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1D Majorana Goldstinos and partial supersymmetry
breaking in quantum wires
Pasquale Marra 1,2✉, Daisuke Inotani 2 & Muneto Nitta 2

Realizing Majorana modes in topological superconductors, i.e., the condensed-matter

counterpart of Majorana fermions in particle physics, may lead to a major advance in the

field of topologically-protected quantum computation. Here, we introduce one-dimensional,

counterpropagating, and dispersive Majorana modes as bulk excitations of a periodic chain of

partially-overlapping, zero-dimensional Majorana modes in proximitized nanowires via

periodically-modulated fields. This system realizes centrally-extended quantum-mechanical

supersymmetry with spontaneous partial supersymmetry breaking. The massless Majorana

modes are the Nambu-Goldstone fermions (Goldstinos) associated with the spontaneously

broken supersymmetry. Their experimental fingerprint is a dip-to-peak transition in the zero-

bias conductance, which is generally not expected for Majorana modes overlapping at a finite

distance. Moreover, the Majorana modes can slide along the wire by applying a rotating

magnetic field, realizing a “Majorana pump”. This may suggest new braiding protocols and

implementations of topological qubits.

https://doi.org/10.1038/s42005-022-00920-4 OPEN

1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan. 2 Department of Physics, and Research
and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8521, Japan. ✉email: pmarra@ms.u-tokyo.ac.jp

COMMUNICATIONS PHYSICS |           (2022) 5:149 | https://doi.org/10.1038/s42005-022-00920-4 |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00920-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00920-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00920-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00920-4&domain=pdf
http://orcid.org/0000-0002-9545-3314
http://orcid.org/0000-0002-9545-3314
http://orcid.org/0000-0002-9545-3314
http://orcid.org/0000-0002-9545-3314
http://orcid.org/0000-0002-9545-3314
http://orcid.org/0000-0002-7300-1587
http://orcid.org/0000-0002-7300-1587
http://orcid.org/0000-0002-7300-1587
http://orcid.org/0000-0002-7300-1587
http://orcid.org/0000-0002-7300-1587
http://orcid.org/0000-0002-3851-9305
http://orcid.org/0000-0002-3851-9305
http://orcid.org/0000-0002-3851-9305
http://orcid.org/0000-0002-3851-9305
http://orcid.org/0000-0002-3851-9305
mailto:pmarra@ms.u-tokyo.ac.jp
www.nature.com/commsphys
www.nature.com/commsphys


Majorana fermions in high-energy physics are spin-1/2
particles that are symmetric with respect to charge
conjugation symmetry, i.e., neutral fermions that

coincide with their own anti-particles1–3. In condensed matter,
they appear as quasiparticle excitations in superconductors,
where particle-hole symmetry plays the role of charge
conjugation3–10. Generally, Majorana quasiparticles are topolo-
gically protected (d− 1)-dimensional boundary excitations of a
topologically nontrivial d-dimensional bulk. Specifically,
0-dimensional (0D) Majorana modes11–13 correspond to the end
states of 1D quantum systems with proximitized super-
conductivity, whereas chiral and helical 1D Majorana modes
correspond to the edge states of 2D unconventional super-
conductors or planar superconducting heterostructures14–24,
respectively with broken or unbroken time-reversal symmetry.

Majorana quasiparticles exhibit remarkable properties such as
non-abelian statistics25,26, conformal invariance7, and emergent
supersymmetry (SUSY)27–36. Besides their purely theoretical
appeal, Majorana quasiparticles attracted enormous interest due
to their potential technological applications in quantum
computing25,26,37–43. Quite a few experiments observed sig-
natures compatible with the presence of spatially-separated 0D
Majorana modes in nanowires44–56 and quantum chains of
adatoms57–63, and chiral 1D Majorana modes in planar
heterostructures24,64–67. Similar experimental signatures can be
reproduced, however, by trivial Andreev bound states or by
Majorana modes localized at a finite distance and with a finite
overlap, known as quasi-Majorana modes68, in the presence of
inhomogeneous potentials69–74.

In this work, we propose the realization of centrally extended
quantum-mechanical SUSY, i.e., extended SUSY with central
charges, in an experimentally-accessible condensed matter sys-
tem, by employing a periodic array of partially-overlapping 0D
quasi-Majorana modes to realize a Majorana chain with dis-
persive 1D Majorana fermions, and show how this can be
achieved in proximitized semiconducting nanowires75–79 via
periodically-modulated magnetic fields80–85 with large variations
of the field intensity. We find that, for strong variations of the
magnetic field amplitude, the topological mass gap M can
assume alternatively positive and negative values along the wire,
corresponding to topologically trivial and nontrivial segments,
with partially-overlapping 0D quasi-Majorana modes localized at
their boundaries and forming a 1D periodic lattice. This is the
first realistic proposal to realize the Majorana chain model32–35,86

in proximitized nanowires with strong spin-orbit coupling. The
system exhibits a pair of dispersive and counterpropagating 1D
Majorana modes delocalized along the whole wire and separated
from the higher-energy bulk states, with a mass gap that can be
tuned by externally applied fields. To characterize these emergent
1D Majorana modes, we introduce the concept of pseudohelicity
and unveil the existence of an extended SUSY algebra with central
charges. In the massless case, we found indeed that the 1D
Majorana modes are pseudohelical, i.e., have opposite Majorana
pseudospin, and exhibit centrally extended SUSY, with a finite
zero-energy density of states and zero-bias peak delocalized along
the whole wire. We find that the signature of the emergent SUSY
can be revealed by the transition from a dip G= 0 to a quantized
peak G= 2e2/h in the zero-bias conductance, or by inducing an
adiabatic Majorana pumping in a sliding lattice of 0D quasi-
Majorana modes, with quantized transport of one quasi-
Majorana mode per a half cycle. Note that zero-bias peaks are
generally not expected in the presence of several 0D quasi-
Majorana modes localized at a finite distance. Moreover, we
identify the massless Majorana fermion with a Goldstino, i.e., the
Nambu-Goldstone fermion87 associated with spontaneously
broken SUSY from N ¼ 4 to N ¼ 2. Such a partial SUSY

breaking of the extended SUSY is known to be possible only in
the presence of central charges. This is perfectly compatible with
our setup, in which we explicitly identify the central charges of
the extended superalgebra. While the extended SUSY was pro-
posed in several condensed matter systems88–90, to our knowl-
edge, this is the first real-world realization of centrally-extended
quantum-mechanical SUSY, which plays essential roles in non-
perturbative aspects of quantum field theory in high energy
physics91–93, and partial breaking of the extended SUSY algebras.

Results
Effective model: 1D lattice of 0D Majorana modes. We consider
a bipartite 1D lattice of 2N 0D Majorana modes

Heff ¼ i ∑
N

j¼1
wγAjγBj þ vγBjγAjþ1

� �
; ð1Þ

where γAj, γBj are the Majorana operators corresponding to a
single Dirac operator cj= (γBj+ iγAj)/2 per unit cell, and with
w; v 2 R. This model is a special case of the Kitaev chain model11

if μ= 2w and t= Δ=−v. In momentum space we get

Heff ¼ ∑
k
½cyk; c�k� �Heff ðkÞ � τ �

ck
cy�k

" #
; ð2Þ

up to a constant term, with Heff ðkÞ ¼ 0; v sin k; v cos k� wð Þ, and
τ the vector of Pauli matrices. The energy dispersion is

Ek ¼ jHeff ðkÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2 � 2wv cos k

p
; ð3Þ

with a topological mass gap Meff ¼ jwj � jvj. In the continuum
limit (and assuming vw > 0), the Hamiltonian coincides with a 1D
Dirac equation H ¼ vk τy þ mv2 � v

2 k
2� �
τz with mass gap

mv2= v−w and a quadratic correction in the momentum. The
covariant form is obtained by multiplying the Hamiltonian by τz.
The Dirac equation is topologically trivial or nontrivial, respec-
tively, for mv < 0 and mv > 0, i.e., for Meff > 0 and Meff < 094.

In the massless case ∣v∣= ∣w∣ the zero-energy eigenstates are
doubly degenerate at gapless points and described by the
fermionic operator dM ¼ ðeγA þ ieγBÞ=2 and its hermitian con-
jugate dyM, where the nonlocal Majorana operators are
eγA ¼ ð1= ffiffiffiffi

N
p Þ∑jγAj, and eγB ¼ ð1= ffiffiffiffi

N
p Þ∑jγBj. The gapless state

v= ±w separates two topologically inequivalent phases described
by the topological invariant sgn Meff ¼ ±1 where
Meff ¼ jwj � jvj. The Hamiltonian also exhibits 0D Majorana
end modes in the nontrivial phase ∣v∣ > ∣w∣ in the case of open
boundary conditions. The two end states are eγL / ∑jðw=vÞjγAj
and eγR / ∑jðw=vÞNþ1�jγBj localized at the opposite ends of the
chain with localization length ξeff ¼ 1=j log jw=vjj.

The massless Majorana fields (∣v∣= ∣w∣) describe a 1D free
Majorana fermion in a 1+1D conformal field theory7, which
coincides with a pair of counterpropagating 1D Majorana modes.
The solutions of the Dirac equation for a relativistic massless particle
m= 0 form a helical pair of counterpropagating modes with opposite
spin. However, our effective model is spinless: The role played by the
spin degree of freedom is now played by the particle-hole degree of
freedom. Hence, to characterize the properties of the 1D Majorana
modes in our model, we introduce the Majorana pseudospin
operator as τ/2 in analogy to the spin operator σ/2 (we use natural
units). We obtain that the expectation values of the Majorana
pseudospin

hτ=2i ¼ Heff ðkÞ
2Ek

; ð4Þ

have opposite directions for the two modes near the gapless point,
being hτi ¼ sgnðv sin kÞŷ at k→ 0, π for v= ±w, respectively.
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Analogously to the notion of helical modes14, i.e., a pair of
counterpropagating modes having opposite spin, we introduce the
notion of pseudohelical modes, as a pair of counterpropagating
modes having opposite Majorana pseudospin. Hence, the two modes
form a pseudohelical pair near the gapless point. In this case, elastic
backscattering is suppressed since the two modes crossing at zero
energy are orthogonal, analogously to the case of helical modes14.
The Majorana pseudospin introduced here generalizes the Majorana
polarization74,95: The expectation values of the two components
〈τx,y/2〉 coincide with the Majorana polarization (up to
prefactors).

Centrally extended superalgebra and partial supersymmetry
breaking. In the massless case, we find that Eq. (1) exhibits
extended N ¼ 4 quantum mechanical SUSY given by the com-
bined algebra defined by the supercharges

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HSUSY

2

r
dMð1þ PÞ; ð5aÞ

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HSUSY

2

r
Tð1þ PÞ; ð5bÞ

which satisfy the superalgebra fQi;Qy
j g ¼ 2δijHSUSY þ Zij,

fQi;Qjg ¼ fQy
i ;Qy

j g ¼ 0, fP;Qig ¼ 0, with central charges

Z11 ¼ �HSUSYð1þ Pð�1ÞdyMdM Þ; ð6aÞ

Z22 ¼ 0; ð6bÞ

Z12 ¼ Zy
21 ¼ HSUSYfdMð1þ PÞ;Tyg: ð6cÞ

Here, HSUSY ¼ Heff þ 2hjvj (with h > 1) is the many-body
Hamiltonian having nonnegative energy levels, P ¼ QN

j¼1 iγAjγBj
the fermion parity, and T the translation defined by TγAjT†= γBj,
TγBjT

y ¼ γAjþ1ðmodNÞ, which satisfies {T, P}= 0 and ½T;HSUSY� ¼
0 for ∣v∣= ∣w∣. (The supercharges Q2 and Q1 were introduced
separately in previous works32,33, but the existence of the com-
bined N ¼ 4 superalgebra has not been previously demonstrated
in Majorana chain models, up to our knowledge.) All many-body
eigenstates, including the groundstate, have superpartners with
opposite parity. Thus, the Witten index is zero, and SUSY is
spontaneously broken27. The two degenerate groundstates are the
vacuum 0j i and the state 1j i ¼ dyM 0j i, respectively with even and
odd fermion parity. The supercharge Q1 0j i annihilates both

groundstates Q1 0j i ¼ Q1 1j i ¼ Qy
1 0j i ¼ Qy

1 1j i ¼ 0. However,
the two groundstates are superpartners with respect to Q2: Since
½T;HSUSY� ¼ 0 and {T, P}= 0, the eigenstates 0j i and T 0j i have
same energy but opposite parities, which mandates T 0j i ¼ 1j i
and T 1j i ¼ 0j i (up to a complex phase). This yields

Q2 0j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HSUSY

p
1j i; Qy

2 1j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HSUSY

p
0j i; Qy

2 0j i ¼ Q2 1j i ¼ 0:

ð7Þ
Hence, the supersymmetry Q1 is unbroken whereas Q2 is spon-
taneously broken: The N ¼ 4 superalgebra ðQ1;Q2Þ is sponta-
neously broken down into the N ¼ 2 superalgebra Q1. This
mandates the presence of a Goldstino87, which we identify with
the massless Majorana fermion. The zero mass gap is protected by
SUSY, i.e., the gap closes if and only if the Hamiltonian exhibits
SUSY. We note that the supercharge Q1 can be defined even in
the presence of disorder and broken translational symmetry33,96:
In this case, the corresponding Goldstino has a mass gap which
closes if and only if the Hamiltonian exhibits SUSY. We note that
the no-go theorem by Witten27,97 forbids partial supersymmetry
breaking in extended superalgebras with zero central charges:
Either all supersymmetries Qi are broken, or they are all
unbroken. However, the no-go theorem can be evaded in the
presence of nonzero central charges98, which allow the partial
breaking of the extended SUSY.

Proximitized semiconducting nanowire with spin-orbit cou-
pling and periodic magnetic field. The Hamiltonian in Eq. (1)
may describe the low-energy effective theory of a 1D topological
superconductor with spatially-modulated fields. Specifically, we
consider a semiconducting nanowire with Rashba spin-orbit
coupling and coated with a conventional superconductor99, as in
Fig. 1. A periodically-modulated magnetic field in the zx plane
Bnm(x) is induced by an array of nanomagnets80–83,100 with
magnetic moments parallel to the z-axis. In addition, we consider
a uniform applied field Ba in the z-direction, which can be used to
control the lengths of the nontrivial and trivial segments. The
wire is described by the Hamiltonian density

H ¼ p2

2m
þ α

_
σyp� μ

� �
τz þ bðxÞ � σ þ ΔðxÞτx; ð8Þ

where σ and τ are the vectors of Pauli matrices in spin and
particle-hole space, m the effective mass, α the spin-orbit cou-
pling, μ the chemical potential, b(x)= (gμB/2)B(x) the Zeeman
field in the zx plane (BðxÞ ¼ BnmðxÞ þ Baẑ is the total magnetic
field), and Δ(x) the proximization-induced superconducting

Fig. 1 Lattice of 0D Majorana modes in a proximitized nanowire. A semiconducting nanowire with Rashba spin-orbit coupling α covered by a
superconducting shell, with a periodically-modulated magnetic field induced by a regular array of nanomagnets and an externally applied field Ba. The
periodic modulation of the field induces topologically nontrivial (NT) segments alternating to trivial ones, which correspond respectively to negative and
positive values of the local Majorana mass M. 0-dimensional quasi-Majorana modes γAj and γBj localize at the boundaries between trivial and nontrivial
segments, with overlaps w and v.
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pairing. We require the wavelength λ of the periodically-
modulated field to be comparable to the Majorana localization
length, which is ξM ≈ (b/ESO)α/Δ and α/Δ respectively for ESO=
mα2/2ℏ2≪ Δ and≫ Δ (weak and strong spin-orbit coupling
regimes)9,101,102. It is essential to our proposal to consider mag-
netic fields with large variations of the field intensity, contrarily to
the well-known regime of periodically rotating fields with con-
stant amplitude (or negligible amplitude variations), considered
before80,81,103,104. Notice that periodically-modulated magnetic
fields can also be induced by employing magnetic textures105,106

or domain walls107,108, while periodically-modulated chemical
potentials can be obtained by a periodic modulation of the
width of the superconducting coating96,109 in epitaxial 1D
semiconductor-superconductor heterostructures110–113.

If all fields are uniform, the Hamiltonian above reduces to the
Oreg-Lutchyn minimal model12,13. The sign of the Majorana
mass gap M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
� jbj characterize the trivial (M> 0)

and nontrivial phases (M< 0) with M ¼ 0 at the closing of the
particle-hole gap. If the chemical potential, Zeeman field, or
superconducting pairing is not uniform, one can define a local

Majorana mass gap MðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðxÞ2 þ ΔðxÞ2

q
� jbðxÞj which may

be alternatively positive and negative values along the wire. In this
case, segments with M> 0 and M< 0 are trivial and nontrivial
with a local topological invariant PðxÞ ¼ sgn MðxÞ. Hence, 0D
quasi-Majorana modes localize at the boundaries between trivial
and nontrivial segments at the nodes of the Majorana mass gap
MðxÞ ¼ 0 (see Fig. 1) with localization length ξM and mutual
distance LAB and LBA. If the wavelength λ of the periodically-
modulated field is comparable with the Majorana localization
length ξM, the 0D quasi-Majorana mode γAj and γBj have finite
overlaps w / e�LAB=ξM and v / e�LBA=ξM , and realize a periodic bi-
partite 1D lattice. Notice that the values of the overlaps v,w
depend strongly on the distance between the nodes of the
Majorana mass, i.e., the distance between neighboring 0D quasi-
Majorana modes. Hence, projecting onto the subspace of
Majorana operators, one obtains the effective low-energy
Hamiltonian in Eq. (1), where the coupling parameters v,w
coincide with the Hamiltonian matrix elements between
contiguous 0D quasi-Majorana modes separated by trivial and
nontrivial segments, respectively. For ∣v∣= ∣w∣, the overlaps
between contiguous 0D quasi-Majorana modes across trivial
and nontrivial segments become equal, and the 1D Majorana
modes become massless (gapless). We calculate the magnetic field
Bnm of the nanomagnets array via the finite-element method, see
Supplementary Figure 1. We use the resulting Zeeman field in all
numerical calculations. For reference, we find that a reasonable
approximation of the Zeeman field is

bnmðxÞ � bnm 1� cosð2πx=λÞ� �
ẑ� sinð2πx=λÞx̂	 


; ð9Þ
where bnm coincides with the magnitude of the average field along

the wire, which gives jbnmðxÞj � jbnmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cosð2πx=λÞ� �q

. We

then discretize the Hamiltonian and take realistic values for the
model parameters44,71. Moreover, we assume

ΔðxÞ / Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� BðxÞ2=B2

c

q
, where Δ0 is the superconducting gap

at zero field and Bc the critical field, in order to account for the
suppression of the superconducting pairing induced by the
magnetic field. By numerically diagonalizing the discretized
Hamiltonian, we obtain the energy En and Nambu spinor Ψn(x)
of each eigenstate (see Methods section).

Figure 2(a), (b) show the local density of states (LDOS) at zero
energy ϱðxÞ ¼ 1

π Im∑njΨnðxÞj2=ðEn � iΓÞ with finite broadening
Γ= 0.1Δ0 (to simulate the experimental conditions), and energy
spectra as a function of the uniform applied magnetic field, in the

case of periodic boundary conditions. The LDOS shows the
presence of a periodic lattice of 0D quasi-Majorana modes with
finite overlap, localized at the nodes of the Majorana mass gap
MðxÞ ¼ 0 [see also Fig. 2(e)]. This lattice corresponds to
dispersive 1D Majorana modes with energy below the particle-
hole gap and separated from the higher-energy bulk states,
highlighted in Fig. 2(b), and with a Majorana mass gap equal to
Meff ¼ jwj � jvj. When the overlaps v,w between 0D quasi-
Majorana modes across the nontrivial and trivial segments
become equal when ba= bSUSY (which, in first approximation,
occurs when LAB ≈ LBA), the periodic lattice becomes invariant up
to translations T [see Eq. (5)]. Hence, the wire exhibits SUSY and
the dispersion becomes gapless (massless) with maximum LDOS
at zero energy.

When the applied field increases above the threshold bNT, such

that jbðxÞj≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðxÞ2 þ ΔðxÞ2

q
∀x, the Majorana mass becomes

negative on the whole wire and the trivial segments disappear.
Conversely, when the applied field decreases below the threshold

bT, such that jbðxÞj≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðxÞ2 þ ΔðxÞ2

q
∀x, the Majorana mass

becomes positive on the whole wire and the nontrivial segments
disappear. In these two cases, the 0D quasi-Majorana modes at
the ends of the trivial (or nontrivial) segments fuse into finite-
energy Andreev-like fermionic modes. The continuous crossover
between Majorana and Andreev-like modes is realized by
increasing the overlaps between contiguous 0D quasi-Majorana
modes at the ends of either the trivial or nontrivial segments, such
that ∣v∣ ≫ ∣w∣ or ∣w∣ ≫ ∣v∣, without closing the particle-hole gap.
This crossover also occurs when the wavelength λ becomes
smaller than the Majorana localization length λ ≲ ξM: This results
in larger overlaps v, w between contiguous 0D quasi-Majorana
modes fusing into fermionic Andreev-like modes. In the opposite
regime λ≫ ξM one has v, w→ 0, which corresponds to decoupled
quasi-Majorana modes with flat dispersion Ek ≈ 0.

Figure 2(c), (d) show the LDOS and the energy spectra in the
case of open boundary conditions. For ba < bT and ba > bNT the
local Majorana mass gap MðxÞ has the same sign along the wire,
realizing a gapped trivial or nontrivial phase. In the latter case, 0D
Majorana end modes eγL, eγR localize at the opposite ends.
However, for bT < ba < bNT, the local Majorana mass gap MðxÞ
changes its sign along the wire, with 0D quasi-Majorana modes
described by the effective Hamiltonian in Eq. (1). This effective
Hamiltonian can be trivial or nontrivial with Majorana mass gap
Meff ¼ jwj � jvj, as analyzed before. Hence, the nontrivial phase
with 0D Majorana end modes eγL, eγR is also realized for
bSUSY < ba < bNT (i.e., ∣v∣ > ∣w∣). The LDOS integrated over the
whole energy dispersion of the 1D Majorana mode is shown in
Supplementary Figure 3. The LDOS as a function of energy below
the bulk gap is shown in the Supplementary Movie.

Figure 2(e) shows the local Majorana mass MðxÞ as a function
of the position and the applied magnetic field. For reference, we
draw a continuous line at the boundary between trivial and
nontrivial phases atM ¼ 0, where the 0D quasi-Majorana modes
localize. Figure 2(f) shows the momentum dispersion of the 1D
Majorana modes calculated numerically as a function of the
applied field, which corresponds to the highlighted subgap state
in Fig. 2(b). The 1D Majorana modes correspond to a periodic
lattice of localized and overlapping 0D quasi-Majorana modes.
The mass gap of the 1D Majorana modes closes when ba= bSUSY.

Sliding lattice and Majorana pump. As demonstrated, 0D quasi-
Majorana modes are pinned to the nodes of the local topological
gap MðxÞ ¼ 0 in the presence of spatially-modulated fields. This
theoretically established the possibility to realize a Majorana
chain model in nanowires. Moreover, this system can be
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employed to realize an adiabatic “Majorana pump”. On top of the
field bnm(x) induced by the nanomagnets, let us apply a rotating
field in the zx-plane forming an angle θ with the x-axis, and a
uniform field �bnmẑ equal and opposite to the average field of the
nanomagnets. The total field is

bðxÞ ¼ bnmðxÞ � bnmẑþ ba½cos θ x̂ þ sin θ ẑ�: ð10Þ
If bnm(x) is approximately harmonic as in Eq. (9) one has

jbðxÞj2 ¼ b2nm þ b2a � 2bnmba sin ð2πx=λþ θÞ, which gives

jbj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nm þ b2a

q
� ðbnmba=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nm þ b2a

q
Þ sin ð2πx=λþ θÞ. Thus,

assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nm þ b2a

q
the local Majorana mass gap

becomes MðxÞ ¼ ðbnmba=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nm þ b2a

q
Þ sin ð2πx=λþ θÞ which

has equally-spaced nodes at xn/λ= θ/2π+ n/2. Slowly varying the
applied field direction θ induces the adiabatic sliding of the 1D

0  1 2 3 4  5          6          7          8

0  1 2 3 4  5          6          7          8

0  1 2 3 4  5          6          7          8

(a)

(c)

(e)
(f)

(b)

(d)

Fig. 2 Local density of states and energy spectra of a Majorana lattice. Numerically calculated local density of states (LDOS) and energy spectra as a
function of the applied magnetic field intensity, showing a 1D lattice of 0D quasi-Majorana modes. a LDOS at zero energy of a nanowire in a periodically-
modulated magnetic field, as a function of the position x and the external field ba applied in the z-direction, calculated with periodic boundary conditions. The
peaks of the LDOS indicate the presence of 1D Majorana modes, corresponding to a periodic lattice of overlapping 0D quasi-Majorana modes localized at the
boundaries between trivial (M>0) and nontrivial (M<0) segments. b Energy spectra E with dispersive 1D Majorana modes (highlighted) below the particle-
hole gap. The dispersion becomes gapless (massless) when the overlaps between localized 0D quasi-Majorana modes across the nontrivial and trivial segments
become equal when ba= bSUSY. c, d Same as before, but with open boundary conditions. The wire becomes nontrivial after the closing of the particle-hole gap for
ba > bSUSY and exhibits 0D quasi-Majorana modes localized at its opposite ends with diverging density (out of scale). e Local Majorana mass and its nodes
M ¼ 0 (continuous line) as a function of the position and applied field. When ba > bNT, the Majorana mass becomes negative on the whole wire and the trivial
segments disappear. Conversely, when ba < bT, the Majorana mass becomes positive on the whole wire and the nontrivial segments disappear. f Energy
dispersion of the 1D Majorana modes as a function of the momentum k and the applied field. Energies and magnetic fields are in units of the superconducting gap
Δ0, lengths are in units of the wavelength λ of the periodically-modulated field.
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lattice of 0D quasi-Majorana modes, corresponding to the
pumping of one 0D quasi-Majorana mode every half-turn
θ→ θ+ π and one full fermionic state every full turn
θ→ θ+ 2π of the applied field direction. In the case of periodic
and closed boundary conditions, a half-turn of the applied field
direction corresponds to the translation T of 0D quasi-Majorana
modes entering the definition of the supercharges in Eq. (5).
Figure 3(d) shows the intensity of the total magnetic field in Eq.
(10) as a function of θ (see also Supplementary Figure 2). Fig-
ure 3(a) shows the evolution of the LDOS when the applied field
direction θ turns around in the zx-plane. As the field rotates, 0D
quasi-Majorana modes slide along the wire, resulting in an
adiabatic pumping of 0D quasi-Majorana modes, as shown in
Fig. 3(a). 0D quasi-Majorana modes translate by T at each half-
turn θ→ θ+ π. Figure 3(b) shows the energy of the dispersive 1D
Majorana modes below the gap, which corresponds to the sliding
of the lattice of 0D quasi-Majorana modes. For reference, Fig. 3(c)
shows the local Majorana mass M and its nodes M ¼ 0 as a
function of θ. This result may be generalized to the dynamical
Floquet regime, with the possible realization of a finite “Majorana
current” through the wire.

Discussion
We theoretically proposed the realization of extended quantum-
mechanical SUSY with central charges and dispersive 1D
Majorana fermions in condensed matter, specifically, in a

proximitized semiconducting nanowire via spatially-modulated
magnetic fields. As shown in previous studies, a chain of
Majorana modes exhibits both quantum mechanical SUSY32,33

and space-time SUSY34,35,86. In our work, we unveiled the pre-
sence of an additional highly-nontrivial structure, i.e., an exten-
ded quantum-mechanical SUSY with central charges. This
structure emerges as the combination of two coexisting N ¼ 2
superalgebras: To our knowledge, the properties of these two
coexisting superalgebras have not been previously demonstrated
in the Majorana chain context. Extended SUSY with central
charges has been one of the most important notions in quantum
field theory and string theory over the decades since the second
string revolution in the 90s and the revolution of quantum field
theory by Seiberg and Witten91–93. In spite of its great importance
in formal aspects of quantum field theory and string theory, all
high energy theorists regard it as a useful tool which is not
directly related to reality. This is because the extended N ¼ 2
SUSY does not allow chiral fermions relevant for elementary
particles such as quarks and leptons. In high-energy phenom-
enology, only N ¼ 1 SUSY and its breaking are considered.
There are many proposals to realize SUSY in condensed matter,
e.g., in Bose-Fermi mixtures of ultracold atoms114–123, Majorana
Cooper-pair boxes124, and at the boundaries of topological
superconductors or insulators30,125,126. However, our model
describes the first accessible example of extended SUSY with
central charges and partial spontaneous SUSY breaking realized
in nature.

0 1  2 3 4 5 6 7 8

0 1  2 3 4 5 6 7 8

(a)

(c)

(b)

(d)

Fig. 3 Local density of states and energy spectra of a sliding Majorana lattice. Numerically calculated local density of states (LDOS) and energy spectra
as a function of the applied magnetic field direction, showing a sliding 1D lattice of 0D quasi-Majorana modes. a LDOS at zero energy as a function of the
position x and the magnetic field direction θ in the zx-plane, calculated with closed boundary conditions. 0D quasi-Majorana modes localize at the
boundaries between trivial (M>0) and nontrivial (M<0) segments. As the field rotates, the lattice of 0D quasi-Majorana modes slides in the x-direction.
b Energy spectra E with dispersive 1D Majorana modes (highlighted) below the gap. c Local Majorana massM as a function of the applied field direction θ,
with nodes at M ¼ 0 (continuous lines). d Total magnetic field calculated as the superposition of the applied field Ba and the nanomagnets fields for
different directions θ of the applied field (continuous lines) compared with a sliding harmonic field / sinð2πx=λþ θÞ (dotted lines). Energies are in units of
the superconducting gap Δ0, lengths are in units of the wavelength λ of the periodically-modulated field.
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The action of the Goldstino is usually accompanied by higher
derivative corrections determined thoroughly by a symmetry-
breaking pattern, as found by Volkov and Akulov87 (see also
recent works on extended SUSY127,128). Our theory should be
considered as the leading order of the derivative expansion. Thus,
higher derivative correction terms, if one could obtain them,
should be summed up to the Volkov-Akulov type action for 1D
Majorana fermions.

While the N ¼ 4 SUSY conformal field theories in 1D are
known to be characterized by a central charge c= 2129, the
central charge in our case is c= 1, due to the presence of two
helical pair of counterpropagating Majorana fermions, implying
only N ¼ 2 SUSY instead of N ¼ 4 SUSY. This is compatible
with the fact that N ¼ 4 SUSY is spontaneously broken and only
N ¼ 2 SUSY remains, giving strong evidence of the existence of
the unbroken extended N ¼ 2 SUSY in our model.

We notice that electronic interactions with the external
environment may contribute to the pinning of the Majorana
modes to zero energy in a typical nanowire setup. Without
interactions, the SUSY regime corresponds to a single point of the
parameter space, which coincides with the closing of the particle-
hole gap, and occurs when the externally applied magnetic field is
exactly ba= bSUSY. In the presence of electronic interactions,
however, the lowest energy level may become pinned to zero
energy, and therefore the particle-hole gap may remain closed in
an extended window of the parameter space. This may occur due
to the self-interaction of the charge distribution of the Majorana
modes mediated by the external environment130 in the case of a
pair of Majorana modes localized at the edges of the nanowire.
Perfectly spatially-separated Majorana modes are charge neutral.
However, in our case, contiguous 0D quasi-Majorana modes have
a finite overlap, which gives rise to a finite charge density131,132.
This finite charge induces a screening charge distribution in the
dielectric environment, which acts back onto the Majorana
modes. This results in a self-interaction term that pushes the
energy of the Majorana modes back to zero, as long as the
nanowire has a larger dielectric constant of the external envir-
onment (e.g., the nanowire substrate)130. This mechanism can
stabilize the SUSY by pinning the Majorana mass Meff � 0 over
an extended parameter space.

To experimentally realize our proposal, the wire must be much
longer than the field periodicity, which must be comparable with
the Majorana localization length, i.e., L≫ λ≳ ξM. Moreover,
variations of the gate and spin-orbit coupling fields must be
negligible at length scales larger than λ, to guarantee an unbroken
translational invariance at the mesoscopic level. Conversely, the
physics described here is not affected by perturbations having a
length scale shorter than λ (e.g., disorder). A different approach
to realizing localized quasi-Majorana modes is by employing
noncollinear magnetic textures or domain walls in complex
magnet-superconductor heterostructures107,108. However, our
proposal does not require the presence of a magnetic substrate
and has the advantage of using proximitized semiconducting
nanowires, which by far are the most extensively studied platform
for topological superconductivity75–79.

In a finite wire with 2N 0D Majorana modes with open
boundary conditions and at zero temperature, the differential
conductance exhibits 2N− 1 zeros and 2N quantized peaks
G= 2e2/h, and the zero-bias conductance is zero133. In an infinite
wire with identical couplings (v=w) instead, the conductance
shows a zero-bias peak G= 2e2/h133, which corresponds to the
tunneling into the delocalized Majorana mode at zero energy. For
v ≠w, the energy of the Majorana modes is lifted by the broken
SUSY, and therefore there is no Majorana mode available at zero
energy: In this case, the zero-bias conductance is zero. Hence, for a
sufficiently long Majorana chain or equivalently in the case of

closed boundary conditions (i.e., in a loop geometry), the transition
between a zero-bias dip G= 0 to a peak G= 2e2/h signals the onset
of SUSY at v=w. This transition should be observable in suffi-
ciently long nanowires or in a setup with loop geometry (i.e., with
closed boundary conditions) by varying the applied magnetic field
close to the SUSY point ba= bSUSY. However, these signatures may
be difficult to distinguish from conductance peaks induced by
disorder, impurities, or finite-size effects. The characterization of
the signatures of SUSY in the conductance will be the subject of
future work. Stronger experimental signatures are the presence of
spatially-periodic peaks in the LDOS along the whole wire, and
their adiabatic evolution in the Majorana pump regime, obtained
by varying the applied magnetic field direction. These signatures
can be obtained by locally probing the differential conductivity in
multiterminal setups56,134–136, or by scanning tunneling micro-
scopy (STM) in epitaxial 1D heterostructures110–113. Other non-
local fingerprints of SUSY can be provided by the signatures of the
closing of the bulk particle-hole gap with a finite density of states
on the whole wire. In particular, these signatures can be revealed
via a tunneling probe placed at the bulk of the nanowire56, by the
quantized peak of the thermal conductance and electrical shot
noise at the transition, and the doubling of the magnetoconduc-
tance oscillations in an Aharonov-Bohm ring geometry137, or by
the peak of the 4π component of the Josephson current in a
superconducting ring geometry138.

We also mention that the proposed experimental protocol to
realize an adiabatic Majorana pumping in a sliding lattice of 0D
quasi-Majorana modes may suggest new methods of braiding
Majorana modes in 1D nanowire networks, which is the next
milestone in the route to fault-tolerant topological quantum
computation25,26,37–39,42,43.

Concluding, we proposed an experimentally accessible reali-
zation of a Majorana chain with emergent SUSY and with dis-
persive 1D Majorana fermions in proximitixed nanowires via
spatially-modulated magnetic fields. In this system, we demon-
strated the presence of an extended N ¼ 4 SUSY with central
charges and we identified the massless 1D Majorana fermions as
the Nambu-Goldstone fermions (Goldstinos) associated with the
spontaneous partial breaking of SUSY. Their experimental sig-
natures are the finite LDOS at zero energy (zero-bias peak)
delocalized on the whole length of the wire, and the dip-to-peak
transition in the zero-bias conductance. This has to be contrasted
with zero-bias peaks of 0D Majorana end modes, localized only at
the ends of the wire, and to the general case of 0D quasi-
Majorana modes, whose energy is lifted by their finite overlap.
We finally showed how to realize an adiabatic Majorana pump by
varying the applied magnetic field direction, which induces a
sliding lattice of 0D quasi-Majorana modes with quantized
transport of one quasi-Majorana mode per a half cycle. The
manipulation of Majorana modes via spatially-modulated fields
may lead to the realization of alternative non-abelian braiding
protocols.

Methods
The numerical results were obtained by discretizing Eq. (8) into a tight-binding
model and diagonalizing the resulting Hamiltonian. The LDOS in the main article
and in the Supplementary Information was calculated from the spectra as a
function of energy. The momentum dispersion was obtained by Fourier-transform
the tight-binding Hamiltonian and diagonalizing the resulting Hamiltonian in the
momentum basis. In agreement with previous works44,71, we consider an InSb
nanowire proximitized by a conventional superconductor, and take m= 0.015me,
α= 1 eV Å, b/B= 1.5meV T−1 (g ≈ 50), Bc= 3T, and Δ0= 1 meV at zero magnetic
field. In this regime, the Majorana localization length is estimated to be
ξM ≈ 200–300 nm depending on the applied field ba. The magnetic field induced by
the array of nanomagnets was calculated by numerical integration over a finite
mesh. We considered a periodic array of 250 nm × 250 nm × 250 nm nanomagnets
placed at a mutual distance 750 nm and at d= 250 nm from the wire, with remnant
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magnetic field BR ≈ 1 T and parallel magnetic moments in the z direction. See
Supplementary Note 1 and Supplementary Figs. 1 and 2 for more details.

Data availability
The code used for the numerical simulations within this paper and the resulting data are
available on Zenodo139.
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