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A three step recipe for designing auxetic materials
on demand
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Gustavo Düring 2,5✉

Unlike regular elastic materials, when auxetic materials are compressed, they become thinner

in the direction perpendicular to the applied force. Despite their outstanding mechanical

properties, a systematic design of new and controlled auxetics remains underdeveloped. Here

we establish a unified framework to describe bidimensional perfect auxetics with potential

use in the design of new materials. Inspired by a natural connection between rotating rigid

units and antiferromagnetic spin systems, we unveil the conditions for the emergence of a

non-trivial floppy mode responsible for the auxetic behaviour. This model establishes three

simple steps to design new auxetics. In particular, we constructed an exotic crystal, a Penrose

quasi-crystal and the long-desired isotropic auxetic. The auxeticity of these designs is robust

under small structural disturbances, as seen from experiments and numerical simulations.

We expect that this work will allow the implementation of auxetic behaviour into advanced

materials to enhance their functionalities, with a promising extension into 3D auxetics.
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The design of new materials with unusual mechanical
properties and advanced functionalities has become a very
active field of research in soft matter physics. These so-

called mechanical metamaterials acquire their mysterious beha-
viour from the particular inner architecture and not from the
properties of the constituent materials. In recent years, metama-
terials have been engineered to display topological protection1–6,
programmable shapes7–11, nonlinear response2,10–14 and negative
elastic constants12,13,15–17 among others. Auxetic materials are
probably the epitome of mechanical metamaterials, which were for
the first time intentionally designed by Lakes in 198715. An auxetic
material, unlike common elastic materials, when compressed
(expanded) in a given direction, compresses (expands) in the
perpendicular direction. This unusual property is characterised by
a negative Poisson’s ratio ν, the ratio between the strain in one
direction and the strain in its perpendicular direction.

A negative Poisson’s ratio has been found in natural
bioauxetics18,19 and molecular auxetics20,21. Nowadays, with the
onset of 3D printing, a wide range of auxetic materials are being
developed11,13,16,22–28, with interest in their enhanced mechanical
properties, like increased energy absorption29, enhanced inden-
tation resistance30, high fracture toughness31, synclastic curvature
in bending32, and variable permeability33, with applications in
bio-medicine34 and textiles35 as some examples.

A variety of shapes and geometries have been identified as
prototypical auxetics. The list ranges from re-entrant structures36

to rotating units37,38. Chiral structures39 and sliding bars
systems40–42 complete the list. Despite the extensive literature and
enormous progress describing different types of auxetic materials
no fundamental microscopic principles for a unified description
exist. The distinction between types of auxetics relies mainly on
empirical observation rather than in fundamental principles, and
no general prescription exists to build them. In this article, we
present a unified framework for the description of bi-dimensional
perfect auxetics. In this limit the bulk modulus vanishes while the
shear modulus remains finite implying a perfect auxetic beha-
viour, i.e. with a Poisson’s ratio ν=− 1 over a finite strain
range42,43. Understanding and controlling the perfect auxetic
limit allows us to rationally design realistic auxetics with a tailor-
made geometric structure for which the Poisson’s ratio remains
negative. The precise value of the Poisson’s ratio depends on the
proximity to the ideal design and the energy interaction between
the material constituents.

To our knowledge rotating unit models and sliding bars sys-
tems are the only ones that have displayed a perfect auxetic
behaviour in a finite strain range. Both materials are quite
related41. Rotating unit systems16,23,34,37,38,44–46 can be con-
sidered as a material made of elastic units connected to their
neighbours in such a way that the energy cost of deforming the
bulk of each unit is much higher than that of deforming the bond
between neighbours. Generically one can think of a structure
made out of polygons connected through their vertices, as
the ones in Fig. 1a. Under external loads the stresses focalise
on the vertices leaving the bulk of the polygons almost unde-
formed. The auxetic behaviour arises because neighbour polygons
tend to rotate in opposite directions along a particular low energy
mode. This mode is reminiscent of a non-trivial floppy mode, or
mechanism, that exists in the limit case with zero bending energy
(i.e. the polygons are connected through ideal hinges) which leads
to a perfect auxetic behaviour45. If polygons are considered as
rigid structures, an extended version of the Maxwell’s degrees of
freedom counting argument47 shows that auxetic polygon net-
works of rotating unit systems are isostatic or overconstrained
(Supplementary Note 1). Therefore, the existence of an “auxetic”
floppy mode must be related to a very precise geometrical con-
struction which also implies the appearance of a non-trivial self

stress state mode following the rank theorem48. No general
conditions for the emergence of this floppy mode exist, except for
certain limited sets of periodic lattices49,50. Other auxetics have
different origins, for instance, reentrant materials have typically
an under-constrained internal structure stabilised by bending or
angular forces43. Therefore, the shear and the bulk modulus
vanishes in the zero bending limit, excluding a priori the existence
of a perfect auxetic behaviour.

To understand the auxetic behaviour of rotating units systems
we restrict our study to their perfect auxetic limit. This can be
easily achieved considering a minimal model of rigid polygons
connected by springs of zero natural length46. The springs act as
ideal hinges as long as they are not compressed or stretched. Since
rigid polygons can only rotate, any floppy mode requires that all
the neighbours of each polygon have the same rotation rate (as a
function of strain). If the neighbours of a given polygon are also
neighbours between them the system will then jam. A similar
behaviour is observed for antiferromagnetic spin systems, if the
neighbours of a spin are also neighbours between them the
antiferromagnetic phase will be frustrated. A pure anti-
ferromagnetic phase is known to be achieved only for bipartite
networks. This similarity sets the key ingredient for rotating units
auxetic theory, which requires the system to be bipartite as well,
as can be easily check for all previous rotating units auxetics. As
we will discuss later, the connection with spin systems can be
pushed further by looking at the potential energy of our model
which can be mapped to an anisotopic antiferromagnetic spin
systems. Exchanging temperature with strain a Ginzburg-Landau
energy can be constructed leading to a general descriptions of
domain walls in auxetic materials, a phenomena recently
observed in refs. 23,46. Although bipartite polygon networks are a
necessary condition, and most of them show some level of auxetic
response, additional conditions are necessary to obtain a perfect
auxetic behaviour.

Our theory not only unifies a large class of existing auxetics,
encompassing previous auxetic rigid units systems, but also
allows to create a large variety of them, with new and diverse
geometries, including the somewhat elusive isotropic auxetic
material43,51. In Fig. 1 one can see three different examples of
elastic structures based on perfect auxetic designs; a new type of
auxetic crystals, a quasicrystal and an isotropic (disordered)
structure. These structures where 3D printed on elastic resin,
their mechanical response was measured and compared against
finite element simulations performed on the software Ansys
(Supplementary Note 3). After a finite initial load, they display a
clear auxetic behaviour with a Poisson’s ratio reaching values
between−0.62 and−0.14, as shown in Fig. 1b. The precise
value of the Poisson’s ratio depends mainly on how close the
design is to the ideal scenario, i.e. zero bending to stretching
energy ratio. This behaviour can be easily controlled by chan-
ging the thickness of the bonds between polygons16. An
example of this is shown in Fig. 1c, where two Penrose auxetics
with different bond thickness are compared, the design with
thinner bonds and therefore lower bending to stretching energy
ratio shows a smaller Poisson’s ratio closer to the ideal value. By
design, by decreasing the bonds thickness the Poisson’s ratio
must decrease, eventually reaching the ideal limit ν=− 1 when
the bonds behave as ideal hinges.

Here we show a framework to build and analize bidimensional
perfect auxetics composed of rigid units. With it we uncover the
origin of the auxetic floppy mode. Furthermore, crystals, quasi-
crystals and amorphous auxetics solids can be designed within
our theory spanning all the general kinds of microscopic structure
of solids. Thus, if a particular microscopic structure, such as a
crystalline symmetry, is required for a material to perform a
specific functionality, our theory provides a recipe to add an
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auxetic response to the material. The consequences and applica-
tions of this feature are multiple. From the possible development
of new compliant mechanisms, shape morphing materials, smart
surfaces or actuators, crucial elements in the design of novel soft
robots52–54. To a generalisation of the theory into perfect 3D
auxetics.

Results and discussion
A simple model for perfect auxetics. We are interested in the
behaviour of perfect auxetics, to build them we use the minimal
bi-dimensional model for rotating units auxetics, consisting of a
series of polygons connected by springs of zero natural length46.
Each rigid unit has three degrees of freedom, two translational
x!i ¼ ðxi; yiÞ and one rotational θi, not necessarily measured
from the centroid of each polygon. This model allow to determine
the emergence of the auxetic floppy mode and also introduces
elasticity into our materials to study non-ideal scenarios. The
recipe for building a perfect auxetic requires three ingredients.

● The network must be bipartite.
This allows the units to counter rotate respect to each other,
like cogs in a machine. The units arranged in a bipartite
network can be separated in two sets A and B, i.e. each
connected to the other but not to itself, see Fig. 2a.

● Initially and at rest, every pair of neighbouring polygons
position’s ( x!i, x!j) and the vertex between them have to
be collinear.
This initial setting, matches a maximum extension config-
uration. Furthermore, it establishes a relationship between
the internal angles of every pair of neighbouring polygons
∣αij+ βji∣= π, see Fig. 2b.

● The ratio between the distance of a polygon to one of its
vertex and the distance of his neighbour to the same vertex
must be a constant in the network.

The ratio of the size of neighbouring polygons C= bji/aij
must be a constant through the network, as seen in Fig. 2c.

Applying all these rules, we arrive to an auxetic polygon network
which is ready to be printed as shown in Fig. 2d, e.

Each vertex of a rigid unit is characterised by a vector
a!ij ¼ aijðcosðθi þ αijÞ; sinðθi þ αijÞÞ or
b
!

ji ¼ bjiðcosð�θj � βjiÞ; sinð�θj � βjiÞÞ, corresponding to sets A
or B respectively. The index i will be used for polygons in the set

A and the index j for polygons in the set B. Vectors a!ij ( b
!

ji)

point from the position x! of the polygon i(j) into the vertex
connecting with polygon j(i), as seen in Fig. 2f.

Creating a polygon network that fulfils these rules is quite
simple. Starting from a planar bipartite graph one can always
build a perfect auxetic. To understand the origin of this behaviour
we turn to the energy of the polygon network

V ¼ k
2
∑
<ij>

ð x!i þ a!ijÞ � ð x!j þ b
!

jiÞ
� �2

; ð1Þ

where the sum is over all the pairs of interacting neighbours and
all springs have an equal elastic coefficient k.

We shall consider the energy change under an isotropic
compression, which is equivalent to increasing the size of all
polygons while keeping the distance between polygons constant.
From the second requirement, as the neighbouring polygons are
initially collinear with their vertex, the constant distance between

polygons is x!i � x!j ¼ �ðaij þ bjiÞ
cosðαijÞ
sinðαijÞ

� �
. Increasing the

size of the polygons is achieved by rescaling with λ the vectors
characterising the vertices, such that a!ij ! λ a!ij and

Fig. 1 Auxetic behaviour on demand. a Shows the uniaxial compression test of three auxetic designs, each of them generated with our proposed algorithm.
More on Supplementary Movie 1 and 2. Scale bars 1 cm. The colormap on the finite element simulations shows the sections of minimum and maximum
stress in the elastic material. Clearly the stress is focused on the joints between polygons. b The Poisson’s ratio of each configuration as a function of the
strain. “Exp” and “FE” refer to experimental and finite element simulations results respectively. The experimental error bars show the standard deviation
from measuring each polygon’s position. c Comparison between two bigger Penrose structures with thin and thick bonds, showing the capabilities of tuning
the Poisson’s ratio as a function of the bending energy. These bigger structures can be found on Supplementary Note 3. More information on the
experimental and finite element simulations set-ups on Methods: “Experimental Setup” and “Finite Element Simulations” respectively.
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b
!

ji ! λ b
!

ji. Then we can expand and rearrange Eq. (1) as

V ¼ V0 þ ∑
<ij>

Jij cosðθi þ θjÞ � HA
ij cosðθiÞ �HB

ji cosðθjÞ: ð2Þ

In this equation V0 ¼ k
2 ∑<ij>

ðaij þ bjiÞ2 þ λ2ða2ij þ b2jiÞ, Jij= kλ2

aijbji, HA
ij ¼ kλðaij þ bjiÞaij and HB

ji ¼ kλðbji þ aijÞbji.
Using the third requirement, setting C= bji/aij as a constant,

two solutions can be found. The first one is the trivial solution
θi= θj= 0 which is a minimum for 0 < λ ≤ 1. The second one is
found when all the polygons of each set rotate at the same rate
θi ¼ θ0A and θj ¼ θ0B, where

cos θ0A
� � ¼ 1þ C þ λ2ð1� CÞ

2λ
; ð3Þ

and

cos θ0B
� � ¼ 1þ C � λ2ð1� CÞ

2λC
: ð4Þ

These are a minimum in the range 1<λ< 1þC
1�C

�� �� only if both θ0A
and θ0B have the same sign, i.e. polygons counter rotate respect to
each other. Evaluating the potential energy in this minimum we
find that Vðθi ¼ θ0A; θj ¼ θ0BÞ ¼ 0 (Supplementary Note 5), thus
this solution describes a zero energy mode of the system. This
floppy mode corresponds to a system with zero bulk modulus,
meaning that the material expands and contracts equally in all
directions, for a direct calculation of the bulk modulus see
Supplementary Note 6. As the Poisson’s ratio is defined as
ν ¼ � dϵx

dϵy
, with ϵ being the strain in each direction, and as λ

compresses the system equally in all directions, then ϵx= ϵy and
ν=− 1.

For anisotropic materials, the Poisson’s ratio could take values
<−1. Hence the perfect auxetic definition does not always define
the material with the lowest Poisson’s ratio, but guarantees
an equal auxetic response independent of the direction of
external compression, representing the most symmetric case for
anisotropic materials. This behaviour can be easily understood
when a single floppy mode exists in these materials. Their
Poisson’s ratio in one direction must be the inverse in the
perpendicular direction. Thus, if they have a Poisson’s ratio
ranging from 0 to−1, in the opposite direction it will range
between−∞ to−1 as seen in Supplementary Movie 4. This
feature is quite interesting in the fields of strain amplification55.
In Section: “Floppy modes on bipartite polygon networks” we will
see a particular case of structures with a single floppy mode but
non− 1 Poisson’s ratio.

Random perfect auxetics. Recently, several isotropic auxetics
materials with a Poisson’s ratio close to−1 in an infinitesimal
strain range have been proposed43,51. However, none of them
display a perfect auxetic behaviour. The theory presented pre-
viously is not restricted to lattices. It can be applied straightfor-
wardly to disordered networks, which allow us to the best of our
knowledge to build the first isotropic perfect auxetic materials.
The only complication resides in building a planar bipartite dis-
ordered network. We achieved this by two different methods, a
pruning algorithm, and a graph transformation, both applied on
an isotropic amorphous contact network14,56 (Methods: “Building
Random Bipartite Planar Graphs”). Once we have our bipartite
network, we only need to place polygons at each node of the
graph, taking care that each vertex of the polygon is placed over a
segment of the graph, dividing it in a C: 1 ratio, see Fig. 2.

Fig. 2 The 3 steps recipe. a Step 1, we start with a bipartite network, the blue and red colours stand for the A and B sets respectively. We showcase a
random bipartite network to demonstrate the versatility of this recipe. b Step 2, every node of the graph becomes the position of each polygon and we place
each polygon’s vertex on top of each corresponding segment of the network. At rest the polygon’s position is collinear with its neighbour’s position and the
vertex between them. c Step 3, each polygon vertex is positioned such that the ratio C= bji/aij remains constant along the network. aij is the distance from
the node to each vertex in the A set polygons, bji is the analogue for the B set. d The resulting polygon network after performing the 3 steps. e A section of
the final random auxetic design printed in 3D. As every section of the model is inherently a perfect auxetic, the printed material keeps being auxetic. f A
compression shows that the polygon network is a perfect auxetic. In the zoom in we see how each polygon counter rotates with respect to its neighbours.
θi and θj show the rotation of the A and B set respectively.
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Beyond perfect auxetics. The bipartite condition seems to be
fundamental to have an auxetic material composed of rotating
units. Introducing defects on the network will frustrate the rotation
of the units affecting the auxetic behaviour. We consider the effect
of breaking other conditions, for example by modifying the angle
that connects two polygons, thus making ∣αij+ βji∣= π+ δij.
For the sake of simplicity we used a periodic polygon network and a
fixed δ that will change sign from one link to the next, see Fig. 3a.
By perturbing the polygon network the floppy mode is destroyed
and the polygon network jams. During compression, this defor-
mation initially stabilizes the unrotated state, creating two distinct
states for the system as seen in Fig. 3b. At small strains, it remains
in a stable unrotated state, with a near zero Poisson’s ratio. At
higher strains the unrotated state is unstable, thus the system goes
into an auxetic rotated state with a sudden drop in the Poisson’s
ratio. As the perturbation angle is increased, this change of state
happens at a bigger characteristic strain ϵ�y . In Fig. 3c we present
this characteristic strain as a function of the perturbation angle,
showing how it scales as δ2.

Although the latter behaviour seem to be generic under small
perturbations of the perfect auxetic network it is not always the
case. It is known that rectangular networks23, which are not
perfect auxetics, preserve a floppy mode and the Poisson’s ratio
moves continuously from positive to negative values. To under-
stand the condition for the existence of this floppy mode we need
a more general description on polygon bipartite networks.

Floppy modes on bipartite polygon networks. Bipartite graphs
have only even sided cycles, these are closed paths that start and
end at the same node. The simplest of cycles are the faces of the
graph, which are the regions bounded by edges. When trans-
forming a bipartite graph into a polygon network, even cycles are
reflected at the geometry of empty spaces between the polygons
which are also enclosed by the same number of sides. We will
refer to this empty spaces as holes, and to the vertex between
polygons as hinges. Notice that no odd-sided holes can exist in
bipartite systems. In the case of our perfect auxetic materials, one
can use the Varignon’s quadrilateral theorem57 and Thales

theorem to show that the constant ratio C= bji/aij directly implies
that all 4 sided holes will be parallelograms.

For a system to be deformed while at zero energy, it needs the
opposite angles at each hinge to have an opposite deformation
rate. This condition is in general extremely difficult to fulfil,
except if all 4 sided holes are parallelograms. They have the
special property that when deformed, all of their inner angles
share the same deformation rate, except for the sign. All 4 sided
holes in perfect auxetics are parallelograms, this allows every
inner angle in each hole to be linearly related to the deformation,
fulfilling the restriction at each hinge. This mechanism suggests
that any bipartite polygon network with only parallelogram holes
will have a non-trivial floppy mode. However, it will not
necessarily behave like a perfect auxetic. This inner angles
analysis is similar to the “vertex model”58.

When geometrically perturbing the polygons of a perfect
auxetic with only four-sided holes, while preserving their
parallelogram shape, the floppy mode persists. The simplest
example is the rectangular network previously studied in23,37.
Similar results are observed in a more general case where four-
sided holes remain parallelograms after a perturbation of an
isotropic perfect auxetic. A singular behaviour is observed as soon
as a perturbation is added, showing a Poisson’s ratio equal to 1
under an infinitesimal strain (see Fig. 3d). For larger strains,
Poisson’s ratio approaches a higher value as perturbation is
increased. Moreover, we observe that these random perturbed
materials and rectangular auxetics23,37 have a similar behaviour
for the Poisson’s ratio, as seen in the fit in Fig. 3d. If compression
is applied in the opposite direction the Poisson’s ratio will have
the inverse value, as the system has a single floppy mode. More
information on this similarity and the perturbation, on
Supplementary Note 7.

Domain Walls. Strikingly, not only the rotation of the polygons
resembles that of an antiferromagnetic spin system, Fig. 4a, but
also does the structure of equation (2). Where θ represents the
spin direction, Jij is a symmetric coupling and Hi=∑nHin, where
n sums over neighbours, is analogous to a magnetic field as a

Fig. 3 Breaking the rules. Two interesting examples that break the rules to build a perfect auxetic. a Misaligning pairs of polygons by an angle δ, leaves
them no longer collinear between them and their vertex. Notice that this perturbation turns the previously parallelogram holes into trapezoids. This
effectively jams the system, delaying its auxetic response as seen in the Poisson’s ratio in b (Supplementary Movie 3). Moreover, in c we see how the
transition to the auxetic behaviour happens at a strain ϵ�y , which scales as δ2. d Perturbating the geometry of a perfect auxetic (green triangles) while
preserving the parallelogram property of the holes, results in the preservation of the non-trivial floppy mode in the system, while changing it’s Poisson’s
ratio (orange circles). The Poisson’s ratio of the perturbed system fits well with that of a rectangular auxetic (blue line)23,37, see Supplementary Note 7 and
Supplementary Movie 4. For more information about the measurements, see Supplementary Note 2.
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function of space. Moreover, from Fig. 4b we can see that the
system has a critical point λ= 1 where the polygon’s angle goes
from zero to a rotated state. From Eqs. (3) and (4) we can see that
similarly to a spin system, close to the critical point the angle

grows as the root of an external parameter θ �
ffiffiffi
2
C

q
δλ1=2, here

δλ= λ− 1. Considering these factors and neglecting the polygon
displacements we can build an energy functional for this
model, with a normalised polygon angle θ(x) as an order para-
meter,

H ¼
Z

dx
�t0δλ

2
θðxÞ2 þ uθðxÞ4 þ K

2
∇θðxÞð Þ2

� �
: ð5Þ

Where t0, u and K are positive constants, and u ¼ C
8 t0. This

model predicts the appearance of domain walls like the one in
Fig. 4c, with a characteristic length Δ ~ δλ−1/2, which perfectly
agrees with the numerical simulations of periodic perfect auxetics,
Fig. 4d. The exact calculations and simulations are shown in
Supplementary Note 4.

Conclusions
We have presented a simple model that builds the necessary
framework to create, design, and characterise rotating unit
auxetics. Such framework is built upon a simple analogy between
the rotating unit auxetics and an anisotropic XY anti-
ferromagnetic system. As shown in Fig. 1, we have applied those
ideas to generate novel auxetic structures in the form of a crystal,
a quasicrystal, and a random lattice. Each design can be repre-
sented, within our theory, by a minimal model, based upon
polygons and springs that captures its essential collective response
to external loads. These models can be simulated straightfor-
wardly to test materials properties while ignoring bending forces.
However, if needed, bending can easily be added to the model. As
we have seen, this model correctly describes the behaviour of all
rotating units systems and could be used to predict new beha-
viours. In particular, we have generalised the behaviour of auxetic
domain walls, which are natural textures that these systems have
because of the analogy with magnetic systems. More phenomena
related to this analogy remain to be seen and encourage further
investigation. As a major tangible result, our work leads us to

establish the ground rules to create never seen before isotropic
perfect auxetics. This model still lacks dynamic and vibrational
analysis that, hopefully, will shed light on the general topological
properties of these materials. Furthermore, this theory has the
potential to be expanded into 3D polyhedral materials, as it is
mainly written in a vectorial form, we are excited to see where
this takes us.

Methods
Experimental setup. Network Design: For the simulations and experiments in
Fig. 1, we used three bipartite networks which were created using the methods
described in Methods section: “Building Random Bipartite Planar Graphs”. For
the exotic crystal we modified a tetrakis tiling by skewing it and applying the
bipartite transformation; for the quasi-crystal we used a Penrose tiling which
was cut in a suitable square shape; lastly the random network was created using
the pruning method. All the materials were built with the same ratio between
average polygon size and bond thickness, such that they exhibit a similar
behaviour.

Materials: a commercial elastic resin (code name Elastic 50A) from Formlabs
was used for the direct 3D printing of the auxetic structures. From the several
available resins, Elastic 50A presented the elasticity needed for the tests further
allowing a printed structure with the proper resolution. The mechanical
characteristics of the material are 160% of elongation at failure, 19.1 kNm−1 of
tear strength, 3.23 MPa of ultimate tensile strength and 50 A of shore
hardness59.

3D Printing: a Form 2 3D printer from Formlabs was used to print directly the
auxetic structures avoiding the need to print a negative mould. The model file was
loaded in the Preform software of the 3D printer for size adjustments and the
addition of the corresponding supports. We tested different sizes until the direct
printing allowed a structure with the proper elasticity and resolution avoiding
defects and imperfections. The structures were defined having at least 40 rigid
units. The final dimensions of the structures (height × width × thickness) were
56 × 57 × 20mm for the random structure and 68 × 55 × 20mm for the exotic
crystal, and 58 × 58 × 20mm for the Penrose structure, they were printed with
100 μm of layer thickness resolution.

The compression tests were carried out in a Jinan mechanical tester model
WDW-S5 using a 5-kN cell and a velocity of 0.83 mms−1. The compression was
applied until a 30% of deformation approximately. A professional camera Nikon
D5300 was used to record the sample during compression and expansion. From
these images we tracked the position of each rigid unit, which we used to measure
the Poisson’s ratio.

Finite element simulations. For our static finite elements simulations, we used the
commercial software ANSYS60 and a Neo-Hookean energy density as a material
model, with an initial shear modulus, G= 0.15MPa, and Poisson’s ratio ν= 0.5,
and in-plane strain conditions with hybrid quadratic triangular elements (ANSYS
type PLANE18361). We carried out a mesh optimisation to ensure that bonds,
where most of the strain and stress is localised, are meshed with at least three

Fig. 4 Antiferromagnet spin analogy. a Finite element simulation of a square units auxetic. The auxetic basic mechanism lies in the coordination and
synchronisation of the buckling instability at each of the weak links that provide the structure its stability. The effective collective pattern that emerges is
analogue to an antiferromagnetic arrangement. Each of the two interconnected lattices that fit the bipartite system rotate in opposite directions, as
indicated by the green and orange arrows. b The rotation angle θ0 as a function of the compression λ, for C= 1. Analogous to an antiferromagnetic system,
the material goes through a phase transition from a stretched state, to a compressed rotated state. With its critical point located at at λ= 1. c By breaking
the bipartivity the auxetic will frustrate, creating local defects that don't rotate as predicted. Here we showcase a non-bipartite random polygon network,
when compressed a system spanning defect appears (yellow), reminiscent of a domain wall. The colour represents the rotation of each polygon, red being
clockwise and blue counter clock wise, yellow shows the frustrated polygons. To create this defect, periodic boundary conditions where applied to an
initially bipartite network, this boundary condition created a non-local odd cycle which destroyed the bipartivity. d The domain wall length Δ, normalised by
the polygon size a, plotted against the isotropic expansion parameter δλ, it’s evident that Δ ~ δλ−1/2, more on Supplementary Note 4.
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elements. This way, the material has 105 elements approximately. To compress the
material uniaxially, we applied a vertical displacement of the top row of polygons,
and fixed the position of the bottom row of polygons. We imposed a free boundary
condition in the horizontal direction and we imposed a no-penetration condition,
therefore the material can contact itself.

Building random bipartite planar graphs. One of the main problems in creating a
random perfect auxetic material is the construction of a random bipartite planar
graph, from which we can construct the polygon network. The graph must be
bipartite so that the polygons can counter rotate with respect to each other, and it
must be planar so that we can build the polygon network without
overlapping them.

We propose two methods to create these graphs. The first is a heuristic pruning
algorithm, which takes advantage of the property that a graph with only even cycles
will be bipartite. The second is a general transformation that can quickly create
bipartite graphs by combining a graph with its dual graph.

Pruning algorithm. A bipartite graph has only even cycles, where a cycle is the
shortest path between a node and itself. We call a cycle even or odd depending on
the number of bonds in its path. Here we prune a graph in such a way that all the
cycles of the resulting graph are even, transforming the graph into a
bipartite graph.

If we have two neighbouring cycles that share a bond, and we prune this
bond, we will end up with a single cycle. We can think of this operation as an
addition of cycles. Where if the starting cycles are both even or odd, the
resulting cycle will be even. And if one cycle is even and the other is odd, the
resulting cycle is odd. We can extrapolate this property to a pair of separate odd
cycles with only even cycles between them. If we remove a line of bonds between

the odd cycles, we will end up with a single even cycle. Then, if we prune the
bonds between all pairs of odd cycles, we will end up with a bipartite graph with
only even cycles.

The pruning algorithm we implemented follows some simple steps, we start
with a random planar graph with an even number of odd cycles, ideally with a high
coordination number, e.g. z= 6. Next, we place a marker at an odd cycle and use a
breadth-first search algorithm on the dual graph, to find the path to its closest odd
cycle. We remove the bonds in this path, transforming both odd cycles into a single
even cycle. Finally we move the marker to another odd cycle and repeat the
procedure until all cycles are even. An example of the initial and final graphs is in
Fig. 5. While removing bonds we prefer paths that leave each node with at least
three bonds, to give the system more stability and to avoid generating big holes. If a
node is left with less than two links, we eliminate the node.

This algorithm works well on small graphs, but on bigger ones it may eliminate
a huge amount of bonds leaving big holes. To avoid this problem a more
sophisticated path optimisation algorithm is needed, where the paths between all
pairs of odd cycles are calculated beforehand, minimising the distance of each path
and making sure they avoid each other. Once all of the paths are computed, the
bond elimination process can be performed, minimising the size of the holes.
Furthermore, this algorithm does not necessarily work for graphs with periodic
boundary conditions. As having only even sided cycles guarantees bipartivity if the
graph has free boundary conditions, but it does not if the graph has periodic
boundary conditions.

Bipartite transformation. A bipartite graph is made out of two independent sets,
each one connected to the other but note to itself. Here we connect two inde-
pendent sets, a graph and its dual graph, transforming both into a single planar
bipartite graph.

Fig. 5 Two methods to build random bipartite planar graphs. Both start from an isotropic contact amorphous network14,56. a Starting network with a high
coordination z = 6. b Pruned version of the previous network, the bonds between pairs of odd cycles have been removed, adding them together into even
cycles. The result is a bipartite planar graph. c Starting random planar contact network, in this case the coordination is z = 5. dWe compute the dual graph
of the network (blue nodes and dashed lines), place each node of the dual graph inside its corresponding cycle. e Then disconnect each node of the dual
graph (blue to blue nodes), and reconnect them to the nodes corresponding to the vertices of its cycle in the original graph (red and blue nodes connected
by dashed lines). f Lastly remove the connections of the original graph (red to red nodes) and keep the connections between the dual graph and the original
graph. As both initial graphs are independent sets that don’t connect to themselves, the result is a random planar bipartite graph.
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Given a graph, we first determine its dual graph. Then we connect each node of
the graph with each neighbouring node in the dual graph, by neighbour node we
mean the node in the dual graph that represents a face in contact with the node in
the original graph. At last, we eliminate all the starting bonds of the graph and its
dual graph, leaving only the new bonds connecting both graphs. The resulting
graph will be bipartite, and if the original graph was planar, the resulting graph will
be planar too. To further understand this procedure, see Fig. 5.

This transformation can be performed on any kind of graph and several times
in a row creating a graph with more nodes each time. We can reverse the
transformation, though we may not know if we obtained the graph or its dual
graph when performing the inverse transformation, unless we keep track of at least
one node from the starting graph.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon request.
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