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Strategy to extract Kitaev interaction using
symmetry in honeycomb Mott insulators
Jiefu Cen 1 & Hae-Young Kee 2✉

The Kitaev spin liquid, a ground state of the bond-dependent Kitaev model in a honeycomb

lattice has been a center of attraction, since a microscopic theory to realize such an inter-

action in solid-state materials was discovered. A challenge in real materials though is the

presence of the Heisenberg and another bond-dependent Gamma interactions detrimental to

the Kitaev spin liquid, and there have been many debates on their relative strengths. Here we

offer a strategy to extract the Kitaev interaction out of a full microscopic model by utilizing

the symmetries of the Hamiltonian. Two tilted magnetic field directions related by a two-fold

rotational symmetry generate distinct spin excitations originated from a specific combination

of the Kitaev and Gamma interactions. Together with the in- and out-of-plane magnetic

anisotropy, one can determine the Kitaev and Gamma interactions separately. Dynamic spin

structure factors are presented to motivate future experiments. The proposed setups will

advance the search for Kitaev materials.
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An electron’s orbital motion in an atom generates a mag-
netic field that influences its spin moment, known as spin-
orbit coupling. When the coupling is strong in heavy

atoms, the effective Hamiltonian is described by the spin-orbit-
entangled pseudospin wave-function and the interactions among
magnetic ions are highly anisotropic different from the standard
Heisenberg interaction1–6. A fascinating example is the Kitaev
model with a bond-dependent interaction in a two-dimensional
honeycomb lattice, whose ground state is a quantum spin liquid
(QSL) with Majorana fermions and Z2 vortex excitations7. There
have been extensive studies on the model because in the Kitaev
QSL non-Abelian excitations emerge under a magnetic field, and
their braidings provide topological computation. Since a micro-
scopic mechanism to generate such an interaction was
uncovered8, intense efforts toward finding QSLs including a
variety of candidate materials from spin S= 1/29–18 to higher-
spin S systems have been made19–22. Despite such efforts, a
confirmed Kitaev QSL is still missing.

One challenge in finding the Kitaev QSL in magnetic materials
is the presence of other spin interactions which may generate
magnetic orderings or other disordered phases23–29. A generic
nearest neighbor (n.n.) model in an ideal honeycomb was derived
which revealed the isotropic Heisenberg interaction and another
bond-dependent interaction named the Gamma (Γ)25. Further-
more, there exist further neighbor interactions such as second
and third n.n. Heisenberg interactions, which makes it difficult to
single out the Kitaev interaction itself. There have been many
debates on the relative strengths, especially between the dominant
Kitaev and Gamma interactions in Kitaev candidate
materials13,18,28,30, and an experimental guide on how to extract
the Kitaev interaction out of a full Hamiltonian is highly
desirable.

In this work, we present a symmetry-based experimental
strategy to determine the Kitaev interaction. Our proposal is
based on the π-rotation around the a axis perpendicular to one of
the bonds in the honeycomb plane, denoted by C2a symmetry that
is broken by a specific combination of the Kitaev and Γ interac-
tions. This broken C2a can be easily detected with the help of a
magnetic field applied within the a−c plane where the c-axis is
perpendicular to the honeycomb plane; spin excitations under the
two field angles of θ and −θ, measured away from the honeycomb
plane as shown in Fig. 1a, are distinct due to the combination of
the Kitaev and Gamma interactions. The two field angles are

related by the π-rotation around a axis, i.e., C2a operation. Such
differences are based on the symmetry and signal the relative
strengths of these interactions. A magnetic ordering that further
enhances the broken C2a symmetry does not alter the asymmetry,
but quantifying the interaction strengths requires the size of the
magnetic ordering. For this reason, a polarized state in the high-
field region would be ideal for our purpose.

To determine each of the interactions, one needs to use the
conventional in- vs. out-of-plane anisotropy in spin excitations.
We note that the Gamma interaction affects the conventional
anisotropy, but the Kitaev does not when the field is large enough
to compensate for the order by disorder effect31. Thus subtracting
the Gamma contribution deduced from the conventional aniso-
tropy allows us to estimate the Kitaev interaction from the
measured spin excitations under the field angles of θ and −θ.
Both the conventional anisotropy and the π-rotation-related spin
excitations can be measured by angle-dependent ferromagnetic
resonance (FMR) or inelastic neutron scattering (INS) techniques
while sweeping the magnetic field directions in the a−c plane
containing the C2a rotation axis.

Below we present the microscopic model and main results
based on the π-rotation symmetry around a-axis. To demonstrate
our theory, we also show the FMR and dynamical spin structure
factors (DSSF) obtained by exact diagonalization (ED). We ana-
lyze the different spin excitations under the two field angles at
finite momenta using the linear spin-wave theory (LSWT), which
further confirms our results based on the symmetry argument.
Our results will guide a future search of Kitaev materials.

Result
Model. The generic spin-exchange Hamiltonian among magnetic
sites with strong spin-orbit coupling for the ideal edge-sharing
octahedra environment in the octahedral x−y−z axes shown in
Fig. 1a contains the Kitaev (K), Gamma (Γ), and Heisenberg (J)
interactions25:

H ¼ ∑
hiji2αβðγÞ

JSi � Sj þ KSγi S
γ
j þ Γ Sαi S

β
j þ Sβi S

α
j

� �h i
; ð1Þ

where S ¼ 1
2 σ! with ℏ≡ 1 and σ! is Pauli matrix, 〈ij〉 denotes the

n.n. magnetic sites, and αβ(γ) denotes the γ bond taking the α and
β spin components (α, β, γ∈ {x, y, z}). The x-, y-, and z-bonds are
shown in red, blue, and green colors, respectively in Fig. 1a.
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Fig. 1 Crystal structure and direction of the magnetic field. a Schematic of the honeycomb lattice of transition metal ions (light blue) in edge-sharing
octahedra environment of anions (above the honeycomb plane: gray, below the plane: light gray). Octahedral xyz axes, abc axes, and the Kitaev bonds x
(red), y (green), z (blue) are indicated. C2a and C2b symmetries (orange) are highlighted. The octahedra environment breaks C2a, while C2b symmetry is
intact. b Direction of the external magnetic field h

!
in abc axes where θ is measured from the a−b plane, and ϕ is from the a axis. The blue arrow M

!
represents the magnetic moment direction with the angle θM. c δωK(θ) in the a−c plane is the difference in the spin excitation energies ω between two field
directions: ω(θ) (blue) and ω(−θ) (red). C2b maps ω(θ) to ω(π+ θ), so δωK(π− θ)=−δωK(θ).
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Further neighbor interactions and trigonal distortion allowed
interactions, and their effects will be discussed later.

To analyze the symmetry of the Hamiltonian, we rewrite the
model in the a−b−c axes32–34:

H ¼ ∑
hi;ji

JXY Sai S
a
j þ Sbi S

b
j

� �
þ JZS

c
i S

c
j

h
þ Jab cos ϕγ Sai S

a
j � Sbi S

b
j

� �
� sin ϕγ Sai S

b
j þ Sbi S

a
j

� �h i
�

ffiffiffi
2

p
Jac cos ϕγ Sai S

c
j þ Sci S

a
j

� �
þ sin ϕγ Sbi S

c
j þ Sci S

b
j

� �h ii
;

ð2Þ

where ϕγ ¼ 0; 2π3 , and
4π
3 for γ= z-, x-, and y-bond respectively,

and the exchange interactions are given by

JXY ¼ J þ Jac; JZ ¼ J þ Jab;

Jab ¼
1
3
K þ 2

3
Γ; Jac ¼

1
3
K � 1

3
Γ:

ð3Þ

The Hamiltonian H is invariant under π-rotation around the b
axis denoted by C2b and 2π

3 -rotation around the c axis by C3c in
addition to the inversion and time-reversal symmetry.

Our proposed experimental design is based on the observation
that the H is not invariant under π-rotation about the a axis C2a

due to the presence of only Jac, i.e., if Jac= 0, C2a is also a
symmetry of H. Since the C2a is broken by Jac, if there is a way to
detect the broken C2a, that will signal the strength of Jac. We note
that the magnetic field sweeping from the c axis to a axis within
the a−c-plane does the job. The fields with angles of θ (blue line)
and −θ (red line) for 0< θ < π

2 shown in Fig. 1b, c are related by
C2a rotation, and thus measuring the spin excitation difference
between these two field directions will detect the strength of Jac.

To prove our symmetry argument, we consider a full model
with a magnetic field. Under a magnetic field, the total
Hamiltonian including the Zeeman term is given by

Htot ¼ HþHB ¼ H� g μB ∑
i
S
!

i � h
!

; ð4Þ

where the external field h
!

has the polar angle θ measured away
from the a−b honeycomb plane and the azimuthal angle ϕ from
the a-axis as shown in Fig. 1b. The magnetic anisotropy in the
spin excitation energies is defined as ωn(θ)= En(θ)− E0(θ), where
En and E0 are the excited and ground-state energy respectively.
This anisotropy is affected by all interactions other than the
isotropic Heisenberg limit (JXY= JZ), making it difficult to
quantify the effect of individual interactions. However, if we
compare the two excitation anisotropies, ωn(θ) and ωn(−θ) for a
given strength h and ϕ= 0 as shown in Fig. 1c, related by C2a

symmetry transformation, we can eliminate the effects of all other
interactions except Jac thanks to symmetries of the model. Since
our theory relies on the symmetry of the Hamiltonian, the ground
state should break the C2a symmetry only explicitly from the Jac
term. The magnetic field also contributes to the C2a breaking, but
by comparing two angles of θ and −θ, the effect of Jac is isolated.

We focus on the lowest energy excitation n= 1 which gives a
dominant resonance at low temperatures, and drop the n in ωn

from now on for simplicity, even though our proposal works for
all n. We define the excitation anisotropy between the magnetic
field with angles of θ and−θ as δωK(θ)≡ ω(θ)− ω(−θ) for
0< θ < π

2, and the conventional anisotropy between in- and out-
of-plane fields as δωA � ωðθ ¼ 0Þ � ωðθ ¼ π

2Þ. Below we first
show how δωK arises from Jac under the field in the a−c plane
based on the symmetry.

Symmetry analysis. To understand the origin of a finite δωK for
ϕ= 0 under the magnetic field sweep, we first begin with a special

case when ϕ ¼ π
2, i.e, when the external field is in the b−c plane.

This is a special case where δωK= 0 for the following reason.
The Zeeman terms due to the field with the angle θ and with

−θ are related by a π rotation of the field about the b̂ axis,
denoted by

C2b;θ : HB / ðcos θSbi þ sin θSci Þ�!ðcos θSbi � sin θSci Þ: ð5Þ
The same can be achieved by a π-rotation of the lattice,

C2b : ðSa; Sb; ScÞ ! ð�Sa; Sb;�ScÞ and ϕx $ ϕy; ð6Þ
which also indicates H is invariant under C2b. While HB breaks
the C2b symmetry of H, the total Hamiltonian HþHBðθÞ andHþHBð�θÞ are related by C2b and therefore, share the same
eigenenergies, i.e., δωK= 0. The difference due to the field is
simply removed by a π rotation of the eigenstates about the b̂ axis.
The magnetic field sweeping from θ to −θ in the other planes
equivalent to b−c plane by C3c symmetry also gives δωK= 0.

Now let us consider when the magnetic field sweeps in the a−c
plane. Similarly, the magnetic field directions θ and −θ are related
by

C2a;θ : HB / ðcos θSai þ sin θSci Þ�!ðcos θSai � sin θSci Þ: ð7Þ
Considering a π rotation of the lattice about the â axis,

C2a : ðSa; Sb; ScÞ ! ðSa;�Sb;�ScÞ and ϕx $ ϕy; ð8Þ
we find JXY, JZ, Jab, terms are invariant under C2a, while the Jac
terms transform as

C2a : Jac ! �Jac: ð9Þ
By the same argument, if Jac= 0, H is invariant under C2a, and
the eigenenergies of the total Hamiltonian for θ and −θ are the
same, i.e., δωK= 0. If Jac ≠ 0, the total Hamiltonian HþHBðθÞ
and HþHBð�θÞ cannot be related by C2a, and therefore,
δωK ≠ 0. We need to change the sign of Jac for the C2a relation to
hold, i.e., the transformation of the external field angles of θ to −θ
is equivalent to the change of Jac to −Jac. Thus, the lack of C2a

symmetry allows us to single out the Jac interaction through δωK.
Since Jac contains a combination of the Kitaev and Γ

interactions, we need other methods to subtract the Γ contribu-
tion. The in- and out-of-plane anisotropy, δωA offers precisely the
other information. We note that the in- and out-of-plane
anisotropy δωA is determined by JZ− JXY= Γ. Thus, for the ideal
edge-sharing octahedral environment, we can first estimate Γ
from the measured δωA, and then extract the Kitaev strength by
subtracting the Γ contribution from the measured δωK(θ).

Below we show numerical results of spin excitations obtained
by ED on a 24-site cluster which can be measured by angle-
dependent FMR and INS techniques under magnetic field angles
of θ and −θ with ϕ= 0.

Angle-dependent ferromagnetic resonance. FMR is a powerful
probe to study ferromagnetic or spin correlated materials. FMR
spectrometers record the radio-frequency (RF) electromagnetic
wave that is absorbed by the sample of interest placed under an
external magnetic field. To observe the resonance signal, the
resonant frequency of the sample is changed to match that of the
RF wave under a scan of the external magnetic field, so the
excitation anisotropy δω(θ) leads to the anisotropy in the reso-
nant magnetic field. FMR provides highly resolved spectra over a
large energy range and has been used to investigate exchange
couplings35–38 and anisotropies39,40 due to its dependence on the
magnetic field angle. Here, for simplicity, we calculate the exci-
tation energy probed by the RF field (details can be found in the
Methods) with a set magnetic field strength for spin 1

2 using ED
on a C3-symmetric 24-site cluster.
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We set our units the magnetic field h= 1 and g= μB≡ 1,
leading to the excitation energy of a free spin, ω0= gμBh= 1, so
the excitation energies calculated are normalized by ω0. A few sets
of different interaction parameters (in units of ω0) are
investigated. Figure 2(a) shows the J=−1 and K= Γ= 0.5 case
with no δωK(θ) between−π/2 < θ < 0 (red line) and 0 < θ < π/2
(blue line), since Jac= 0. The conventional anisotropy δωA is
finite, because the Γ interaction generates a strong anisotropy
between the plane θ= 0 and the c-axis θ= π/2, i.e., JXY ≠ JZ due to
a finite Γ contribution. The black line is for only J=−1 showing a
uniform FMR independent of angles which serves as a reference.
Figure 2b shows the J=−1, K= 1, and Γ= 0 case, which shows a
finite δωK(θ) between−π/2 < θ < 0 and 0 < θ < π/2 in the a−c
plane. On the other hand, no δωK(θ) by sweeping θ in the b−c
plane (up and down triangles with green line) is observed,
consistent with the symmetry analysis presented above. Note the
conventional anisotropy δωA in both a−c and b−c planes are not
exactly zero, because the Kitaev interaction selects the magnetic
moment along the cubic axes in the ferromagnetic state via order
by disorder31,41. This leads to a tiny anisotropy between the plane
θ= 0 and the c-axis θ= π/2 when Γ= 0 and JXY= JZ. This
anisotropy becomes weaker when the magnetic field increases, i.e,
when the moment polarization overcomes the order by disorder
effect. Supplementary Note 1 shows that the anisotropy is almost
gone when the field is increased by three times with the same set
of parameters, where the Heisenberg limit (black line) is added
for reference. When Γ becomes finite favouring either the a−b
plane or the c axis depending on the sign of the Γ, this
conventional anisotropy is determined by the Γ interaction as
shown in Fig. 2c, d, and the order by disorder effect becomes
silent. Figure 2c shows the J=−0.5, Γ= 0.5, and K= 0 case. The
Γ interaction alone can generate a finite δωK due to the broken

C2a by Jac. In addition, the Γ interaction generates a large δωA,
different from Fig. 2b. Figure 2d presents the J=−0.1, K=−1,
and Γ= 0.5 case, which is close to a set of parameters proposed
for Jeff ¼ 1

2 Kitaev candidate materials28. Clearly, δωK(θ) is
significant due to a finite Jac, and δωA is also large due to a
finite Γ. While a magnetic field of strength h= 1 is used to
polarize the ground state where the finite-size effect is small as
shown in Supplementary Note 2, our symmetry argument works
for any finite field. However, we note that the finite-size effect of
ED is minimal when the ground state is polarized.

Inelastic neutron scattering. Complementary to FMR, INS can
measure excitations between different points in the reciprocal
space based on the momentum transfer of the scattered neu-
trons. The magnon dispersions of the ordered states of magnetic
materials measured via INS have been used to determine the
spin-exchange Hamiltonian parameters10,17,42–46. Figure 3a, b
show the spin excitations at accessible wavevectors on a C3-
symmetric 24-site cluster with the same exchange parameters
for Fig. 2d and with h= 1 and h= 8, respectively. The cluster
and the accessible momenta are shown in c, d, respectively. We
set the magnetic field angles θ= 30∘ (blue) and θ=−30∘ (red)
in a−c plane. The square boxes denote the excitation energies
obtained by the ED, and the color bars indicate the intensity of
DSSF ∑αSαα(q, ω) (details can be found in the Methods). The
structure factor is convolved with a Gaussian of finite width to
emulate finite experimental resolution. We observe a clear dif-
ference between the two field directions, δωK at every
momentum points. In particular, δωK is the largest at M2-point,
while it is tiny at the K1-point. Note that M1 and M3 are related
by the C2b and inversion.

Fig. 2 Angle-dependent spin excitations in ferromagnetic resonance (FMR) using exact diagonalizaiton on a C3-symmetric 24-site cluster. Various sets
of parameters with Zeeman energy gμBh= 1 are used. δωA is the difference in the spin excitation energies ω between fields along a axis and c axis, and δωK

is the difference between ω(θ) (blue) and ω(−θ) (red), as highlighted by the arrows. J, K, and Γ are the Heisenberg, Kitaev and off-diagonal interactions
respectively. a J=−1 and K= Γ= 0.5. b J=−1, K= 1, and Γ= 0. FMR in the b−c plane is shown in green: θ (up triangle) and−θ (down triangle).
c J=−0.5, Γ= 0.5, and K= 0. d J=−0.1, K=−1, Γ= 0.5. See the FMR subsection for implication of the results.
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To gain more insights of δωK(θ) at finite momenta obtained by
ED, we also perform LSWT calculations with the magnetization
making an angle θM as indicated in Fig. 1b. θM is found via
minimizing the classical ground state energy (details can be found
in the Methods); the LSWT with the set of parameters used for
Fig. 3a’s ED results leads to θM ~ 12.1∘. The spin excitations
within the LSWT are shown as dashed lines together with the ED
results in Fig. 3a. The mismatch between LSWT and ED is visible
at every momentum, which implies the significant effects of
nonlinear terms47.

However, when the field increases, the difference should
decrease, since the magnetic polarization increases at a higher
field. In Fig. 3b, we show both ED and LSWT with h= 8 and
θM ~ 25.8∘, where the two results match well as expected, and the
nonlinear terms become less significant. In particular, the
anisotropy δωK at the K-point at the high-field limit given by
the leading terms in 1/h, is simplified as

δωK ðθÞ ¼
3
8
cos θM

�
j2

ffiffiffi
2

p
Jac sin θM � Jab cos θMj � j2

ffiffiffi
2

p
Jac sin θM þ Jab cos θMj

�

þ 9
ffiffiffi
2

p
JacJab 2 sin 2θM þ sin 4θM

� �
128h cosðθ � θMÞ

þO 1

h2

� �
;

ð10Þ
where θM(θ)→ θ when h→∞. This shows that both Jac and Jab
should be finite for a finite δωK at the K-point, which explains no
splitting of δωK at the K-point in Fig. 3b, as our choice of
parameters gives Jab= 0, i.e, Γ=−K/2. On the other hand, at the
M2-point, there is no simple expression, but the leading terms of

δωK(θ) in δθa/c around the a- and c axis (δθa= 0− θ and
δθc= θ− π/2) are given by

δωK ðθÞ ’
JacðδθaÞAþOðδθ3aÞ
JacðδθcÞC þOðδθ3c Þ;

(
ð11Þ

where A and C are functions of other interactions given in
Supplementary Note 3. Clearly, δωK(θ) appears as odd powers of
Jac and δθa/c, consistent with the symmetry analysis
presented above.

So far, we have focused on the ideal octahedra environment.
However, trigonal distortion is often present, albeit small, which
introduces extra exchange interactions. Below we discuss other
contributions to δωA complicating the isolation of K from Jac and
our resolution of such complication in order to estimate the
Kitaev interaction out of a full Hamiltonian.

Effects of trigonal distortion and further neighbor interactions.
In principle, there are other small but finite interactions; few
examples in δH0 include

δH0 ¼ ∑
hiji2αβðγÞ

Γ0ðSαi Sγj þ Sγi S
α
j þ Sβi S

γ
j þ Sγi S

β
j Þ

h i
þ J2 ∑

hhi;jii
Si � Sj þ J3 ∑

hhhi;jiii
Si � Sj;

ð12Þ

where Γ0 is introduced when a trigonal distortion is present26; J2
and J3 are the second and third n.n. Heisenberg interactions
respectively. It is natural to expect that they are smaller than the

Fig. 3 Dynamic spin structure factor (DSSF) of the spin excitations at accessible wavevectors using exact diagonalizaiton (ED) on a C3-symmetric 24-
site cluster and linear spin-wave theory (LSWT). The boxes and the dashed lines are DSSF obtained by ED and LSWT, respectively. The color bars
represent the intensity of DSSF. The same parameters for Fig. 2d are used, i.e., (J, K, Γ)= (−0.1, −1, 0.5) in units of ω0= gμBh= 1. The magnetic field
angles in the a−c plane are 30∘ (blue) and −30∘ (red). b DSSF with the same parameters as a except a larger field gμBh= 8, showing a better match
between the ED and LSWT results; see the Inelastic Neutron Scattering subsection for further discussions. c C3-symmetric 24-site cluster used for the ED.
d Accessible momentum points labeled in the x axis of a and b.
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n.n. Kitaev, Gamma, and Heisenberg interactions18,27,28. Several
types of interlayer exchange interactions are present, but they are
even smaller than the terms considered in Eq. (12)18.

Let us investigate how they affect the above analysis done for
the ideal n.n. Hamiltonian. First of all, the isotropic interactions
such as further neighbor J2, J3, and the interlayer Heisenberg do
not make any change to our proposal, since they do not
contribute to δωA nor δωK. On the other hand, the Γ0 modifies the
exchange parameters as follows:

JXY ¼ J þ Jac � Γ0; JZ ¼ J þ Jab þ 2Γ0;

Jab ¼
1
3
K þ 2

3
ðΓ� Γ0Þ; Jac ¼

1
3
K � 1

3
ðΓ� Γ0Þ:

ð13Þ

The conventional anisotropy δωA is now due to Γþ 2Γ0 obtained
from JZ− JXY. Thus to single out the Kitaev interaction, one has
to find both Γ and Γ0, as Jac is a combination of K, Γ, and Γ0. Once
the trigonal distortion is present, the g-factor also becomes
anisotropic, i.e., the in-plane ga is different from the c axis gc,
which affects δωA.

However, the g-factor anisotropy does not affect the δωK, since
the field angles of θ and −θ involve the same strength of in- and
out-of-plane field components, i.e, hðθÞ ¼ haâþ hcĉ and
hð�θÞ ¼ �haâþ hcĉ. Thus we wish to extract the information
of K and Γ� Γ0 from δωK, as it is free from the g-factor
anisotropy.

We note that δωK at the K-point, Eq. (10) offers both Jac and Jab
from the first term independent of the field and the next term
proportional to 1/heff (heff ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2acos

2θ þ g2c sin
2θ

p
). Once Jac and

Jab are deduced, K and Γ� Γ0 can be estimated from Eq. (13). The
measurements of δωK at the K-point with a large magnetic field
then determine K and Γ� Γ0 separately. Further neighbor
Heisenberg interactions, J2 and J3 do not modify Eq. (10) in the
high-field limit, so they do not affect our procedure.

Discussion
We propose an experimental setup to single out the Kitaev
interaction for honeycomb Mott insulators with edge-sharing
octahedra. In an ideal octahedra cage, the symmetry-allowed n.n.
interactions contain the Kitaev, another bond-dependent Γ, and
Heisenberg interactions. We prove that the magnetic anisotropy
related by the π-rotation around the a-axis denoted by δωK occurs
only when a combination of K and Γ, i.e. K− Γ, is finite. This can
be measured from the spin excitation energy differences under
the magnetic field of angle sweeping from above to below the
honeycomb plane using the FMR or INS techniques. Since the in-
and out-of-plane magnetic anisotropy, δωA is determined solely
by Γ, one can estimate Γ strength first from δωA and then extract
the Kitaev interaction from δωK.

While the trigonal distortion introduces an additional inter-
action, the Kitaev interaction is unique as it is the only inter-
action that contributes to δωK without altering δωA. Our theory
is applicable to all Kitaev candidate materials including an
emerging candidate RuCl3. In particular, since the two domi-
nant interactions are ferromagnetic Kitaev and positive Γ
interactions in RuCl33,5,18,27, leading to a large Jac and a small
Jab, we predict that δωK independent of the g-factor anisotropy
is significant except at the K-point. Supplementary Note 4
shows the FMR and INS of a set of parameters with a small
negative Γ0 interaction to stabilize a zero-field zig-zag ground
state as in RuCl318,27,28. Another relevant perturbation in some
materials is the effect of monoclinic structure which loses the
C3c symmetry of R�3, making the z-bond different from the x-
and y-bonds. The current theory of finite δωK due to a finite Jac
still works for C2/m structure. However, since the z-bond of

Jzacð¼ Kz=3� Γz=3Þ is no longer the same as the x- and y-bonds
of Jxacð¼ JyacÞ and C2a symmetry relates between the x- and y-
bonds, the anisotropy δωK at different momenta, detecting both
Jxac ¼ Kx=3� Γx=3 and Jzac, is required to determine different x-
and z-bond strengths.

The symmetry-based theory presented here is also valid for
higher-spin models with the Kitaev interaction such as S= 3/2
CrI3 including a nonzero single-ion anisotropy19,21,22,48 which
generates a further anisotropy in δωA but does not affect the δωK.
The next n.n. Dzyaloshinskii–Moriya interaction with the
d-vector along the c-axis49 is also invariant under the C2a sym-
metry. Further studies for higher-spin models remain to be
investigated to identify higher-spin Kitaev spin liquid. We would
like to emphasize that the proposed setup is suitable for other
experimental techniques such as low-energy terahertz optical and
nuclear magnetic resonance spectroscopies that probe spin exci-
tations in addition to the angle-dependent FMR and INS spec-
troscopy shown in this work as examples.

Methods
Exact Diagonalization Simulations. Numerical ED was used to compute spin
excitations under a magnetic field. ED was performed on a 24-site honeycomb
cluster with periodic boundary conditions, where the Lanczos method50,51 was
used to obtain the lowest-lying eigenvalues and eigenvectors of the Hamiltonian in
Eq. (2). The 24-site honeycomb shape and accessible momentum points in the
Brillouin zone are shown in Fig. 3c, d. The probability of the spin excitation of
momentum q and energy ω is proportional to the DSSF52 given by

Sαβðq;ωÞ ¼ 1
N
∑
N

i;j
e�iq�ðRi�RjÞ

Z 1

1
dteiωt Sαi ðtÞSβj ð0Þ

D E

¼ 1
N
∑
N

i;j
e�iq�ðRi�RjÞ ∑

λ;λ0
pλhλjSαi jλ0ihλ0jSβj jλiδð_ωþ Eλ � Eλ0 Þ

¼ ∑
λ;λ0

pλhλjSα�qjλ0ihλ0jSβqjλiδð_ωþ Eλ � Eλ0 Þ;

ð14Þ

where the Lehmann representation is used; λj i and λ0
		 
 are the eigenstates with the

thermal population factor pλ, and Sα,β are the spin operators. In the low tem-
peratures, we take λj i to be the ground state 0j i and we are interested in the lowest
energy excitation to 1j i with a nonzero probability. For optical spectroscopies such
as FMR, α= β= direction of the RF electromagnetic field and q= 0, so 0j i and 1j i
belong to the same momentum sector. The structure factor simplifies to

SααðωÞ ¼ 1
N

h1j∑
i
Sαi j0i

				
				
2

δð_ωþ E0 � E1Þ:

For INS, the finite q must match the difference in the momenta of 0j i and 1j i. For
simplicity, we calculate the DSSF for α= β,

∑
α
Sααðq;ωÞ ¼ ∑

α
h1jSαq j0i
			 			2δð_ωþ E0 � E1Þ:

Linear spin-wave theory. The Hamiltonian in Eq. (2) is bosonized by the standard
Holstein-Primakoff transformation53 expanded to linear order in the spin S:

Sþj ¼ Saj þ iSbj ¼
ffiffiffiffiffi
2S

p
aj �

ayj ajaj
4S

þO 1

S2

� � !
’

ffiffiffiffiffi
2S

p
aj

S�j ¼ Saj � iSbj ¼
ffiffiffiffiffi
2S

p
ayj �

ayj a
y
j aj

4S
þO 1

S2

� � !
’

ffiffiffiffiffi
2S

p
ayj

Scj ¼ Sc � ayj aj;

ð15Þ

where the quantization axis is parallel to the c-axis. The Fourier transforms are
aj ¼ 1ffiffiffi

N
p ∑ke

ik�rj ak for sublattice A and bj ¼ 1ffiffiffi
N

p ∑ke
ik�ðrjþδÞbk for sublattice B, where

δ is the vector pointing to nearest neighbors. The resulting quadratic Hamiltonian
has the form H ¼ ∑kX

yHðkÞX, where Xy ¼ ð ayk ; byk ; a�k ; b�k Þ. Diagonaliz-
ing this BdG Hamiltonian following standard methods54 gives two spin-wave
excitation branches.

For a general field, the Hamiltonian in Eq. (2) is first written in new axes a0b0c0 .
a0 ¼ ðsin θM cos ϕM ; sin θM sin ϕM ;� cos θMÞ, b0 ¼ ð� sin ϕM ; cos ϕM ; 0Þ and
c0 ¼ ðcos θM cos ϕM ; cos θM sin ϕM ; sin θMÞ. c0 is parallel to the magnetization
S(θM, ϕM), which is not in the same direction as the magnetic field, unless the field
is very large to fully polarize the moment. The magnetization angles (θM, ϕM) are
obtained by minimizing the classical ground state energy, and LSWT is applied to
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the ground state47. Arbitrary a0 and b0 axes obtained by rotation around c0 are valid
and do not affect the result.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data used in this study is available from the corresponding
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