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Mean-field nature of synchronization stability in
networks with multiple interaction layers
Charo I. del Genio 1✉, Sergio Faci-Lázaro2,3, Jesús Gómez-Gardeñes 2,3 & Stefano Boccaletti 4,5,6

The interactions between the components of many real-world systems are best modelled by

networks with multiple layers. Different theories have been proposed to explain how multi-

layered connections affect the linear stability of synchronization in dynamical systems.

However, the resulting equations are computationally expensive, and therefore difficult, if not

impossible, to solve for large systems. To bridge this gap, we develop a mean-field theory of

synchronization for networks with multiple interaction layers. By assuming quasi-identical

layers, we obtain accurate assessments of synchronization stability that are comparable with

the exact results. In fact, the accuracy of our theory remains high even for networks with very

dissimilar layers, thus posing a general question about the mean-field nature of synchroni-

zation stability in multilayer networks. Moreover, the computational complexity of our

approach is only quadratic in the number of nodes, thereby allowing the study of systems

whose investigation was thus far precluded.
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The use of a network structure, consisting of a list of pair-
wise connections called edges between discrete elements
called nodes or vertices, has long been a powerful

abstraction to model and investigate the behavior of complex
systems1–3. One area in which the network paradigm has proved
especially useful is the study of distributed coupled dynamical
systems4, where the nodes correspond to dynamical systems that
interact across the edges. Collective and organized dynamics is
widely studied in such networks, with a particular regard to the
phenomenon of synchronization, which holds fundamental
importance in numerous natural instances4–20.

Within this topic, considerable attention has been paid to the
stability of synchronized states. A powerful method to estimate it
is the so-called Master Stability Function (MSF)6, which allows
one to compute the value of the largest Lyapunov exponent Λmax
of the system upon perturbation from the synchronized state.
Then, one can determine whether synchronization is stable
simply from its sign: the perturbed system will asymptotically re-
synchronize only if Λmax is negative. The MSF has maintained its
status as method of choice even when applied to models that
extend the network approach to the multilayer case21–23 and to
networks with higher-order interactions24, which better capture
the many levels of complexity of real-world systems.

In the dynamical multilayer networks we consider here, the
nodes are allowed to interact over multiple layers, each repre-
senting a different type of interaction. Thus, they can be con-
sidered a special case of the traditional multiplex networks, in
which each node is replicated in every layer, and interlayer links
determine how the state in each layer affects those of the
neighbouring ones. Networks with multiple interaction layers are
often encountered in natural and engineered complex systems of
wide relevance. The paradigmatic example is that of the nervous
system, in which the same neurons are connected to each other
via two different types of synapses25. Another instance is pro-
vided by the transport infrastructure of large cities where the
same station is served by multiple means of mass transport. In
both cases, the value of a variable of interest, such as the potential
accumulated in a neuron or the state of congestion of a station,
affects equally all the processes involving the node26.

The increase in complexity of the system with respect to single-
layer networks is reflected by the fact that the use of the MSF no
longer results in a single equation, but rather produces a set of
coupled linear differential equations27. Apart from their gen-
erality, these master stability equations allowed researchers to
identify synchronized states whose stability properties are
inherently due to the multiplex architecture, such as stable
coherent dynamics in networked layers that are unstable when
studied in isolation. Also, the versatility of the MSF made it a
method of choice to study this type of networks under different
conditions, such as time-varying structures28, as well as with the
help of other approaches, such as fast-switching techniques29.
Unfortunately, despite the promising preliminary results, the
master stability equations also have a drawback, as the compu-
tational complexity of solving the system makes them unwieldy
for networks larger than a couple of hundred nodes. This diffi-
culty is due to the mathematical structure that results from the
MSF approach, and therefore it does not depend on the specific
network model studied or on the particular formalism used upon
it. In fact, even when the MSF takes a fairly workable form, such
as in traditional multiplex networks with dynamics formalized via
supra-Laplacians23, the explicit numerical calculations reach a
high computational complexity if the supra-Laplacians do not
commute.

In this article, we introduce a mean-field theory of synchro-
nization for networks with multiple interaction layers. We derive
our theory in the assumption that the layers are quasi-identical,

but show that its range of applicability encompasses the case of
very dissimilar layers. In particular, the estimate of the stability of
synchronization obtained with our theory virtually never changes
with respect to the exact result, suggesting that global synchro-
nization stability in multilayer networks is inherently a mean-field
phenomenon. In addition, the numerical complexity of our
method is lower than that of the exact formulation, making it
applicable to large systems whose study would otherwise be
prevented by computational costs.

Results
The model. The derivation of a MSF on a networked system is
effectively a decomposition of the dynamics into eigenmodes. In a
network with N nodes and M interaction layers, the connection
weights of each layer α are the elements of the weighted adjacency
matrix W(α). Let xi be an m-dimensional vector describing the
state of node i, and F : Rm ! Rm and Hα : R

m ! Rm be
continuous and differentiable vector fields describing the local
dynamics and the interactions in layer α, respectively. Assuming
diffusive coupling between the nodes, the global dynamics is
determined by the system

_xi ¼ F xi
� �� ∑

M

α¼1
σα ∑

N

j¼1
L αð Þ
i;j Hα xj

� �
: ð1Þ

In Eq. (1), σα is the interaction strength within layer α, and L αð Þ

is the graph Laplacian of layer α, whose diagonal elements are
LðαÞi;i ¼ ∑N

j¼1 W
αð Þ
i;j , and whose off-diagonal elements are LðαÞi;j ¼

�WðαÞ
i;j .

Following the approach by del Genio et al.27, one can linearize
Eq. (1), obtaining expressions for the evolution of the global
synchronization error vector, which can be projected onto the
eigenvectors of the Laplacian of one of the layers. Choosing layer
α= 1 (without loss of generality) results in the system

_ηj ¼ JF sð Þ � σ1λ
ð1Þ
j JH1 sð Þ

� �
ηjþ

� ∑
M

α¼2
σα ∑

N

k¼2
∑
N

r¼2
λðαÞr ΓðαÞr;kΓ

ðαÞ
r;j JHα sð Þηk:

ð2Þ

here, η is a vector of vectors whose jth component is the
projection of the global synchronization error vector onto the
space spanned by the jth Laplacian eigenvector of layer 1; J is
the Jacobian operator; s is the state vector corresponding to the
synchronized state; λðαÞj is the jth Laplacian eigenvalue of layer α;
and Γ(α) is the spectral overlap matrix between layer 1 and layer α,

defined as ΓðαÞ ¼ VðαÞTVð1Þ, where V(α) is the matrix of Laplacian
eigenvectors of layer α and T indicates transposition.

Mean-field theory. To develop our theory, we start from the
assumption that the interaction layers are quasi-identical. Then,
due to their adjacency matrices and their Laplacians being very
similar, one can expect their Laplacian eigenvectors to be equal up
to some small perturbation. Our goal is to spread the effect of this
perturbation in an equal way over all the directions transverse to
the synchronization manifold, which is identified by the Lapla-
cian eigenvector corresponding to the null eigenvalue. To do so,
compute the dynamical distance between layer α and layer 127:

‘α;1 ¼ ∑
N

i¼2
∑
N

j¼2
Ξðα;1Þ
i;j

� �2
� �

� Ξðα;1Þ
i;i

� �2
� 	

: ð3Þ

Note that, while here we consider dynamical distances between
any layer and the reference layer 1, in principle this quantity is an
indicator of the similarity between the dynamics of any two
layers. In fact, its general definition is the sum of the squares of
the off-diagonal terms in the spectral overlap matrix between the
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two layers considered, so that if the dynamics of the layers are
identical (i.e., their Laplacians commute), their dynamical dis-
tance vanishes. In the equation above, the matrices Ξ(α, β) are

defined as Ξðα;βÞ ¼ ΓðαÞΓðβÞ
T ¼ VðαÞTVðβÞ, so that Ξðα;1Þ ¼

VðαÞTVð1Þ ¼ ΓðαÞ . Also, the sums in Eq. (3) start from 2 because
the first Laplacian eigenvector is always N�1=2 1; ¼ ; 1ð ÞT .
Therefore, ΓðαÞ1;1 ¼ 1 and ΓðαÞ1;k ¼ ΓðαÞk;1 ¼ 0 for all k > 1. Now note
that each Γ(α) is an orthogonal matrix, since it is the product of
two orthogonal matrices. Moreover, from the definition, it follows

that VðαÞ ¼ Vð1ÞΓðαÞ
T
. In other words, Γ(α) is the transformation

matrix from the Laplacian eigenvectors of the first layer to those
of layer α. Then, our aim is replacing Γ(α) with a Γ(α),MF whose
action is to change each eigenvector of the first layer in the same
fashion.

As Γ(α) is a rotation, a natural choice is to make Γ(α),MF rotate
the eigenvectors of the first layer by the same angle in every
direction. More precisely, we consider all possible 2-dimensional
subspaces of RN�1 determined by choosing any two Laplacian
eigenvectors of layer 1 except the first, and then construct a
matrix that rotates all the Laplacian eigenvectors of layer 1 except
the first by the same amount in each of these subspaces. Note
that, in principle, this problem is underspecified, as rotation
matrices do not commute in 3 or more dimensions, and the
specific form of Γ(α),MF depends on the order in which the
rotations in the individual subspaces are performed. However,
since the layers are quasi-identical, the rotation angle needed is
very small, as we will justify quantitatively later on. Thus, the
rotations that compose Γ(α),MF are infinitesimal. In turn, this
means that each one of them, and indeed Γ(α),MF itself, can be
written as the sum of the identity matrix and an element of the
Lie algebra of O N � 1ð Þ, or, more precisely, of SO N � 1ð Þ, since
the rotations are proper. Thus, for all 1 < r < s, the elements of the
matrix R(r,s) that operates the rotation in the subspace spanned
by the rth and sth eigenvectors are

Rðr;sÞ
i;j ¼

1 if i ¼ j

�εðαÞ if i ¼ r and j ¼ s

εðαÞ if i ¼ s and j ¼ r

0 otherwise;

8>>><
>>>:

where ε(α) is the rotation angle, which depends on the layer α.
Importantly, all the R(r,s) commute, which removes the problem
of considering the order of the constitutive rotations of Γ(α),MF.
Taking into account all subspaces, and neglecting terms of order
higher than ε(α), yields the following form for the matrix:

ΓðαÞ;MF ¼

1 0 0 0 ¼
0 1 �εðαÞ �εðαÞ ¼
0 εðαÞ 1 �εðαÞ ¼

0 εðαÞ εðαÞ 1 . .
.

..

. ..
. ..

. . .
. . .

.

0
BBBBBBB@

1
CCCCCCCA
: ð4Þ

Notice that Γ(α),MF is an orthogonal matrix, as it should be, but
only to first order, as expected from the approximations used.
Also note that the final results one obtains using this formulation
are the same that would be found using the exact expressions on
layers with a different structure. This mean-field-equivalent
structures can be found by first computing the mean-field-
equivalent Laplacian eigenvectors using the same equation as

above, namely VðαÞ;MF ¼ Vð1Þ ΓðαÞ;MF
� �T

, and then using them to
recover the mean-field-equivalent Laplacian itself. To find the
value of ε(α) to be used in Eq. (4), one can notice thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼2f½∑N

j¼2 ðΓðαÞ;MF
i;j Þ2� � ðΓðαÞ;MF

i;i Þ2g
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1ÞðN � 2ÞεðαÞ2

q
¼

εðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1ÞðN � 2Þ

p
. But from Eq. (3) and the fact that Ξ(α, 1)=Γ(α)

it follows that this quantity has to be equal to
ffiffiffiffiffiffiffi
‘α;1

p
. Thus,

εðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘α;1
N � 1ð Þ N � 2ð Þ

s
: ð5Þ

Note that Eq. (5) effectively provides a mean of the dynamical
distance over all the directions transverse to the synchronization
manifold, thereby justifying our definition of the method as a
mean-field theory. Finally, to find the mean-field form of the
MSF, one can notice that Eq. (2) contains the product ΓðαÞr;kΓ

ðαÞ
r;j

within its innermost sum. Then, replacing the matrices Γ(α) with
their mean-field version, one obtains

ΓðαÞ;MF
i;j ¼

1 if i ¼ j

�εðαÞ if j > i and i > 1

εðαÞ if j < i and j > 1

0 otherwise:

8>>><
>>>:

Since, in Eq. (2), j, r and k are always greater than 1, one can
write

ΓðαÞ;MF
r;k ΓðαÞ;MF

r;j ¼

1 if r ¼ k ¼ j

�εðαÞ if r ¼ k and j > r; or if k > r and r ¼ j

εðαÞ if r ¼ k and j < r; or if k < r and r ¼ j

εðαÞ
2 � 0 if k > r and j > r; or if k < r and j < r

�εðαÞ
2 � 0 if k > r and j < r; or if k < r and j > r:

8>>>>>><
>>>>>>:

Using the expression above, the second term on the right-hand
side of Eq. (2) becomes

∑
M

α¼2
σα λjJHα sð Þηjþ
h

∑
j�1

k¼2
εðαÞ λðαÞj � λðαÞk

� �
JHα sð Þηkþ

∑
N

k¼jþ1
εðαÞ λðαÞk � λðαÞj

� �
JHα sð Þηk

�
;

ð6Þ

where we have split the sum over k into k= j, k < j and k > j.
The expression (6) greatly simplifies the calculations with

respect to the original formulation. In fact, the computational
complexity of calculating each component of η according to
Eq. (2) is O N2M

� �
, whereas using Eq. (6), this reduces to O NMð Þ .

Also note that in Eq. (6), the first term inside the sum over α
corresponds to the case of commuting Laplacians. Thus, while the
transverse modes are still not completely decoupled, which would
only be possible in the commuting case, our theory effectively
consists in a first-order correction, obtained by a mean-field
perturbative approximation of the dynamics. This becomes even
more evident when rewriting the whole Eq. (2) as

_ηj ¼ JF sð Þ � ∑
M

α¼1
σαλ

ðαÞ
j JHα sð Þ

� �
ηj�

∑
M

α¼2
εðαÞσα ∑

N

k¼2
λðαÞj � λðαÞk

 JHα sð Þηk
� �

;

ð7Þ

for which we assume that the Laplacian eigenvalues are sorted in a
non-decreasing way.

The derivation of Eq. (7), which constitutes the mean-field
approximation of Eq. (2), not only offers a decrease in the
complexity of evaluating the linear stability of this type of
multiplexes, but also, more importantly, paves the way to
compute the stability diagram of systems whose size is too large
to permit the use of Eq. (2). For example, a scaling test reveals
that simulation of a single duplex random network with 10000
nodes would take approximately 103 years on a workstation with
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a 16-core Intel® Xeon® Gold 6130 CPU if using Eq. (2). This time
would be reduced to just above 5 days if using Eq. (6).

Numerical validation. To demonstrate the validity and applic-
ability of our theory, we carried out extensive numerical simu-
lations on 2-layer random networks of chaotic Rössler oscillators.
Note that the dynamical distance between layers 2 and 1, ℓ2,1, is
bound between 0 and N− 1. Thus, to allow for a direct com-
parison between systems of different size, we henceforth plot our
results as a function of the normalized dynamical distance
~‘2;1¼‘2;1 = N�1ð Þ. In Fig. 1 we show the average error in the
determination of the largest Lyapunov exponent Λmax as a
function of ~‘ . Our results indicate that the accuracy of the theory
is generally high, but with a marked dependence on the region of
the layer-stability phase diagram. More specifically, the accuracy
increases with the ratio σ1 =σ2 , which is on average different
between the regions of the phase diagram (schematically illu-
strated in the inset of Fig. 1). This is consistent with our theory
being a perturbative correction to the commuting case, since the
relative contribution of such a correction is indeed inversely
proportional to the ratio of the interaction strengths within the
layers. At the same time, and as we stressed above, the choice of
the reference layer 1 is entirely arbitrary. As such, one can always
choose the layer with the largest interaction strength to be layer 1,
which implies that the actual worst case scenario is the one in
which all layers have the same interaction strength.

At the light of these considerations, we performed additional
simulations, now imposing σ1= σ2, to evaluate the performance
of our theory for increasing system sizes. The results, illustrated in
Fig. 2, show that the theory provides accurate results for a wide
range of normalized dynamical distances between layers.

To further explore the scope of applicability of our method, we
carried out extra simulations on networks consisting of three
random layers, as well as on preferential-attachment networks30.
The results are presented in three figures (Supplementary
Figs. 1–3) of the Supplementary Information. The case of three-

layer networks shows a general improvement with respect to the
two-layer case, which is particularly evident for larger systems
sizes (see Supplementary Fig. 1). Also, the errors in the
assessment of synchronization stability completely vanish, even
for smaller networks. The situation is slightly different for
preferential-attachment networks, where the errors in assessing
stability are not identically null, but they remain fairly negligible,
reaching a maximum of 0.8% at normalized dynamical distances
of 0.3 or more (see Supplementary Fig. 2). The average relative
errors in estimating the maximum Lyapunov exponent remain
instead roughly in line with those for random networks, but
without a clear trend with network size (see Supplementary
Fig. 3).

Discussion
The simulation results illustrated above show that the error in the
estimation of Λmax is never larger than 30%, even for normalized
dynamical distances as high as ~‘ ¼ 0:6 . Importantly, when
~‘< 0:1, the accuracy of the estimate increases with the system size.
This is most likely a direct consequence of Eq. (5), which shows
that, for the same value of the normalized dynamical distance, ε(α)

decreases proportionally to
ffiffiffiffi
N

p
.

The applicability of our theory increases even more when
considering the typical use of the MSF, namely the assessment of
the stability of synchronization. In this case, our method virtually
never fails in correctly identifying stable and unstable synchro-
nized states. In our simulations, we only found occasional errors
for at most 0.2% of the cases, and exclusively in networks of only
10 nodes. Given the very small size of such systems, we believe
these errors to have been caused by finite-size effects, indicating
that our theory always allows a correct determination of syn-
chronization stability, and it holds true far beyond infinitesimal
dynamical distances.

Note that, as this method is an approximation, we do expect
that it will present limitations. At the current stage, we can only
speculate that, in a manner similar to other mean-field theories, it
may stop providing correct results in the vicinity of critical
transitions, or for networks with pathological structures. Such

Fig. 1 The accuracy of our theory increases with the ratio of the
interaction strengths of the first layer σ1 to that of the second layer σ2.
The relative error in the estimate of the largest Lyapunov exponent Λmax of
the perturbed system decreases from a maximum of approximately 40% in
region 6 (σ1 =σ2 � 0:0917) to a minimum of approximately 0.7% in region 3
(σ1 =σ2 � 3:5). Within each region, the error increases sublinearly with the
normalized dynamical distance. Each point is averaged over 1000
realizations; error bars are smaller than the symbol size. Inset: schematic
illustration of the six regions (adapted from del Genio et al.27). Layer 1 is
individually stable only when σ1 is greater than a critical value (red striped
regions); layer 2 is individually stable only when σ2 lies between two critical
values (blue striped regions); region 1 is the only zone of the phase diagram
where both layers are already individually stable.

Fig. 2 Synchronization stability of networks with multiple interaction
layers is virtually always mean-field. In networks with N nodes per layer,
for normalized dynamical distances ℓ2,1/(N− 1) smaller than 0.1, the
accuracy of the estimate of the maximum Lyapunov exponent Λmax

improves with system size. Also, the error in the estimate never increases
beyond 0.3, even for very large dynamical distances. Each point is averaged
over 1,000 realizations; when not drawn, error bars are smaller than the
symbol size. Inset: our mean-field theory assesses synchronization stability
always correctly, with possible occasional exceptions only occurring in very
small systems.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00897-0

4 COMMUNICATIONS PHYSICS |           (2022) 5:121 | https://doi.org/10.1038/s42005-022-00897-0 | www.nature.com/commsphys

www.nature.com/commsphys


cases are however beyond the scope of the present work, and they
will be explored in future studies.

In conclusion, we developed a mean-field theory of synchro-
nization stability for networks with multiple interaction layers. In
principle, the same approach could be applied to different types
of networks, most likely resulting in similar but different equa-
tions. While the theory has been derived under the assumption of
quasi-identical layers, we have shown that its range of validity and
applicability includes the case of very different layers. In fact, our
theory provides an accurate assessment of synchronization sta-
bility in networks whose layers are actually substantially different
from each other. Moreover, the accuracy of the predictions
increases with system size, raising the question of whether, in the
thermodynamic limit, the linear stability of the globally syn-
chronized state becomes a pure mean-field effect. In addition, the
numerical complexity of our approach is lower than that of
the exact solution of the problem. These considerations make the
application of our theory particularly attractive in the case of large
natural systems, whose studies have been so far frustrated, if not
completely inhibited, and which may now become tractable both
analytically and computationally.

Methods
Network structures. The simulations performed on Erdős-Rényi used a prob-
ability of occurrence of edges p= 0.4. This choice was made to guarantee a high
probability that the layers were connected, which was tested for in each case, and
which is a necessary condition for the existence of a globally synchronized state.
Simulations on layers with heterogeneous topology were carried out on
preferential-attachment layers with the same density. After creating the reference
layer, the second layer and third layer were obtained by perturbing the edges of the
first using a doubling-bisecting scheme to target the desired normalized dynamical
distance with a tolerance of 10−4.

Layer dynamics. The local dynamics of Rössler oscillators is described by x ¼
ðx1; x2; x3Þ; F xð Þ ¼ ð�x2 � x3; x1 þ ax2; bþ ðx1 � cÞx3ÞT . Here, we chose a=
b= 0.2 and c= 9 to ensure chaotic local dynamics. We also let the interaction
functions for the layers be H1 xð Þ ¼ ð0; x2; 0Þ and H2 xð Þ ¼ ðx1; 0; 0Þ, because these
choices are known to create a rich phase diagram with 6 distinct regions of
behaviour determined by the combinations of synchronization stability of the
individual layers27. The third layer in the 3-layer simulations was given interaction
function H3 xð Þ ¼ ðx1; 0; 0Þ.

ODE integration. The differential equation systems were integrated using a Runge-
Kutta-Fehlberg 4(5) method, with step size 0.01 and tolerance 10−6. The value of
each initial component of the projected global synchronization error vector
transverse to the synchronization manifold was chosen independently from a
Gaussian distribution. This guarantees that, upon normalization, the initial pro-
jected transverse synchronization error vector was a uniform random unit vector,
due to the spherical symmetry of multivariate normal distributions.

Estimate of maximum Lyapunov exponents. To compute the maximum Lya-
punov exponents, after a transient time of 50, we evolved the systems for 500
windows of 100 integration steps each. After each window, we computed the
logarithm of the norm of the components of the projected global synchronization
errors transverse to the synchronization manifold, and normalized them back to a
unit vector. Their averages provided estimates for the maximum Lyapunov
exponents sought.

Data availability
All data generated is present within the manuscript.
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