis. Following the standard prescription35, we
numerically evaluate the eigen-spectrum of the Floquet map
(taking 3 QDs), viz., UFðρÞ ¼ Eαρ, (α indexing the spectrum)
and plot Eα on the complex plane in Fig. 2a. This eigen-value
equation defines the DTC (DQTC) eigen-values as
ðEDTCðDTQCÞÞp ¼ eipλT ¼ 1, DTC for integer p > 2 and DQTC for
fractional p(>2), leading the the periodicity of the TC to be
TDTC(DQTC)= pT, and the FSS eigen-value as EFSS ¼ 1. Figure 2a
further reveals that the meta-stable Floquet coherent states (red
dots near the unit circle) are distinct from the FSS (red square on
the unit circle) because they never coalesce to the FSS as the
system-lead coupling strength increases, indicating the formation
of a distinct transient manifold56 within the full spectrum of UF .

The system parameters chosen for the above numerical
calculations are well within the reach of present day
experiments26,57,61–63. We choose thop=U= K= 20πMHz=
0.26 μeV, all being tunable electostatically, and Γ= 0.1thop. The
frequency of the external drive is ω= 20π MHz (therefore, a
period of 0.1 μs) assuming the typical resolution of nano-seconds
in the time-dependent measurements in experiments with
quantum-dot array, and magnitude of the external magnetic
field B is of the order of millitesla.

Corresponding to the specific case of DTC, Fig. 2b shows the
absolute value (Abs ½EDTC�) and the imaginary part (Im ½EDTC�) of
the DTC eigenvalue UF as a function of γ. For sufficiently small
values of γ, Abs ½EDTC� ¼ 1 showing the DTC eigen-value lies on
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the unit-circle of the spectrum, and Im ½EDTC� ¼ sin 2πl
3

� �
shows

that the DTC state has a period TDTC= 3T. Stronger system-lead
coupling leads DTC eigen-value to move away from the periphery
and also introduces a detuning in the DTC time-period as shown
in Fig. 2b. Therefore, irrespective of the choice of the initial state
the spectrum supports the DTC with a period 3T as long as γ
remain small enough, and Fig. 2b corroborates (1).

Figure 2c shows the deviation from the periphery, ΔEDTC ¼
jEFSSj � Abs ½EDTC�
� �

as function of γ, showing how the DTC
moves away from the peripheral spectrum. Since the least
decaying coherent states contribute the most to the DTC, we
can therefore identify the DTC density matrix to be
ρDTC ¼ ρFSS þ 1

2 ðρ1;0 þ ρ2;1 þ ρ0;1 þ ρ1;2Þ, which is further sup-
ported by the numerical calculations shown in Fig. 2c [see
supplementary Eqs. S(18)–S(22) for details]. Similarly, ρDTC ¼
ρFSS þ 1ffiffi

2
p ðρ2;0 þ ρ0;2Þ is also another slowly decaying DTC

density matrix that matches the scaling obtained in Fig. 2c, [see
discussion after supplementary Eq. S(22)]. However, to which
ρDTC the system will reach depends on the choice of the initial
density matrix35,36,52.

An important consequence of the weak-local FDS is the fact
that the DTC oscillation frequency is locked during the time

evolution even in presence of system-lead coupling. To highlight
this, in Fig. 3 we plot the phase of the DTC (complex)

eigenvalues, θEα ðγÞ ¼ arctan Im ½Eα�
Re ½Eα�

� �
as a function of γ. In

absence of system-lead coupling θEα
ðγ ¼ 0Þ ¼ 2π

3 for the specific
case of DTC. Figure 3 shows that θEα

ðγÞ remains locked at 2π
3 , and

deviates only about 0.5% even at the largest value of γ= ω we
have considered. We have checked that, the deviation is further
related to the numerical accuracy corresponding to time of dt of
the evolution. In an otherwise perfect numerical calculation
(dt→ 0) it would be negligibly small. This frequency locking will
further be seen in the oscillation of the spin-current.

Synchronized long-lived DTC and DTQC. With the notion of
the density matrix corresponding to the DTC (and DTQC) in
terms of the decaying coherent states, we numerically demon-
strate the role of system-lead coupling in bringing a synchronized
stable and meta-stable DTC and DTQC fingerprinted in the
oscillation of hSyj ðtÞi (j= 1, 2, 3 is the site index) and the spin
current. Following the standard notions52,64, by synchronization
we mean that the oscillation of hSyj ðtÞi corresponding to each site
is locked to the same frequency and phase, and exhibit the same
magnitude independent of the specific value of any microscopic
parameters.

We start from an initial density matrix corresponding to a half-
filled thermal state at 77 K, where the system is placed under a
(suitably strong) constant static magnetic field Bz in z-direction.
Such a configuration is purely chosen as a convenience because it
is easy to create in a quantum-dot array. Subsequently, the system
is quenched to a state of Bz= 0, and at the same time applied with
a circularly polarized magnetic field V(t). However, a random
initial density matrix also shows the same results provided it has
substantial overlap with the decaying coherent states ρmn.

Figure 4a–c shows the time evolutions of hSyj i in the DTC
behavior for B ¼ 4

3ω such that jhj ¼ 2
3ω (note the modulo

operation). Three representative values of γ are considered here,
corresponding to γ= 10−5ω (very weak system-lead coupling) in
Fig. 4a, γ= 10−3ω (moderate system-lead coupling) in Fig. 4b,
and γ= ω/50 (strong system-lead coupling) in Fig. 4c, respec-
tively. A system-lead coupling, 10−5ω ≤ γ ≤ 10−3ω correspond to
values in the range of 62 KHz ≤ γ ≤ 6.2 KHz, which are a standard
in transport experiments with quantum-dot-array set-up65.

After an initial relaxation dynamics characterized by the value
of the dephasing strength Γ (0.1thop in our case), hSyj i exhibits a
stable oscillation with a period 3T for weak system-lead coupling,
see Fig. 4a. Moreover, the dynamics of hSyj i corresponding to all
the three sites are synchronized due to the spatial translational

Fig. 2 Spectrum of the Floquet map. a All the eigenvalues of the Floquet
map UF , the red dots near the unit-circle in the complex plane (not on the
real axis) are the discrete time crystal (DTC) eigenvalues. b Absolute (Abs)
values Abs ½EDTC� and the imaginary (IM) part Im EDTC

	 

of the DTC

eigenvalues as a function of dimensionless system-lead coupling γ/ω. Blue
horizontal line represents the peripheral spectrum for which jEαj ¼ 1, the
orange horizontal line represents Im EDTC

	 

for γ= 0. c Deviation ΔEDTC of

the DTC eigen-value EDTC from the eigenvalue of the Floquet steady state,
EFSS as a function of γ/ω on a log-log scale. Slope of the straight-line is 0.15.
The straight-line corresponds to the function ΔEDTC ¼ 1� e�2γT

� � � 2γT,
where T= 0.1μs [see Eqs. S(18)–S(22)].

Fig. 3 Phase of the discrete time crystal (DTC) eigenvalues relative to 2π
3 .

Abs ½θEα ðγÞ � 2π
3 �, the absolute (Abs) value of the deviation of the phase

θEα ðγÞ ¼ arctan Im ½Eα �
Re ½Eα �

� �
of DTC eigenvalues Eα from its value θEα ðγ ¼ 0Þ ¼

2π
3 at γ= 0 as a function of γ/ω on a log� log scale.
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symmetry in the density matrix corresponding to the FSS and the
other coherent states45,46,52. Figure 4d shows the corresponding
normalized discrete Fourier transform (DFT) exhibiting a peak at
2
3ω commensurately with the driving frequency ω. The secondary
peak at 8

3ω is an integer multiple of the DTC peak.
In Fig. 4b, we find that after the initial relaxation hSyj i oscillates

with decaying magnitude leading to a meta-stable oscillation over
a considerable time duration (at-least a few tens of driving
periods) before eventually decay to a stationary state with no
oscillation. The corresponding DFT is shown in Fig. 4e. This
decay occurs in a time scale of γ−1. This is a manifestation of the
fact that for γ= 10−3ω= 0.063MHz the DTC eigenvalue of UF
starts to deviate from the peripheral spectrum, see Fig. 2c.

Figure 4c further indicates that a stronger damping due to
larger values of γ leads to a broadened peak in DFT as seen in
Fig. 4f. This indicates a superposition of many frequencies around
2
3ω and ω, thereby signaling a noisy oscillation. This is a
manifestation of the fact that γ acts as a detuning parameter that
force Im ½EDTC� to deviate from its γ= 0 value, see Fig. 2c.

A larger system corresponding to N= 5 also exhibits the exact
same oscillation in hSyj ðtÞi with 3T time-period of the DTC, see
Supplementary Note 4.

Although dephasing has no effect on the DTC time period, it
determines the time scale over which spin-oscillations corre-
sponding to each site get completely synchronized with the other
sites. For a given system-lead coupling the first and the last sites
are always synchronized irrespective of the value of the dephasing
rate. However, all the sites that are not connected to the external
leads synchronize on a time scale ~ Γ−1 with the ones connected
to the leads (see Supplementary Note 5). This is true irrespective
of the system size, as shown in Supplementary Fig. 2 for both four
and five sites systems.

The above conclusions hold true also for the DTQC shown for
γ= 10−5ω in Fig. 4g, γ= 10−3ω in Fig. 4h, and γ= ω/50 in

Fig. 4i, respectively. Figure 4j–l shows the corresponding
normalized DFTs exhibiting peaks at f ¼ ð ffiffiffi

2
p � 1Þω incommen-

surate with the driving frequency ω. It is worthwhile to point out
that if B and ω are of the same orders of magnitude or at-least
B >> ω, then the DTC/DQTC can be observed. In the case of
B << ω, the coherence frequency scale λ ≈ ω and the system
follows the conventional Floquet response oscillating with the
period of the drive, and no time crystallinity can be observed.

Limit-cycles. Although the previous section showed a DTC beha-
vior in〈Sy(t)〉, we point out that〈Sy(t)〉 is not easily observed.
A connection of the DTC behavior in〈Sy(t)〉 to a more accessible
quantity such as 〈Sz(t)〉, is provided through the limit cycle
analysis. A limit cycle is a closed trajectory in the phase-space66, in
our case the phase-space of the dynamical variables, viz., hSxj i, hSyj i
and hSzj i. Figure 5 shows the limit cycle oscillations for both stable
and meta-stable DTC and DTQC, respectively. To obtain the time
evolution we solve (6) [see Methods section] and calculate hSαj ðtÞi ¼
Tr½Sαj ρðtÞ� for j= x, y, z. The limit cycles are plotted for a time
duration of fifty driving periods, for γ= (10−5ω, 10−3ω) (Fig. 5a, c)
and B ¼ ð43ω;ωÞ (Fig. 5b, d). While Fig. 5a, b shows a stable limit
cycle characterized by a well-defined closed path, 5c, d show that
the limit cycle shrinks (but very slowly) over fifty driving periods.
The limit cycle oscillations indicate that although Sx;ðyÞj respect weak
local FDS, Szj also oscillates, providing the means of experimentally
extracting a measurable transport signature.

Transport signature–oscillating spin-current. Spin current
(operator) is defined as,

Ĵ s ¼ eγðnN;" � nN;#Þ ¼ 2eγSzN ; ð3Þ
where e is electronic charge, nN,σ is the density operator corre-
sponding to the spin σ at the extraction site connected to the right

Fig. 4 discrete time crystal (DTC) and discrete time quasi-crystal (DTQC) oscillations. Time evolution of hSyj ðtÞi [j= 1 (blue solid lines), j= 2 (orange
dot-dashed lines), j= 3 (green dashed lines)] as a function of the dimensionless time t/T showing the appearance of DTC in the long-time limit for three
values of system-lead couplings, (a) γ= 10−5ω, (b) γ= 10−3ω, and (c) γ=ω/50. Black dotted line represents cosð2πtT Þ, the driving period. d–f Discrete
Fourier transform (DTF) F ðhSy3iÞ of hSy3ðtÞi as a function of the frequency domain variable f/ω corresponding to (a–c), respectively, showing the λ= 2ω/3.
Time evolution of hSyj ðtÞi (j= 1, 2, 3) as a function of the dimensionless time t/T showing the appearance of DTQC in the long-time limit for three values of
system-lead couplings, g γ= 10−5ω, (h) γ= 10−3ω, and i γ=ω/50. j–l DFT of hSy3ðtÞi as a function of the frequency domain variable f/ω corresponding to
(g–i), respectively, showing the λ ¼ ð

ffiffiffi
2

p
� 1Þω. There exists another frequency at an integer multiple of the DTC (and DTQC) frequency in the form of a

tiny peak in DTF above ω.
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lead, see Supplementary Note 6. Figure 6 plots the time evolution
of the expectation value of the spin-current, defined above, viz.,
JsðtÞ ¼ Tr½̂JsρðtÞ� and its DFT. In the case of DTC corresponding
to Fig. 6a, b, a stable and a meta-stable DTC are seen for weak
and moderate system-lead couplings, respectively. Importantly
enough, the DFT of the corresponding oscillations show only one
sharp peak at f= ∣h∣ for both stable and meta-stable DTC, see
Fig. 6d, e, respectively. This is a direct measurable signature of the
DTC in the sense that if the DFT from the spin-current shows a

peak at a rational fraction of the driving frequency, i.e., f/ω= q/p
one concludes there exists a DTC with a period pT. As usual, a
strong system-lead coupling destroys the DTC as seen in Fig. 6c
and indicated by the broadened peak in the DFT of the spin
current in Fig. 6f. Figure 6g–i shows the oscillation of the spin
current corresponding to DTQC for weak, moderate, and strong
system-lead couplings, respectively. Likewise, the sharp peak in
DFT of the spin current in Fig. 6j–l directly provides the exact
value of the time period of the DTQC at f ¼ ffiffiffi

2
p

ω. The oscillation

Fig. 5 Limit cycles. Blue lines are trajectories of the time evolution in hSx3i � hSy3i � hSz3i space, (a, b) for stable discrete time crystal (DTC) and discrete
time quasi-crystal (DTQC), (c, d) meta-stable DTC and DTQC, respectively. Orange, green, and red lines are projections on hSx3i � hSy3i, hSx3i � hSz3i and
hSy3i � hSz3i planes, respectively.

Fig. 6 Spin-currents from discrete time crystal (DTC) and time quasi-crystal (DTQC). Time evolution of the spin currents Js(t), in pico-ampere (pA), as a
function of the dimensionless time t/T showing the signature of DTC in the long-time limit for three values of system-lead couplings (a) γ= 10−5ω (very
weak system-lead coupling), (b) γ= 10−3ω (moderate system-lead coupling), and (c) γ=ω/50 (strong system-lead coupling). d–f correspond to discrete
Fourier transform (DFT) F ½JsðtÞ� of the spin current Js(t) as a function of the frequency domain variable f/ω corresponding to (a–c) respectively, showing
the DTC peak at f ¼ 5ω

3 . Time evolution of the spin currents Js(t), in pA, as a function of the dimensionless time t/T showing the signature of DTQC in the
long-time limit for three values of system-lead couplings (g) γ= 10−5ω (very weak system-lead coupling), h γ= 10−3ω (moderate system-lead coupling),
and (i) γ=ω/50 (strong system-lead coupling). j–l correspond to DFT F ½JsðtÞ� of the spin current as a function of the frequency domain variable f/ω
corresponding to (g–i), respectively, showing the DTQC peak at f ¼

ffiffiffi
2

p
ω.
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of spin-current remains exactly the same for the 5-site system,
which is apparent from the fact that oscillations in x− and y−
components of the spins are exactly the same as that of the 3-site
system.

Conclusions
We show, in an experimentally relevant paradigmatic model, viz.,
Floquet Fermi-Hubbard chain connected to electrodes, DTC and
DTQC are manifested through the oscillations of the spin-current.
A unique form of “weak local Floquet dynamical" symmetry
emerges in the long time limit which preserves the DTC and the
DTQC. The amplitude of the DTC oscillation remain appreciable
if the time scale corresponding to the system-lead coupling is
much larger than the time period of the drive, viz., γ−1≫ T. Both
DTC and DTQC survive in the long time limit (over 100 periods
of external drive) in line with recent experiments performing
optical detection of DTCs in closed systems18,33. Due to the weak
local Floquet dynamical symmetry, a transient/meta-stable
manifold emerges which is distinct from the FSS because, with
increasing system-electrode coupling, it never coalesces to FSS.
DTC and DTQC decay linearly with system-lead coupling
strength with slope of the decay being twice the driving period.
Our findings thus highlight that by fine-tuning the system-
electrode coupling (a form of dissipation engineering) one can
obtain a sustained DTC behavior and also allow charge flow
through the system allowing measurement of DTC behavior
through electrical transport. Put simply, the dynamical symmetry
provides the mechanism of DTC/DTQC and meta-stability due to
charge transport provides the needed decay channel that aid in
measurement67.

Our results show that although the system-lead coupling induces
a decay in the oscillation amplitude of DTC, the corresponding sub-
harmonic frequency remains locked during the decay, which means
that the signature of time-crystallinity can be measured even as it
decays. This unfolds an underlying mathematical structure of weak-
local Floquet dynamical symmetry. In the long time limit, the
system relaxes to a sub-space of the full super-Hilbert space. Indeed,
there can be systems where various effects of environments, such as
system-lead coupling, may also lead to the destruction of time-
crystal in terms of its oscillation frequency, in which case no sig-
nature of the time-crystal can be observed.

Given the pure time-dependent spin current is detectable in the
inverse spin-Hall effect68, our predictions are experimentally tes-
table in the presently available quantum-dot array set-up where a
Fermi-Hubbard chain has recently been realized26,57,61–63,69. Ultra-
cold quantum gases also provide another promising route for
experimental study the transport properties of one dimensional
many-body systems58,70,71. In optical lattices, the periodically dri-
ven Fermi-Hubbard model is rather routinely analyzed72, and with
the existence of a cold-atom analogue of mesoscopic conductor70,71

our findings can be verified in optical lattices too.

Methods
Hamiltonian. The Hamiltonian corresponding to periodically driven Fermi-
Hubbard chain, see Fig. 1, comprising of N sites is given by HðtÞ ¼ H0 þHext ðtÞ
where46,57

H0 ¼ � thop ∑
N�1

j¼1;
σ¼";#

cyj;σ cjþ1;σ þ cyjþ1;σcj;σ
� �

þ ∑
N

j¼1

U
2
njnj

þ ∑
N�1

j¼1

K
2
njnjþ1; with nj ¼ ∑

σ¼";#
nj;σ ;

HextðtÞ ¼ B ∑
N

j¼1
ðSxj cosωt þ Syj sinωtÞ:

ð4Þ

In Eq. (4), thop,U, andK are the nearest-neighbor hopping, onsite electron–electron,
and the nearest-neighbor electron–electron interaction strengths, respectively; B is

the magnitude of the external magnetic field induced by a circularly polarized laser
of frequency ω ¼ 2π

T leading to HðtÞ ¼ Hðt þ TÞ.

Lindblad equation. The system is then subjected to onsite dephasing, represented
by the Lindblad operators, VD;j ¼ ∑σ

ffiffiffi
Γ

p
nj;σ and connected to leads, VL ¼ffiffiffiffiffi

γL
p ∑σ¼";#c

y
1;σ and VR ¼ ffiffiffiffiffi

γR
p ∑σ¼";#cN;σ , where γL(R) is the system- left(right)

lead coupling which we take to be equal. The choice of the lead operators mimics
the infinite bias condition. The non-unitary dynamics of the system (and the
corresponding density matrix ρ) is governed by the Floquet-Lindblad equation
(within Born–Markov approximation)37–40,

dρ
dt

¼ Lt ½ρ� ¼ �i½HðtÞ; ρ�

þ ∑
μ¼D;
L;R

VμρV
y
μ �

1
2
fVy

μVμ; ρg
� �

;
ð5Þ

(we set ℏ= 1). The periodicity of the Hamiltonian guarantees the periodicity of the
Liouvillian Lt ¼ LtþT .

The density matrix, obeying the Lindblad equation therefore, is an 22N × 22N

positive definite matrix with trace one. The standard practice of solving the (5) is to
vectorize the ρ into a 24N dimensional vector ρ

�� �i. This results in a reformulation of
the Lindblad equation into a 24N dimensional Linear ODE with time-dependent
coefficients,

ρðtÞ
�� �i
dt

¼ Lt ρðtÞ
�� �i; ð6Þ

Lt being the Lindblad super-operator of dimension 24N × 24N. The infinitesimal
time evolution is governed by ρðt þ ΔtÞ

�� �i ¼ eLtΔt ρðtÞ
�� �i.

Alternatively, the Floquet-Lindblad form for any operator A(t) is given by,

dAðtÞ
dt

¼ i½HðtÞ;A� þ 1
2
∑
μ

Vy
μ A;Vμ

h i
þ Vy

μ;A
h i

Vμ

� �
; ð7Þ

(notice ℏ= 1) where the periodic Hamiltonian HðtÞ is given by (4).

Observables. The oscillations of the spin-components and the spin-current are
obtained from the formula, hAðtÞi ¼ Tr½AρðtÞ�, where A represents the operators
whose expectation values are plotted in Figs. 4 and 6. The 22N × 22N time-
dependent density matrix ρ(t) is obtained by reshaping 24N dimensional vector
ρðtÞ
�� �i. Alternatively, we also use the Runge-Kutta method for larger system sizes,
N= 4 and 5. This way of solving the Lindblad equation can be performed in
22N × 22N dimensional space.

Data availability
All relevant data are available from the corresponding author upon reasonable request.
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