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Electron acceleration from transparent targets
irradiated by ultra-intense helical laser beams
David R. Blackman1, Yin Shi2, Sallee R. Klein3, Mihail Cernaianu4, Domenico Doria 4, Petru Ghenuche4 &

Alexey Arefiev 1✉

The concept of electron acceleration by a laser beam in vacuum is attractive due to its

seeming simplicity, but its implementation has been elusive, as it requires efficient electron

injection into the beam and a mechanism for counteracting transverse expulsion. Electron

injection during laser reflection off a plasma mirror is a promising mechanism, but it is

sensitive to the plasma density gradient that is hard to control. We get around this sensitivity

by utilizing volumetric injection that takes place when a helical laser beam traverses a low-

density target. The electron retention is achieved by choosing the helicity, such that the

transverse field profiles are hollow while the longitudinal fields are peaked on central axis. We

demonstrate using three-dimensional simulations that a 3 PW helical laser can generate a 50

pC low-divergence electron beam with a maximum energy of 1.5 GeV. The unique features of

the beam are short acceleration distance (∼100 μm), compact transverse size, high areal

density, and electron bunching (∼100 as bunch duration).
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The interest in helical light structures was triggered by a
groundbreaking study showing that they carry orbital
angular momentum1. There has been an ongoing effort to

utilize this property for various applications2. In recent years, the
attention has shifted towards higher intensity laser pulses with
helical wave fronts. The shift in interest can be credited to the
realization that the helical wave front structures can be achieved
by reflecting a conventional high-intensity laser beam off a helical
step-like mirror3–6. Given the high conversion efficiency afforded
by these mirrors, there is potential for these beams to be created
on the latest generation of extreme-intensity (~1023W cm−2)
laser facilities7,8.

High-intensity helical beams represent drivers with features
that are qualitatively different from those of conventional laser
beams. Manifestations of these features include the generation of
large magnetic fields inside a plasma9–11, production of helical
electron beams in laser-wakefield accelerators12,13, and improved
laser-driven ion acceleration14. The helicity or the wave front
twist introduces an extra ‘control knob’ for adjusting the field
topology. For example, the radial profile of the transverse electric
and magnetic field can be made hollow by twisting their wave
fronts. For a properly chosen twist, the helical laser beams can
have strong longitudinal electric and magnetic fields that peak on
the axis where there are essentially no strong transverse fields.
Such a unique field structure offers an exciting possibility of
generating collimated beams of ultra-relativistic electrons
via direct acceleration of electrons by the longitudinal laser
electric field.

The idea of using intense laser pulses to directly accelerate
electrons in a vacuum to ultra-relativistic energies15,16 is as old as
the capability to generate such pulses. However, successful
experimental implementation of the concept has been elusive, as
it requires a method for efficient electron injection into the laser
beam and a mechanism for counteracting transverse electron
expulsion that is typical for conventional laser beams. It has
recently been shown that no expulsion occurs if, rather than using
a conventional laser beam, one uses a helical laser beam with
dominant longitudinal electric and magnetic fields in the near-
axis region17. In this case, the electrons obtain their energy from
the longitudinal electric field. The longitudinal magnetic field is
essential for electron retention. Radially polarized laser beams can
also have a dominant on-axis longitudinal electric field18,19, but
they have no on-axis magnetic field. As a result, electron accel-
eration by these beams is rather sensitive to perturbative effects19.

In search of a solution to the electron injection problem,
multiple approaches have been examined and laser reflection off a
plasma mirror has emerged as the preferred method17–19. How-
ever, this method is sensitive to the gradient of the plasma den-
sity. Achieving a necessary steep density gradient at high laser
intensities is extremely difficult. It is also challenging to reliably
measure the electron density profile all the way to the reflection
point since the reflection at relativistic intensities occurs inside a
classically opaque region. Another difficulty arises due to the
constraint that experiments at ultra-high intensities must be
performed using oblique incidence. It has been shown experi-
mentally for radially polarized beams that the laser reflection in
the case of oblique incidence negatively impacts electron injection
and their subsequent acceleration19.

In this paper, we consider a qualitatively different approach,
offered by the recent progress in target fabrication, where the
injection takes place during volumetric interaction between the
laser and a solid target. It is now possible to produce inorganic
foam targets (e.g., SiO2 foam targets20,21 with the pore size of just
a few nm) whose electron density, after the target is fully ionized
and homogenized, is close to the classical cutoff density for an
optical laser. For a laser with an 800 nm wavelength, the cutoff

density (also often referred to as the critical density) is nc ≈ 1.7
× 1021 cm−3. This value is much higher than the electron density
in an expanding gas jet and much lower than the density in a
solid metal target. The advantage of near-critical targets, as those
made of inorganic foams22, is that they become transparent when
irradiated by a high-intensity laser, so they can transmit the laser
pulse and enable a volumetric interaction of the pulse with a
dense electron population. In the context of the electron accel-
eration problem, the benefit of the volumetric interaction com-
pared to the reflection is that the electron injection takes place at
an electron density that is known relatively well. Additionally, the
density is set by the target fabrication process rather than by the
laser prepulse, so it is possible to choose the desired density21.

Using three-dimensional particle-in-cell (3D PIC) simulations
we show that both the electron injection and the electron reten-
tion problems can be successfully solved by employing a ~10-μm-
thick near-critical target irradiated by a helical laser beam. We
consider a 3 PW, 29 fs laser beam focused to a 3 μm spot, but our
results are rather generic and not specific to these exact para-
meters. The electrons are “injected” into the laser beam while it is
being transmitted by the near-critical target. We find that a
proper choice of the target electron density ne is important for
preserving the topology of the laser beam. At maxðneÞ ¼ 0:5nc,
the considered laser beam retains its structure without generating
high-amplitude higher-order radial modes whose presence is
detrimental to the generation of an ultra-relativistic collimated
electron beam. The simulation for the optimal regime shows that,
upon exiting the target, the laser beam carries dense bunches of
electrons, which solves the injection problem. As shown in
Fig. 1a, b, the bunches remain close to the axis of the laser beam
due to the hollow profiles of the transverse fields, which solves the
retention problem. The electrons are accelerated by the long-
itudinal electric field that has a peak on the axis. The electron
energies seen in Fig. 1c reach 1.5 GeV, which is similar to the
maximum energy achieved using a plasma mirror and a 6 PW
laser pulse17. The divergence of the beam, whose charge is about
50 pC, is less than 3∘. Such a low divergence is the advantage of
the acceleration by the longitudinal, rather than the transverse,
electric field. The presented electron injection and acceleration
mechanisms are qualitatively different from those employed by
more established schemes that can achieve similar electron energy
and charge, e.g., laser wakefield acceleration23,24. The differences
lead to several unique features that include short acceleration
distance (~100 μm); high areal density (~1016 cm−2); the compact
transverse size of the beam (≲1 μm); and bunching of energetic
electrons, with the bunches being ~100 as in duration.

Results
We consider a setup where a thin (~10 μm) near-critical target is
irradiated by an ultra-high-intensity laser beam and becomes very
transparent due to the effect of the relativistically induced
transparency. The purpose of the target is to “inject” electrons
into the transmitted laser beam for their subsequent acceleration
in a vacuum. In our setup, the majority of the energy gain occurs
during the vacuum propagation of the transmitted laser. In order
to make this process effective, one must use a beam structure that
can accelerate electrons without the transverse expulsion that is
typical for conventional laser beams whose transverse fields peak
on the central axis. Here we focus specifically on helical beams
and, in the next two subsections, we identify the most suitable
helical mode and make analytical predictions for the electron
energy gain. The desired mode can be created (even at a high
intensity) from a conventional laser beam using recently devel-
oped techniques involving reflective optics. However, the con-
sidered target must preserve the helicity of the beam during its
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transmission without generating high-amplitude higher-order
radial modes. Our 3D PIC simulations for different target den-
sities explore the changes induced during the beam transmission.
We use these results to identify the optimal regime. This section
concludes by considering a case of oblique incidence for the
optimal density aimed to show that the considered setup can be
used in those laser systems that do not permit experiments at
normal incidence.

Vacuum field structure of a helical laser beam. As shown in
Fig. 1a, we consider a laser beam propagating in the positive
direction along the x-axis. In the case of a beam with helical wave
fronts, it is convenient to represent the spatial structure of each
field component as a superposition of Laguerre-Gaussian modes.
The modes describing vacuum propagation are well-known, so
we provide the corresponding expressions without derivation.
The purpose is to identify the key features and set the stage for
the discussion of electron acceleration.

The polarization of a laser beam determines the orientation of
its fields, whereas the helicity or twist index l determines the
topology of the wave fronts. We illustrate the difference by
considering a linearly-polarized beam with wavelength λ0 and
beam width w0 that has Ey and Ex electric field components and
Bz and Bx magnetic field components. It is convenient to use
cylindrical coordinates (x, r, ϕ) to describe the spatial structure of

each component, where r is the distance and ϕ is the polar angle
in the (y, z) plane. The transverse electric field Ey of a mode with a
twist index l and radial index p is given by

Eyðex;er; ϕ; tÞ ¼ E0ψp;lgðξÞ expðiξÞ; ð1Þ

ψp;l � Cp;l f ðexÞjljþ1þ2pð1þ ex2ÞpLjljp 2er2
1þ ex2

� � ffiffiffi
2

p er� �jlj
exp �er2f ðexÞ þ ilϕ

� �
;

ð2Þ

f ðexÞ � 1� iex
1þ ex2 ; ð3Þ

ξ � 2ex=θ2d � ωt; ð4Þ
where E0 is a constant that sets the field amplitude, Cp,l is a
normalization coefficient, g(ξ) is the temporal envelope, Ljljp is the
generalized Laguerre polynomial. Additionally, we introduced the
beam divergence angle θd= w0/xR, the Rayleigh length
xR ¼ πw2

0=λ0, and the laser frequency ω= 2πc/λ0. The tilde
indicates the following normalization:

ex � x=xR; ð5Þ

er � r=w0: ð6Þ

Fig. 1 Electron acceleration by a helical beam transmitted through a relativistically transparent target and the vacuum field structure of the beam.
a Longitudinal electric field Ex (red/blue) and electron density ne (green) shortly after a circularly-polarized helical beam (l=−1, σ= 1, and p= 0) passes
through a near-critical target with maxðneÞ ¼ 0:5nc (prior to the arrival of the laser). The red/blue colors correspond to Ex≷ 0 and the contours show ∣e∣Ex/
mecω= ±1, 2, 4, 6, 8 in decreasing opacity. The green color shows ne between 0.025nc (transparent green) and 0.05nc (fully opaque green). b Trajectories of
four energetic electrons that are located within the central-most bunch at t= 398.3 fs. The dashed vertical lines mark the initial target boundary. Color-coded
is the kinetic energy εk= (γ− 1)mec2. c Time evolution of the energy distribution for forward-moving electrons (px > 10mec) that are close to the central axis
of the laser beam. The specific selection criterion is ∣y∣ < 1 μm, ∣z∣ < 1 μm, and x > 0 within the moving window used in the simulation. The time t= 0 is the
time when the peak of the laser envelope passes through x= 0 in the absence of the target. d–h Vacuum (in the absence of the target) field structure of the
circularly-polarized laser beam at t=−1.7 fs. The vertical dashed line in (d) and (e) indicates where the planes shown in these panels intersect. The same
dashed line is shown in (g) and (h). d, g Transverse, Ez, and longitudinal, Ex, an electric field in the (x, y)-plane at z= 0. e, h Transverse, Ez, and longitudinal,
Ex, electric field in the (z, y)-plane at x marked by the dashed line in (d) and (g). f Line-outs of the transverse and longitudinally electric fields along the
dashed line are shown in (d) and (e) for the transverse field and in (g) and (h) for the longitudinal field. The subscript s denotes z for the solid blue curve and
x for the dot-dashed orange curve. The thin vertical dashed lines mark the boundaries of the region where the longitudinal field dominates.
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We set Cl;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p!=πðpþ jljÞ!

p
, so that

R 2π
0 dϕ

R1
0 ψp;lψ

�
p;lerder ¼ 1.

The transverse magnetic field is simply Bz= Ey. It follows from
Eqs. (1) and (2) that, even though the polarization of the modes
with different l is the same, the surface of the constant phase
changes its shape with the change of l. Specifically, it becomes
helical for l ≠ 0, whereas the l= 0 case corresponds to a
conventional laser beam whose wave fronts have no twist.

The helicity profoundly alters the radial dependence of the
laser fields. For simplicity, we examine the field structure in the
vicinity of the focal plane (ex ¼ 0). The transverse fields of a
conventional beam (l= 0) peak on the central axis. In contrast to
that, Ey and Bz of a helical beam vanish on the central axis, with
Ey ¼ Bz / erjlj at er � 1. It follows from Eqs. (1) and (4) that for
l ≠ 0 the surface of constant phase for the transverse electric and
magnetic fields is a helix. The sign of l determines the direction of
the twist and the value of ∣l∣ determines the number of full
rotations/twists per wavelength: Δx/λ0=− lΔϕ/2π.

The changes in the topology of the transverse fields lead to
similarly profound changes in the topology of the longitudinal
electric and magnetic fields. The changes result from the fact that
the electric and magnetic fields must be divergence-free, with
(∇ ⋅ E)= 0 and (∇ ⋅ B)= 0. We are particularly interested in the
field structure close to the axis where Ey and Bz vanish for helical
beams. It follows from (∇ ⋅ E)= 0 that for the considered
linearly-polarized wave we have

Ex ¼
iθd
2

sinϕ
∂

∂er þ cos ϕer ∂

∂ϕ

	 

Ey: ð7Þ

For a helical beam (i.e., l ≠ 0), we have ∂Ey=∂er � jljEy=er close to
the central axis. We take this into account to find from Eq. (7)
that at er � 1 the longitudinal electric field is approximately
given by

E ±
x � iθd

2
jljer e�iϕEy / erjlj�1; ð8Þ

where the superscript on the left-hand side represents the sign of
l. The longitudinal magnetic field Bx has the same radial
dependence. The modes with ∣l∣= 1 are evidently unique because
their longitudinal fields peak on the central axis. The longitudinal
fields of these modes dominate in the near-axis region, so these
modes are well-suited for longitudinal electron acceleration.

These results can be generalized to the case of a circularly-
polarized laser beam. We construct such a beam out of two
linearly-polarized beams with a phase offset. Its transverse electric
field is set by the relation Ez= iσEy, where Ey is given by Eq. (1).
Here σ= 1 corresponds to a right-circularly-polarized wave and
σ=−1 corresponds to a left-circularly-polarized wave. Only for
∣l∣= 1 the longitudinal rather than transverse fields peak on axis,
but the two circular polarizations (right and left) are not
equivalent. In the case of σ=−l, the longitudinal fields reach
their highest amplitude at er ! 0. On the other hand, in the case
of σ= l, the longitudinal fields vanishes on the central axis.
Figure 1 compares the topology of the transverse and longitudinal
electric fields in the circularly-polarized beam with σ=−l and
l=−1. Figure 1d, e show that the transverse field for this beam
indeed vanishes on the central axis. In the near-axis region, the
longitudinal electric field dominates, as seen in Fig. 1f. The
structure of the longitudinal field is shown in Fig. 1g, h.

Close to the axis, Ex and Bx are axis-symmetric for both linearly
and circularly-polarized pulses. The linearly-polarized beam loses
this symmetry away from the axis. In contrast to that, the fields of
the circularly-polarized beam with σ=−l retain their symmetry
[e.g., see Fig. 1h]. Motivated by this observation, we focus in the
remainder of this paper on the more symmetric circularly-polarized

beam with σ=−l= 1. Its longitudinal electric field is

Ex ¼
iθdEye

iϕ jlj=er �erf � Ljljþ1
p�1 =ð1þ ex2ÞLjljph i

for p≥ 1;

iθdEye
iϕ jlj=er �erf� �

for p ¼ 0:

8<
: ð9Þ

The longitudinal magnetic field has the same radial dependence, but
it has an additional phase shift: Bx= iEx.

We have intentionally retained higher mode numbers corre-
sponding to p ≥ 1 in our analysis. Even if the irradiating laser
beam contains only a single radial mode (e.g., p= 0), the
transmitted beam is likely to consist of various modes with
different amplitudes (this assertion is later confirmed via mode
decomposition). The mode coupling during laser propagation
through the thin targets occurs due to laser focusing by the
plasma. By definition, the radial mode number p changes the
radial field structure of Ex away from the axis. However, the on-
axis field changes with p as well. In order to clearly identify the
corresponding changes, we take the limit of er ! 0 in Eq. (9).
Note that the expressions in square brackets reduce to jlj=er for
p ≥ 1 and for p= 0. We then have

Exðer ¼ 0Þ ¼ igðξÞEmax
k

1þ ex2 exp iξ � i2ð1þ pÞ tan�1ðexÞ� �
; ð10Þ

where

Emax
k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
π

r
θdE0 ¼

2
π

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
π

r
λ0
w0

E0 ð11Þ

is the peak value of the longitudinal electric field.
The explicit dependence of the phase of the on-axis field on the

mode number via the (1+ p) multiplier deserves particular
attention. We define the phase velocity as vph= dx/dt for the
constant phase given by the expression in the square brackets in
Eq. (10). We take the derivative of this expression with respect to
t and assume that θd is small to find the following approximate
expression for the relative superluminosity:

vph � c

c
� ðpþ 1Þθ2d

1þ ex2 � 1: ð12Þ

The key feature here is that the relative degree of superluminosity
is given by Eq. (12) increases with the radial mode number. Even
though the phase velocity is very close to the speed of light, the
explicit dependence on p can have a significant impact on the
dynamics of ultra-relativistic electrons with c− vx≪ vph− c.

Estimates for electron acceleration by the longitudinal electric
field of a helical beam. In order to obtain analytical scalings for
the energy and momentum gain, we consider an electron that is
moving along the central axis of a circularly-polarized helical
beam with σ=−l= 1. The transverse fields of this beam vanish
on the axis, so such a simple model is a reasonable approximation
for the dynamics of electrons that start their motion close to the
axis. Even though most of the energy gained by electrons in our
setup takes place in a vacuum, we anticipate that the electrons
undergo some initial acceleration while moving with the laser
through the target. We mimic this by assuming that electron
starts its vacuum acceleration with an initial relativistic long-
itudinal momentum px= p0≳mec.

Under our assumptions, the change in electron momentum
results from the electron interaction with Exðer ¼ 0Þ whose explicit
expression is given by Eq. (10):

Δpx ¼ pxðtÞ � p0 ¼ �
Z t

t0

jejExðer ¼ 0Þdt0; ð13Þ

where t0 is the time when the electrons starts its vacuum
acceleration with the initial momentum p0. In order to compute
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this integral, one needs to know how the phase of Ex evolves along
the electron trajectory. Even though a general dependence is
complicated, a simplified expression can be derived for a regime
where c− vx≪ vph− c. We find from Eq. (12) that the condition
c− vx ≈ vph− c is equivalent to

γ � γ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ex2p

=2ðpþ 1Þθd ð14Þ

for a forward-moving electron with γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2x=c

2
p

. The
irradiating laser beam in the simulation whose results are shown
in Fig. 1 has w0= 3 μm, λ0= 0.8 μm, and p= 0. This means that
the requirement c− vx≪ vph− c is satisfied after the electron γ-
factor (at ex ≲ 1) exceeds γ� � 12. This is not a particularly
constraining condition, considering that the peak value of γ
exceeds 3000. The condition eventually breaks down at large ex as
vph decreases and approaches c, with the corresponding value of ex
increasing with γ. In the considered example, this occurs at a very
large distance of ex � 17 even for a relatively modest γ ≈ 100. At
such a large distance, the laser amplitude is very low due to the
beam divergence, so no energy gain takes place and the
breakdown of the considered condition is inconsequential.

In the regime where c− vx≪ vph− c, the change in phase is
predominantly determined by the superluminosity of the wave
fronts. We can thus set x= x0+ c(t− t0) and eliminate the
explicit time dependence of the phase. For simplicity, we consider
an electron that undergoes its acceleration in a region close to the
peak of the field envelope, so that g(ξ) ≈ 1. The resulting
expression for the longitudinal on-axis electric field is

jejEx

mecω
¼

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
π

r
2a0θd
1þ ex2 sin Φ0 þ 2ðpþ 1Þ tan�1ðex0Þ � tan�1ðexÞ� �� �

;

ð15Þ
where

a0 �
jejE0

mecω
ð16Þ

and e and me are the electron charge and mass. We have
introduced Φ0, which is the phase of Ex at ex ¼ ex0 at t= t0, to
explicitly take into account the initial conditions. In our analysis,
Φ0 is an input parameter that can be interpreted as the ‘injection
phase’ at the start of the vacuum acceleration. In order to
calculate the integral in Eq. (14) we change the integration
variable from t0 to ex0 by taking into account that dex0=dt0 � c=xR.
The resulting expression for the change of momentum is

Δpx
mec

¼ 2a0
θd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðpþ 1Þ

p cosΦ0 � cos Φ0 þ 2ðpþ 1Þtan�1ðex0Þ��
�2ðpþ 1Þtan�1ðexÞ��:

ð17Þ
Based on the obtained expression, there are two distinct

regimes of electron acceleration: acceleration by modes with an
even radial index p and acceleration by modes with an odd radial
index p. In order to make the difference more evident, we
consider the terminal change in momentum. The corresponding
expression is obtained by taking the limit of ex ! 1. We further
simplify the expression by assuming that ex0 � 1, so that
tan�1ðex0Þ � ex0. In the case of an even p value, we obtain

ðΔpxÞterm
mec

¼ 4a0 cos ðpþ 1Þex0� �
θd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðpþ 1Þ

p cos Φ0 þ ðpþ 1Þex0� �
: ð18Þ

In the case of an odd p value, we obtain

ðΔpxÞterm
mec

¼ 4a0 sin ðpþ 1Þex0� �
θd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðpþ 1Þ

p sin Φ0 þ ðpþ 1Þex0� �
: ð19Þ

The difference in the prefactor that is independent of the
injections phase Φ0 means that the momentum gain for odd
values of p can be significantly suppressed if ðpþ 1Þex0 � 1. The
p= 1 mode is the one that is most impacted for ex0 � 1.

The qualitative difference in acceleration between different p values
can be understood by examining the terminal phase slip. According
to (17), the phase slip is ΔΦ ¼ 2ðpþ 1Þ½tan�1ðex0Þ � tan�1ðexÞ�. For
an electron that starts its acceleration at ex0 � 0, the phase slip atex !1 is ΔΦ=− π(p+ 1). The dependence on p here is a result of
the dependence of vph on p [see Eq. (12)]. The key point is that the
electron is slipping with respect to Ex faster at higher p. Since
ΔΦ=− π for p= 0, then a properly injected electron can remain in
the accelerating phase of the beam almost the entire time. In contrast
to that, we have ΔΦ=−2π for p= 1. The electron then experiences
not only acceleration but also deceleration by Ex. The deceleration
leads to the reduction of ðΔpxÞterm given by Eq. (19). At p= 2,
ΔΦ=−3π and the electron can experience the accelerating phase
twice. As a result, the momentum gain increases compared to the
case with p= 1. However, it is reduced compared to the p= 0 case
because the acceleration alternates with deceleration.

The key conclusion from our results is that, for given a0 and θd,
the biggest momentum increase and thus the biggest energy gain
should be expected for a mode with p= 0. Excitation of the
modes with higher p values during the beam propagation through
the target is likely to be detrimental. The plasma can also focus
the beam, reducing w0. The size of the focal spot w0 however has
no impact on the terminal momentum gain at fixed power17. At
fixed power, a0 scales as 1/w0. On the other hand, the divergence
angle θd also scales as 1/w0. As a consequence, the ratio of a0/θd
that enters the expressions for ðΔpxÞterm remains unaffected by
changes in w0, provided that the beam power remains the same.

3D PIC simulation results. In order to perform a self-consistent
analysis of the electron acceleration in the considered setup, we
have performed a 3D PIC simulation with a moving window
where a uniform plasma slab is irradiated by a normally incident
3 PW, 29.4 fs helical laser beam that is focused to a 3 μm spot to
achieve a0 ≈ 89. Detailed simulation and target parameters are
provided in the Methods section. The incident beam is chosen to
be circularly-polarized with l=−1, σ= 1, and p= 0 because this
mode has been identified as the optimal mode for the vacuum
acceleration of electrons. The laser focal plane (in the absence of
the target) is located at x= 0 μm. The target is 12 μm-thick with a
central plane located at x= 0 μm. The target is uniform in the
central region that is 8 μm-thick. There are 2 μm density ramps
on both sides to mimic target pre-expansion that likely takes
place in experiments with ultra-high intensity due to the presence
of a prepulse. The electron density in the target is subcritical,
nmax ¼ 0:5nc, so the target is transparent to the laser pulse.

Figure 1a shows the topology of the longitudinal laser electric
field Ex and electron density in the beam transmitted by the target
at t= 88.3 fs. The time t= 0 fs is defined as the time when the
peak of the laser envelope passes through x= 0 in the absence of
the target. In the incident beam, Ex peaks on the axis of the beam,
since l=−1 and σ= 1. The target evidently preserves this key
feature, with Ex remaining peaked on the axis of the transmitted
beam. The surface plot of the electron density past the initial
surface of the target (x > 6 μm) confirms that the laser propaga-
tion through the transparent target serves as an effective
mechanism for electron injection. The peak electron density in
the transmitted beam exceeds 10% of the initial electron density
in the target. There are two key features that are evident from the
plot of ne: the electrons are confined in the transverse direction
and they are bunched longitudinally with a period roughly equal
to λ0. The confinement results from a combination of vanishing
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transverse electric and magnetic fields near the central axis and a
peaked longitudinal magnetic field on the central axis. The
electron bunching is a manifestation of the electron acceleration
by the longitudinal laser electric field. Similar bunching can be
observed for test electrons that are initially uniformly distributed
along one wavelength by integrating electron equations of motion
with Ex given by Eq. (15).

Figure 1b, c show several representative electron trajectories
and the time evolution of the electron spectrum for all injected
electrons. Rather than moving only along the x-axis, the electrons
in Fig. 1b move at an angle of θ ≈ 3.3 × 10−3 to the central axis
during the acceleration process. In this case, the longitudinal
velocity is determined mainly by the angle θ and not by the
difference between v and c, so that ðc� vxÞ=c � 1� cos θ � θ2=2.
On the other hand, the laser divergence angle is at least
θd= 8.5 × 10−2 (the transmitted beam is narrower, which means
its divergence angle is greater than this value). It follows from Eq.
(12) that, for ex ≲ 1 and p= 0, we have ðvph � cÞ=c ≲ θ2d=2. We
then conclude that c− vx≪ vph− c for the considered particle
trajectories. Therefore, the change in phase during the accelera-
tion is predominantly determined by the superluminosity of the
wave fronts and the expressions derived for the electron
momentum gain are applicable to these trajectories in Fig. 1b.

In order to estimate the maximum possible momentum gain,
we assume that the transmitted beam is only a p= 0 mode. We
have already shown that the beam narrowing or widening is
inconsequential in terms of the momentum gain, so we take the
original values of θd= 8.5 × 10−2 and a0= 88.6. It follows from
Eq. (18) that

ðΔpxÞterm � 2:35 ´ 103mec cos ex0� �
cos Φ0 þ ex0� �

≤ 2:35´ 103mec:

ð20Þ
This corresponds to a maximum energy gain of 1.2 GeV during
the acceleration in vacuum by the longitudinal electric field of the
helical beam with p= 0. The electrons that start at the rear side of
the target, e.g. x0= 5 μm, can achieve an energy gain very close to
this value because the target is relatively thin compared to the
Rayleigh length xR. Indeed, we have cos ex0� �

cos Φ0 þ ex0� � � 0:99
for Φ0 ≈−0.047π and ex0 ¼ x0=xR � 0:14, where x0= 5 μm and
xR ≈ 35 μm.

According to the time evolution of the electron spectrum
shown in Fig. 1c, the maximum terminal electron energy in the

3D PIC simulation is however about 25% or 300MeV higher than
what is predicted by Eq. (20). We have performed particle
tracking that shows that the electrons leaving the target have
appreciable energy, with a peak kinetic energy of ~300MeV at
x ≈ 5 μm. Using this value as an initial condition, we can then
reconcile the result of the PIC simulation with the prediction
given by Eq. (20). Specifically, εtermk ¼ ðγterm � 1Þmec

2 � ptermx c ¼
p0cþ ðΔpxÞtermc � 1:5 GeV, where p0 is the initial momentum
corresponding to εk= 300MeV and ðΔpxÞterm is the contribution
from the vacuum acceleration for Φ0 ≈−0.047π and x0= 5 μm.
The conclusion then is that the acceleration within the target,
which is likely to differ from that in a vacuum due to the presence
of the plasma electric and magnetic fields, provides an additional
mechanism for the energy gain in the considered setup.

Target density scan. We have performed two additional 3D PIC
simulations to examine the impact of the target density on the
discussed electron acceleration process. In both simulations, the
electron density in the target is higher than the electron density in
the original simulation (nmax ¼ 0:5nc). These two densities are
nmax ¼ 2:5nc and nmax ¼ nc. The results of the two additional
runs are shown in Fig. 2, where we also show the results of the
original simulation to facilitate the comparison between different
target densities.

Figure 2a–f show the electron density and the topology of the
longitudinal electric field shortly after the laser pulse transmission
in all three simulations (t= 48.3 fs). We find from Fig. 2a–c that
the divergence of the electron “beam” generated by the laser pulse
outside of the target (x > 6 μm) reduces as we reduce the target
density. The fact that the electrons in Fig. 2c have traveled further
along the x-axis than in Fig. 2a is a result of a higher group
velocity in the lower density target. We also observe noticeable
changes to the structure of the longitudinal electric field Ex in the
transmitted laser beam. As we reduce the target density, we find
that the radial dependence in Fig. 2d–f changes, which suggests
that higher radial modes (the original beam is a p= 0 mode) are
generated during the laser beam transmission by the target.

Figure 2g–i show the electron density profiles at t= 248.3 fs for
all three targets. By this point in time, the electrons shown in the
plots have experienced significant acceleration. We find that the
already discussed increased divergence at higher target density at
t= 48.3 fs translates into the higher divergence of the accelerated

Fig. 2 Target density scan for a circularly-polarized helical beam. a–c Electron density ne normalized to the critical density nc for three different target
densities (nmax ¼ 2:5nc, 1.0nc, and 0.5nc), shortly after laser pulse transmission (t= 48.3 fs). d–f Normalized amplitude of the longitudinal electric field, ∣e∣∣Ex∣/
mecω, for the same three target densities also at t= 48.3 fs. g–i Density of accelerated electrons for the same three target densities at t= 248.3 fs. j–l Time
evolution of the energy distribution for forward-moving electrons selected using the same criterion as that used for Fig. 1c, with εk= (γ− 1)mec2. In panels (a–i),
the quantities are shown in the (x, y)-plane at z=0. Panels (a), (d), (g), and (j) correspond to a target with nmax ¼ 2:5nc; panels (b), (e), (h), and (k)
correspond to a target with nmax ¼ nc; panels (c), (f), (i), and (l) correspond to a target with nmax ¼ 0:5nc.
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electrons at t= 248.3 fs. In the case of the target with an initial
density of ne= 0.5nc, the accelerated electrons remain within
roughly 1 μm distance of the central axis, shown with the vertical
dashed lines in Fig. 2i. In the case of the target with nmax ¼ 2:5nc,
there are electrons that are at least 6 μm away from the central
axis, which means that the divergence angle for the electrons at
this density is roughly six times higher than that in the simulation
with nmax ¼ 0:5nc.

The target density increase also impacts the energy gain by the
electrons during their vacuum acceleration by the transmitted
laser beam. Figure 2j –l show the time evolution of the energy
spectra for the electrons that remain close to the central axis
(∣y∣ < 1 μm and ∣z∣ < 1 μm). As we increase the target density from
nmax ¼ 0:5nc to nmax ¼ 1:0nc, the energy gain remains relatively
unchanged. However, a further increase from nmax ¼ 1:0nc to
nmax ¼ 2:5nc causes a visible reduction. We conjecture that the
difference in the energy gain is, in part, caused by the excitation of
higher-order radial modes, as these modes are less effective in
terms of electron acceleration.

In order to find the changes in the structure of the transmitted
beam in each simulation, we perform a mode decomposition
detailed in the Methods. We perform our analysis for a snapshot
of the magnetic field Bz at t= 88.3 fs. In general, it is not possible
to recover the mode structure from a single snapshot due to
insufficient information regarding the propagation of the field.
However, the inherent ambiguity can be resolved in our case by
taking into account that there are no reflected modes behind the
target. This information is not automatically encoded in the real
field values outputted by the PIC code. We use the Hilbert
transform to convert the real field Bz provided by the PIC code
into a complex field BH

z , where the imaginary part is such that the
field represents a beam propagating in the positive direction along
the x-axis.

The field is given by the following mode decomposition:

jejBH
z ðex;er; ϕ; tÞ
mecω

¼ ∑
1

p¼0
∑
1

l¼�1
bp;lðξÞψp;lðex;er; ϕÞ expðiξÞ

	 

: ð21Þ

We find the complex amplitudes bp,l(ξ) by performing a double
integral

bp;lðξÞ ¼
Z 2π

0
dϕ

Z 1

0

jejBH
z

mecω
ψ�
p;lðex;er; ϕÞ expð�iξÞerder	 


: ð22Þ

The transverse coordinate is normalized to w0
0 rather than to w0

that is associated with the irradiating beam. We determine the
value of w0

0 by minimizing the number of modes with considerable
amplitude in the decomposition, as detailed in the Methods. To
understand the need for minimization, consider the original beam.
It is represented by a single-mode with l=−1 and p= 0 if
w0
0 ¼ w0. On the other hand, it is represented by multiple modes if

w0
0≠w0. The amplitudes of the additional modes increase with the

increase of the mismatch in the transverse scale, jw0
0 � w0j. The

two representations are equivalent, but the decomposition that
contains only a single mode is much easier to use when
considering electron acceleration.

Figure 3 shows jBH
z j of the transmitted beam in the simulations

with nmax ¼ 2:5nc and nmax ¼ 0:5nc at t= 88.3 fs [see Fig. 3a, d].
The discussed minimization procedure yields w0

0=w0 � 0:8 for
nmax ¼ 2:5nc and w0

0=w0 � 0:9 for nmax ¼ 0:5nc. Additional
details are provided in Methods. In both simulations, the modes
with l=−1 and p= 0, which are the l and p values of the original
beam, dominate the decomposition. The corresponding
field profiles for these modes in the (x, y) plane are shown in
Fig. 3b, e, where we use the following notation: jejBp;l=mecω ¼
bp;lðξÞψp;lðex;er; ϕÞ expðiξÞ. We find that max jb0;�1j � 92:43 for
nmax ¼ 2:5, whereas max jb0;�1j � 94:37 for nmax ¼ 0:5.

For comparison, max jb0;�1j � 88:6 in the original beam. The
amplitude increase is a result of the beam narrowing that occurs
during the propagation inside the target. In both cases, the
amplitudes of the modes with l ≠−1 are negligible.

The narrowing of the beam inside the plasma generates modes
with higher radial numbers. In both cases, the generated mode
with the biggest amplitude is the p= 2 mode (see Methods for a
plot of mode amplitudes). However, the mode amplitude
increases with the increase of the target density. We find that
max jb2;�1j � 30:68 for nmax ¼ 2:5, whereas max jb2;�1j � 16:51
for nmax ¼ 0:5. The structure of the modes with p= 2 and l=−1
is shown in Fig. 3c, f. The mode decomposition indicates that
there is a phase shift with respect to the dominant mode, with
Δξ ≈−2.73 for nmax ¼ 2:5 and Δξ ≈−2.40 for nmax ¼ 0:5 close to
the peak of the envelope. The phase shift varies only gradually
along each transmitted beam compared to the oscillations
associated with λ0, so we can treat it as being constant for our
estimates.

The described changes in the structure of the transmitted
beams impact the acceleration of electrons in vacuum. Our
primary focus is on the relative differences between the
simulations with nmax ¼ 2:5 and nmax ¼ 0:5. We use Eq. (18)
to find that for the acceleration by the main mode, i.e., the mode
with p= 0 and l=−1,

ðΔpxÞtermnmax¼2:5

ðΔpxÞtermnmax¼0:5

¼ jb0;�1jw0
0

h i
nmax¼2:5


jb0;�1jw0

0

h i
nmax¼0:5

� 0:87;

ð23Þ
where we took into account that the amplitude of the transverse
electric field is equal to the amplitude of the magnetic field and
that θd / 1=w0

0. The estimate assumes that the acceleration starts
close to the focal plane and that the electrons are injected into the
most favorable phase, which is Φ0= 0. The conclusion from
Eq. (23) is that there is less power associated with the dominant
mode at higher density, which contributes to the reduction in
energy gain.

The impact of the p= 2 mode can also be assessed using Eq.
(18). The analysis that we used to derive Eq. (18) neglects changes
to the electron velocity during the acceleration. Therefore, the
contributions from the modes with p= 2 and p= 0 can be added
up while taking into account their phase shift. For the sake of
simplicity, we again assume that the acceleration starts close to
the focal plane and that the electrons are injected into the p= 0
mode with Φ0= 0. Using the parameters provided earlier for the
p= 2 mode in both simulations, we find that

ðΔpxÞtermnmax¼2:5

ðΔpxÞtermnmax¼0:5

¼ jb0;�1jw0
0 þ

1ffiffiffi
3

p jb2;�1j cosðΔξÞw0
0

	 

nmax¼2:5

jb0;�1jw0
0 þ

1ffiffiffi
3

p jb2;�1j cosðΔξÞw0
0

	 

nmax¼0:5

� 0:78:

ð24Þ
The difference between the two cases has further increased with
the inclusion of the p= 2 mode that is generated while the beam
passes through the target. At nmax ¼ 2:5, the amplitude of this
mode is almost two times higher than at nmax ¼ 0:5. This mode is
decelerating the electron due to its phase shift, which explains
why the difference between the two cases has increased.

Our analysis neglects higher-order harmonics generated during
the considered laser-plasma interaction. The amplitude of the second
harmonic in our simulations is roughly two orders of magnitude
smaller than the amplitude of the main mode. We have performed
two additional simulations with a higher spatial resolution (see the
Methods section for details): one for the target with ne= 2.5nc and
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one for the target with ne= 0.5nc. In these simulations, the amplitude
of the second harmonic is three orders of magnitude smaller than the
amplitude of the main mode, which means that the amplitude of the
second harmonic is lower than in the original simulations. We can
therefore conclude that the harmonics generated in our setup are too
weak to significantly influence electron acceleration. The mode
decomposition shows higher radial modes with amplitudes that are
~30% of the zeroth mode, far larger than the contributions of the
second harmonic. This is the reason why our focus is on the impact
of the higher-order radial modes.

Our estimates explain the trend observed in the simulations
and, more importantly, clarify the negative impact of higher
radial modes on electron acceleration. Another feature of the
modes with the high p values is that their transverse fields peak
much closer to the axis than for the mode with p= 0. For
example, the field in Fig. 3c peaks close to the vertical dashed line,
whereas the field in Fig. 3b peaks at a distance from the central
axis that is about three times greater. The same is the case for the
transverse electric field. The transverse fields of the higher p
modes close to the central axis deteriorate electron confinement
and increase the rate of the phase slip by adding transverse
momentum. These aspects are likely to further reduce the energy
gain in the higher density case where the modes with p ≥ 2 have a
much higher amplitude (see Methods).

Optimal regime at normal and oblique incidence. We now
consider just the lowest density case, nmax ¼ 0:5nc, that delivers
the best performance with the goal of providing additional details
regarding the electron acceleration.

Figure 4 shows the case of normal incidence, where panel a
shows the electron density during the laser beam transmission
and panels b through e show various characteristics of the
accelerated electrons much later in time. During the laser beam
transmission, it produces a ring-like channel inside the target,

with a narrow mostly straight compressed region at the center,
as seen in Fig. 4a. The electrons injected into the laser pulse are
accelerated in the positive direction along the x-axis. Figure 4e
shows the number density ne in the (x, y)-plane at t= 238.3 fs and
demonstrates that the electrons remain tightly grouped in
bunches close to the laser axis. Figure 4b shows the corresponding
areal density obtained by integrating ne of the entire electron
beam along x. The areal density is concentrated in the region
where the longitudinal laser electric field dominates. The average
divergence angle for the electrons with r < 1 μm is 47 mrad or
2.7∘. The electron energy distribution as a function of the
longitudinal coordinate x and divergence angle θ⊥ is shown in
Fig. 4d, c, respectively. The profile of the maximum kinetic
energy in Fig. 4d is similar to the envelope of the laser pulse,
though the higher energy electrons (εk≳ 1 GeV) can be seen to be
grouped in bunches with a length of ≲0.2 μm, which is equivalent
to a temporal bunch length of ≲0.6 fs. The peaks correspond to
the oscillations of the longitudinal laser electric field.

In order to emphasize the advantages of using the helical beam
to inject and accelerate electrons, we have repeated the simulation
discussed here using a plane-polarized Gaussian beam that has
the same energy, peak power, and temporal envelope. Figure 4f
shows a snapshot of the electron density while the Gaussian beam
is traversing the target. In contrast to Fig. 4a for the helical beam,
no dense population of electrons is being injected in the near-axis
region. Instead, the electrons appear to be strongly divergent even
at this early stage. This aspect, together with fundamental
differences in the field topology, leads to a strongly divergent and
very diffuse electron population at later times. The areal density
of laser-accelerated electrons in Fig. 4g shows that the electron
profile is more reminiscent of a result associated with a point
source rather than with a beam.

The electron energy spectra are compared between the two
runs by using all of the electrons generated by the Gaussian beam.
In the case of the helical beam, we select only the electrons in

Fig. 3 Mode structure of the laser beam at higher and lower target densities. a Amplitude of the complex field BHz determined by the Hilbert transform
from a snapshot of Bz at t= 88.3 fs in the 3D PIC simulation for a target with nmax ¼ 2:5nc. b The amplitude of the dominant mode with l=−1 and p= 0
obtained by mode decomposition of BHz in (a). c The amplitude of a generated mode with l=−1 and p= 2 obtained by mode decomposition of BHz in (a).
d Amplitude of the complex field BHz determined by the Hilbert transform from a snapshot of Bz at t= 88.3 fs in the 3D PIC simulation for a target with
nmax ¼ 0:5nc. e The amplitude of the dominant mode with l=−1 and p= 0 obtained by mode decomposition of BHz in (d). f The amplitude of a generated
mode with l=−1 and p= 2 obtained by mode decomposition of BHz in (d).
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the near-axis region. This is done by limiting the transverse
dimensions to ∣y, z∣ < 5 μm at t ≈ 398 fs. The Gaussian laser beam
produces so few electrons in the same region, marked with a
dashed square in Fig. 4g, that a direct comparison would discard
most of the laser-accelerated electrons. This is the reason why the
plots in Fig. 4h, i that corresponds to the Gaussian beam include
all of the electrons in the simulation box. Our box is a square that
is 28 μm wide, so the corresponding selection criterion is
∣y, z∣ < 14 μm. It is evident from the electron spectra in Fig. 4i
that the cut-off energy for the Gaussian beam is roughly 1.7 lower
than that for the helical beam. Moreover, the energetic electrons
generated by the Gaussian beam have a much wider angular
distribution, as seen in Fig. 4h. Another way to interpret the result

is by pointing out that the energetic collimated part (εk > 800
MeV; θ⊥ < 80 mrad) from Fig. 4c is missing in Fig. 4h.

It is also worth noting that even though both beams have the
same peak power (3 PW), the helical beam has a lower peak
electric field. Indeed, due to both the circular polarization and the
intrinsically hollow beam profile, the peak electric field in the
helical beam, jejEmax=mecω ’ 42, is roughly two times lower than
the peak electric field in the plane-polarized Gaussian beam,
jejEmax=mecω ’ 88. Despite this, the helical beam produces
electrons with peak energy close to twice that of the Gaussian
beam. This underlines the fact that our findings are a
manifestation of qualitative differences in physics between the
two types of laser beams.

Fig. 4 Optimal regime of electron acceleration at normal incidence and comparison with a plane-polarized Gaussian beam. a–e Electron data from
a simulation where a target with nmax ¼ 0:5nc is irradiated by the helical beam. f–h Electron data from a simulation where the same target is irradiated by
a plane-polarized Gaussian beam that has the same peak power of 3 PW. a, f Electron density ne normalized to the critical density nc during laser
pulse transmission. b, g Areal density at t= 238.3 fs calculated by integrating ne along x. e Density of electrons accelerated by the helical beam at
t= 238.3 fs. The vertical dashed lines mark the region shown in (b). c, h Electron energy distribution at t= 398.3 fs for different divergence angles
θ? ¼ tan�1 px=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y þ p2z

q� �
. The distribution in (c) is calculated for ∣y, z∣≤5 μm, whereas the distribution in (h) is calculated for ∣y, z∣≤14 μm. d Electron

energy distribution along the x-axis at t= 398.3 fs for the case with the helical beam, where εk is the kinetic energy. Only the electrons with ∣y, z∣≤5 μm are
shown. i Electron spectra (t= 398.3 fs), where the red curve shows electrons with ∣y, z∣≤5 μm in the simulation with the helical beam and the black curve
shows electrons with ∣y, z∣≤14 μm in the simulation with the Gaussian beam.
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Firing a laser pulse at normal incidence to a target surface, even
one that has low reflectivity is not a procedure that is regularly
performed in high-intensity high-power laser systems and so it is
necessary to examine the electron acceleration mechanism for a
case of oblique incidence. An incidence angle of 15∘ (to the
normal direction to the target surface) is often sufficient to
eliminate the danger of reflection. At the same time, this angle is
sufficiently small not to fundamentally alter the interaction
discussed in the manuscript. In order to implement this regime,
we rotate the target rather than the irradiating laser beam, so that
the laser axis is at 15∘ to target normally. The simulation
parameters are provided in the Methods section.

Figure 5 shows the results for the oblique incidence case. The
electron density during the laser pulse transmission by the target
is shown in Fig. 5a. The shape of the channel is asymmetric,
which translates into changes in the radial position of the
accelerated electrons and their density compared to the case of
normal incidence. Specifically, the density of the accelerated
electron population is lower by a factor of ~7. However, the
average divergence angle of the electrons close to the axis remains
relatively unchanged. It is 50 mrad or 2.9∘ for the electrons within
1 μm of the central axis. The electron energy distribution as a
function of the divergence angle θ⊥ is shown in Fig. 5b.

Figure 5c compares the electron energy spectra for the normal
and oblique cases at the end of the simulation. Here we select only
those electrons that are closer than 1 μm to the laser propagation
axis in order to examine the spectrum of the collimated part of the
electron population. Below 800MeV, the two spectra are similar.
The spectrum for the oblique incidence case has a slightly steeper
slope and, as a result, a somewhat lower number of energetic
electrons. Above 800MeV, the spectrum for the oblique case
appears to be under-resolved, which precludes us from using it to
make a reliable comparison. The likely cause is the reduction in
electron density. One would need to increase the number of macro-
particles per cell by an order of magnitude in order to better resolve
the energetic tail above 1 GeV. We can conclude based on the
provided results that the investigated mechanism is sufficiently
robust and that it can be used at oblique incidence without a
significant increase in the divergence of the electron beam.

Discussion
We have shown that the injection and retention problems of
the electron vacuum acceleration can be successfully solved by
employing a thin near-critical target and a high-intensity
helical laser beam with a helical index l=−1 and a radial index
p= 0. The injection takes place while the laser pulse goes

through the target. In contrast to a conventional beam, the
retention is provided by the field of the beam itself, because the
transverse fields vanish on the central axis while the long-
itudinal fields, including the magnetic field, peak on axis. The
electrons are first accelerated inside the target and then behind
the target in the vacuum by the longitudinal electric field of the
transmitted pulse. Our simulations predict an electron beam
with a peak energy of 1.5 GeV for a 3 PW laser. The divergence
of the beam, whose charge is about 50 pC, is less than 3∘. The
following unique features distinguish our mechanism from
other more mature approaches (e.g., laser wakefield accelera-
tion): short acceleration distance (~100 μm); high areal density
(~1016 cm−2); compact transverse size (~1 μm) of the beam;
and bunching of energetic electrons, with the bunches being
~100 as in duration.

From an experimental point of view, the extremely short
acceleration distance is a significant advantage. It opens up the
possibility of performing experiments with energetic electron
beams using very compact setups. Laser wakefield acceleration
experiments with high-power lasers require parabolic mirrors of
long focal length, typically 10s of meters, and gas targets of 10s of
centimeters, whereas the setup proposed in this manuscript can
be achieved with parabolic mirrors of short focal length, typically
below 2m, and very small targets. This is an important aspect
because high-power laser facilities would need to have large space
for very long focusing optics and such space may not be always
available. Therefore, having the possibility of performing particle
acceleration over short acceleration distances can be beneficial for
a wide number of facilities. The resulting electron beam can be
used to create a compact collider for quantum electrodynamics-
based experiments25 and applied research (e.g., generation of
highly energetic photons via inverse scattering and electron-
positron beam generation).

There are also advantages to our setup when compared to a more
commonly used setup for vacuum electron acceleration where the
laser is reflected off a plasma mirror. In our setup, the interaction of
the laser with the target is volumetric, which eliminates the sensi-
tivity to the surface density gradient. The terminal energy gain is
more efficient. Our simulations predict peak energy of 1.5 GeV for a
3 PW beam, which is comparable to the prediction for a 6 PW laser
that is reflected off a plasma mirror17. However, our simulations also
show that the laser-target interaction can become detrimental if it
leads to the excitation of higher-order radial modes. This con-
sideration imposes an upper limit on the target density. For the
considered laser parameters, we determined that the electron density
of the ~10 μm target should remain at or below the critical density.

Fig. 5 Optimal regime of electron acceleration at oblique incidence. a Electron density ne normalized to the critical density nc at t= 26.6 fs for a
target with an initial maximum electron density nmax ¼ 0:5nc. b Electron energy distribution at t= 386.6 fs for different divergence angles
θ? ¼ tan�1 px=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2y þ p2z

q� �
. Only those electrons that have ∣y∣≤5 μm and ∣z∣≤5 μm are shown in this plot. c Electron energy spectra for the normal

and oblique cases at the end of each simulation (t= tend). The spectra are for the electrons that are closer than 1 μm to the axis of the laser beam.
Here tend= 398.3 fs for the case of normal incidence and tend= 386.6 fs for the case of oblique incidence.
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The parameters selected for this study are such that both the
laser and target specifications are within reach of the existing laser
systems and target fabrication facilities. The production of helical
laser beams has already been demonstrated3, whereas the laser
pulse intensity and duration are similar to those of the Extreme
Light Infrastructure-Nuclear Physics (ELI-NP) laser facility7,8.
The capability to generate circularly-polarized beams is also
already available at ELI-NP and was successfully demonstrated in
recent experimental campaigns. This method is based on com-
mercially available large aperture mica plates. The production of
foams at densities as low as 2 mg cm−3is almost routine at this
point20,21. The considered thickness can potentially be achieved
by employing a concave structured foam within a small opening
(of the order of an mm) on a thin sheet. One advantage of
inorganic foams such as SiO2 is that they combine particularly
fine pore structures (typically a few nm) with extremely low
densities (as low as 2 mg cm−3)20,21,26. This allows for some
reduction in the complexity when considering high-power high-
intensity laser pulses. Specifically, the pore collapse time27,28 is
likely to occur during laser prepulse due to the fine pore structure.

Methods
Particle-in-cell simulations. Table 1 provides detailed parameters for the simu-
lations with normal incidence presented in the manuscript. Simulations were
carried out using the fully relativistic PIC code Smilei29,30. All our simulations are
3D-3V.

The x-axis is aligned with the axis of the irradiating laser beam that propagates
in the positive direction. The beam is launched at the boundary (x=−8 μm) of the
simulation box by specifying the transverse magnetic field. The beam is focused (in
the absence of the target) at x= 0 μm. The wavelength λ0 and the divergence angle
θd are given in Table 1. The corresponding Rayleigh length is xR ¼ λ0=πθ

2
d �

35:33 μm and the corresponding beam width is w0= λ0/πθd= 3 μm. The envelope
of the pulse is Gaussian, with a pulse duration of 29.4 fs (full width at half
maximum for the intensity). We limit the total duration of the envelope to 150 fs
(the envelope is truncated and set to zero 75 fs before and after the peak of the
envelope). The laser beam is circularly-polarized with l=−1, p= 0, and σ= 1. It is
created by two linearly-polarized beams (l=−1, p= 0) with a phase offset. We use
a moving window in our simulation, which reduces the size of the computational
domain needed to simulate the electron acceleration for ~400 fs. The window
moves with the speed of light along the x-axis. The window starts moving after the
beam has been fully in injected into the box. The start time is t= 28.3 fs, with
t= 0 fs being the time when the peak of the envelope reaches x= 0 μm.

The target is initialized as a fully ionized silicon dioxide plasma slab. The
electron density profile along the x-axis is

ne ¼
nmax exp½ðjxj � Δx1Þ=Δx2� for 4 μm<jxj<6 μm;

nmax for jxj≤ 4 μm;

�
ð25Þ

where Δx1= 4 μm and Δx2= 0.5 μm, so that the central plane is located at
x= 0 μm. The electron density is independent of y and z. The three values for nmax
used in our simulations are listed in Table 1. In each case, the densities of oxygen
and silicon ions are chosen as specified in Table 1 to ensure that the target is
quasineutral.

In order to examine the generation of high harmonics, we have performed two
simulations with a higher spatial resolution than that listed in Table 1. The new
resolution is increased to 40 cells/micron in the x-direction and to 27.4 cells/
micron in both y and z directions. These simulations have a larger box size of
36.8 μm× 28 μm× 28 μm. They are run without using the moving window.

One additional simulation is performed for a case of oblique incidence. In this
simulation, the target is tilted such that the front surface normal is at 15∘ to the x-
axis. One of the initial domain boundaries is moved by 3 μm from x=−8 μm to
x=−11.5 μm and the width of the simulation box along x is increased to 31.5 μm
to keep the original spatial resolution. All other parameters remain the same.

We compare our results for the optimal regime at normal incidence with those
for a linearly-polarized Gaussian pulse. The comparison is performed using the
simulation setup for a target with ne= 0.5nc where the original beam is replaced by
a linearly-polarized Gaussian beam that has the same energy, peak power, and
temporal envelope. The transverse electric field of this beam is directed along the y-
axis, whereas its magnetic field is directed along the z-axis. The normalized peak
amplitude is a0= 88.6.

Mode decomposition. A snapshot of an electric or magnetic field generated by the
3D PIC code can be presented as a superposition of the ψp;lðex;er;ϕÞ modes with
different twist indices l and radial indices p. In the transmitted beam, all of the
modes propagate in the positive direction along the x-axis, which means that their
complex field has the expðiξÞ ¼ expðikx � iωtÞ multiplier, where k= 2π/λ0 is the

amplitude of the wave vector. However, this information is not automatically
encoded in the real field values provided by the code. To illustrate the ambiguity,
consider a real electric field with a longitudinal profile given by E0 cosðkxÞ at t= 0.
This field can be the real part of E0 expðikx � ωtÞ or the real part of
E0 expð�ikx � iωtÞ, which corresponds to a mode propagating in the negative
direction along the x-axis. This field can even be the field of two counter-
propagating modes, with the complex field given by
0:5E0 expðikx � iωtÞ þ 0:5E0 expð�ikx � iωtÞ.

The ambiguity can be removed by recovering the missing information using the
Hilbert transform along x. The Hilbert transform converts the real field provided
by the PIC code into a complex field, where the imaginary part is such that the field
represents a beam propagating in the positive direction along the x-axis. We denote
the field obtained via the Hilbert transform using the superscript H. For example,
the Hilbert transform converts the real longitudinal field (at time t)

ExðexÞ ¼ � g½ξðtÞ�Emax
k

1þ ex2 sin ξðtÞ � 2ð1þ pÞtan�1ðexÞ� � ð26Þ

into EH
x ðexÞ, with Re EH

x ðexÞ� � ¼ ExðexÞ and
Im½ExðexÞ� ¼ g½ξðtÞ�Emax

k
1þ ex2 cos ξðtÞ � 2ð1þ pÞtan�1ðexÞ� �

: ð27Þ

The resulting complex field EH
x is a snapshot of the field of a forward propagating

mode given by Eq. (10).
The fields obtained via the Hilbert transform can be presented as the following

superposition:

jejBH
z ðex;er; ϕ; tÞ
mecω

¼ ∑
1

p¼0
∑
1

l¼�1
bp;lðξÞψp;lðex;er; ϕÞ expðiξÞ

	 
	 

; ð28Þ

where, without any loss of generality, we used the z-component of the magnetic
field to provide an explicit expression. Here bp,l(ξ) is a dimensionless complex
amplitude that has both real and imaginary parts. If BH

z ðex;er; ϕÞ is known at time t,
then one can recover all complex amplitudes by performing a double integral,

bp;lðξÞ ¼
Z 2π

0
dϕ

Z 1

0

jejBH
z

mecω
ψ�
p;lðex;er; ϕÞ expð�iξÞerder	 


; ð29Þ

for all possible combinations of l and p. The meaning of bp,l can be readily
understood when considering a simple signal BH

z ðex;er; ϕÞ ¼ B0ψp0 ;l0 gðξÞ expðiξÞ.
This signal consists of an amplitude of B0, a single Laguerre-Gaussian mode ψp0 ;l0 ,
an envelope g(ξ), and an oscillating term expðiξÞ. In this simple case the resulting

Table 1 3D PIC simulation parameters for cases with normal
laser incidence.

Laser parameters

Normalized field amplitude a0= 88.6
Wavelength λ0= 0.8 μm
Beam divergence θd= 8.49 × 10−2 rad
Polarization circular (σ= 1)
Twist and radial indices l=−1 and p= 0
Envelope shape Gaussian
Pulse duration (full width at half
maximum for intensity)

29.4 fs

Envelope duration 150 fs
Focal plane of laser x= 0 μm
Energy and power 94 J and 3 PW
Target parameters
Electron density profile along x see Eq. (25)
Maximum electron density nmax=nc ¼ 2:5, 1.0, and 0.5
Composition O8+, Si14+, and electrons

ZnO/ne= 14/30 and ZnSi/ne= 16/30
Other parameters
Simulation box dimensions 28 μm× 28 μm× 28 μm
Initial domain boundaries x=−8 μm and x= 20 μm

y= ±14 μm and z= ±14 μm
Moving window velocity c in x-direction
Moving window start time t= 28.3 fs
Boundary conditions open
Spatial resolution 22.857 cells per μm in x, y, and z
Macro-particles per cell 24 for electrons

12 for O8+ ions
12 for Si14+ ions
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decomposition, when trying all values of p and l, from Eq. (29) will give a single
nonzero amplitude of bp0 ;l0 ðξÞ � B0gðξÞ, where g(ξ) is the temporal envelope of the
original signal. The right-hand side of Eq. (29) is calculated for ξ at time t, so the
result is a function of ex. In order to find the corresponding dependence on ξ, we
take into account that ξ ¼ 2ex=θ2d � ωt at a given time t. We have benchmarked this
method using a 3D PIC simulation (without a target) for a helical circularly-
polarized beam with p= 0, l=−1, and σ=−1. Following our procedure, we have
recovered b0,−1(ξ) from a single snapshot of the real field Bzðex;er; ϕÞ outputted by
the PIC code.

The representation given by Eq. (28) is unique for a given w0. The value of w0

sets a characteristic transverse scale. A single helical mode with a beam width wb is
represented by a single term if w0= wb. On the other hand, if w0 ≠wb, then, in
general, it is represented by multiple terms. The number of terms with an
appreciable amplitude can be adjusted by adjusting w0. We use this approach when
post-processing the transmitted beam whose wb is not known to minimize the
number of terms in the mode decomposition. Specifically, we minimize the sum

M � ∑
1

p¼0
∑
1

l¼�1

Z 1

�1
jbp;lðξÞjdξ

	 
	 

=

Z 1

�1
jb0;�1ðξÞjdξ

	 

� 1 ð30Þ

by varying the width that we denote as w0
0 to distinguish it from the width of the

original beam w0. This approach assumes that the mode with l=−1 and p= 0 is
the dominant mode in the transmitted beam, which is indeed the case for all our
simulations. It is worth noting that M= 0 at w0

0 ¼ w0 for the irradiating beam
because it can be represented by a single mode with l=−1 and p= 0.

Figure 6 shows the mode decomposition for two simulations discussed in the
main text: a simulation with nmax ¼ 2:5nc and a simulation with nmax ¼ 0:5nc. The
values of the sum defined by Eq. (30) for different w0

0 are shown in Fig. 6. We find
that M reaches its local minimum at w0

0=w0 ¼ 0:8 for nmax ¼ 2:5nc and at
w0
0=w0 ¼ 0:9 for nmax ¼ 0:5nc. In both cases, the modes with l=−1 dominate.

The plots of 〈bp,−1〉 for these optimal values of w0
0 are shown in Fig. 6a, b, d.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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