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Investigating and modeling the dynamics of
long ties
Ding Lyu 1, Yuan Yuan2,3✉, Lin Wang1, Xiaofan Wang1,4 & Alex Pentland3,5

Long ties, the social ties that bridge different communities, are widely believed to play crucial

roles in spreading novel information in social networks. However, some existing network

theories and prediction models indicate that long ties might dissolve quickly or eventually

become redundant, thus putting into question the long-term value of long ties. Our empirical

analysis of real-world dynamic networks shows that contrary to such reasoning, long ties are

more likely to persist than other social ties, and that many of them constantly function as

social bridges without being embedded in local networks. Using a cost-benefit analysis model

combined with machine learning, we show that long ties are highly beneficial, which

instinctively motivates people to expend extra effort to maintain them. This partly explains

why long ties are more persistent than what has been suggested by many existing theories

and models. Overall, our study suggests the need for social interventions that can promote

the formation of long ties, such as mixing people with diverse backgrounds.
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Social network analysis provides a powerful instrument to
investigate the structure of society by aggregating inter-
personal relationships among individuals1–5. In the social

network literature, a large body of research centers on how tightly
clustered social ties and groups are formed, as well as how they
evolve, spread information and behaviors, and promote group
solidarity6–12. Meanwhile, a smaller but increasing number of
studies focus on weak ties, which may function as “bridges”
between different communities because of the unique roles
they play in global network structures and information
diffusion1,13–20.

One recent development in the literature is the concept of
“long ties.” These are social ties that have a large tie range, which
is measured by the length of the second shortest path between
two connected nodes (see Fig. 1). Long ties—social ties with a
large tie range—work as important social network bridges
between different communities21–26. Structurally, long ties may
be considered to be weak ties, as they are not positioned in a
“cohesive embedded network” where individuals can easily con-
tact or spend time with common neighbors14,22,27. Yet, despite
the seeming weakness (in terms of low frequency or intensity of
contact) of long ties, many studies have shown that long ties are
crucial for the widespread dispersion of novel information and
contagious behaviors1,14,18,25,28–30. Relatedly, these bridges may
have other special characteristics such as exhibiting a higher level
of direct reciprocity31.

Still, one crucial perspective lacking in the literature of long ties
is the dynamics. Evidence from static social networks may not be
generalizable to dynamic networks32. In particular, existing social
network theories and prediction models may indirectly imply that
long ties should dissolve quickly or eventually become redundant,
thus putting into question the long-term value of long ties.

The critical role of long ties would be challenged if empirical
evidence from dynamic networks suggests that long ties tend to
dissolve or become short ties. Firstly, it is possible that long ties
may dissolve rapidly. According to various theories14,27 and
prediction models9,33, social ties are likely to dissolve quickly
when they lack sufficient common neighbors to reinforce their
relationships or when they have few interactions (i.e., interactions
with weak tie strength). Long ties likely satisfy this condition, and
thus their role in bridging different communities might be
limited16. Secondly, long ties may evolve to become redundant
“short ties.” By triadic closure33,34, a person may introduce other
friends to their long ties, thereby forming common neighbors and
switching the long tie to a short tie. Therefore, two people who
had a long tie may become increasingly similar, for example,
regarding the information they digest or the opinions they hold35.
Eventually, the previously long tie becomes largely redundant, as
there now exist other paths where the same piece of novel
information can flow between the two individuals27,36.

Our study combines empirical analysis and computational
modeling to provide a dynamic perspective of long ties.

First, using 2-year social network data, we find that contrary to
what is implied by existing theories and models, not only are long
ties more likely to persist than shorter-range ties but also that
many of them continue to be long ties. To explain this finding, we
propose three possible hypotheses: degree heterogeneity, survival
bias, and valuable long ties37,38. Investigating these hypotheses,
we empirically show that the first two mechanisms might not
fully explain our main results.

Next, we propose a cost-benefit analysis model to support our
last hypothesis—that individuals spend extra effort to maintain
relationships with long ties because they are highly beneficial,
since they provide novel information or different expertise. The
model combines strategic network formation models from the
game theory literature3,7 and node embedding techniques in
machine learning39–41 to simulate the dynamics of social net-
works. This interdisciplinary approach has been shown effective
in trading off the model’s power to explain mechanisms versus to
predict42. Our model describes the social tie formation process as
a result of a meeting procedure and a subsequent rational deci-
sion procedure. We verify the model by utilizing real-world data.
Ultimately, we find that our model partly explains the persistency
of long ties, which is the main conclusion of our empirical
analysis.

Results
Long ties last longer. In this work, we employ tie range to
characterize the local network structure of a social tie. As the
length of our data is two years, we partition the data into eight
phases; our results are robust to other ways of partitioning, as well
(see Supplementary Note 2). To begin our analysis, we classify all
social ties by tie range in the first phase, and then, we observe the
evolution of those ties in the subsequent phases.

First, we examine the dynamics of tie strength, which is
measured by interaction frequency (the number of calls or texts)
and interaction duration (the total duration of the calls). We
define yt as the interaction frequency or duration in phase t. We
present E[yt∣y1 > 0] in the eight phases, as shown in Fig. 2. This
conditional expectation indicates that we focus our analysis on
ties that already exist in phase 1 (see Supplementary Note 4).
Observing the magnitudes in just the first phase, we find a “U-
shape” in the data that is consistent with the results of the prior
work25. Our result shows that interaction frequency and duration
initially decrease with the tie range, but later increase with the tie
range. In particular, long ties (tie range ≥6) appear to be as
intimate as those short ties with tie range= 2 in that the average
interaction frequency or duration for these two types of ties are
close in the first phase.

By comparing the dynamics of short ties and long ties in Fig. 2,
we find that long ties continue to be stronger. For example, in the
long run, the average interaction duration and frequency of social
ties with a tie range ≥6 appear to be even slightly larger than those

Fig. 1 Definition of tie range. Tie range characterizes the length of the second shortest path between two connected nodes. The blue nodes are the nodes
on the second shortest path between the two red nodes.
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with a tie range of 2. Furthermore, social ties with a tie range of 5
also appear to be stronger than ties with a tie range of 3 or 4. In
Supplementary Note 2, we discuss the robustness of our findings
by adjusting the time window that determines the length of
each phase.

To understand what mechanisms drive the patterns above, we
decompose the dynamics of interaction frequency or duration
into persistence probability and interaction increments. We let
the difference in the interaction frequency or duration between
phase t and 1 be Δyt= yt− y1. Then, we define the persistence
probability and interaction increments as follows:

E½ytjy1 > 0� ¼ E½y1 þ Δytjyt > 0; y1 > 0�P½yt > 0jy1 > 0�

¼ E½y1jyt > 0; y1 > 0� þ E½Δytjyt > 0; y1 > 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interaction increments

0
B@

1
CA

´ P½yt > 0; y1 > 0�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
persistence probability

ð1Þ

The dynamics of the persistence probability and interaction
increments are presented in Fig. 3. As illustrated in the left panel
of this figure, we find that social ties with a tie range ≥6 have the

largest persistence probability in all subsequent phases, followed
by closely embedded ties with a tie range of 2. Meanwhile, we find
that social ties with a mid-sized tie range (i.e., 3 or 4) dissolve the
fastest. This pattern is consistent with the overall effect presented
in Fig. 2. In Supplementary Note 5, our additional analysis show
that in general, long ties have longer lifespans. Note that when
defining the lifespan, we explore two choices: (1) the social tie has
to have interactions for every phase within the lifespan; and (2) a
social tie has interactions in the first and the last phases no matter
whether they have interactions in the phases in between. The
latter considers the ties being re-established after termination.
The conclusion does not change with the choice of the definition
of lifespan (see Supplementary Note 5). These results also show
that long ties tend to be persistent longer overtime.

Regarding the interaction increments, we find that they
generally increase with tie range. This indicates that conditional
on a persistent social tie, the interaction frequency and duration
appear to be larger when there is a long tie. By contrast, social ties
with a tie range of 2 have the smallest interaction increments.
From this, we conjecture that persistent short ties typically
require less effort to maintain, as they can be indirectly
maintained through their common friends; by contrast, we

Fig. 2 Dynamics of tie strength given initial tie range. Tie strength is measured by interaction duration (the total call volume in seconds) and interaction
frequency (the number of calls or texts). Each phase represents a season (three months). We take logarithms (log) for both interaction duration and
frequency. All ties are classified according to their tie range in the first phase. The curves represent (a) the average (log) interaction frequency and (b) the
average (log) interaction duration conditional on a tie existing in phase 1 with the given tie range. Error bars are 95% confidence intervals for the mean log
interaction duration and frequency (assuming normal distribution). Note that error bars are sometimes smaller than the data point markers.

Fig. 3 Dynamics of persistence probability and interaction increments given initial tie range. Each phase represents a season (3 months). All ties are
classified according to their tie range in the first phase. The curves represent (a) the probability of persisting, (b) the average (Δ log) interaction duration,
and the average (Δ log) interaction frequency (c) conditional on a tie existing in phase 1 with the given tie range. Error bars are 95% confidence intervals for
the means (assuming normal distribution). Note that error bars are sometimes smaller than the data point markers.
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speculate that long ties require a lot of time investment in order
to be maintained.

Many long ties are persistently long. Next, we investigate the
dynamics of tie range. We first examine the dynamic trends of tie
range in the first two phases by analyzing the social ties that exist
in both phases. We present the transition probability matrix
between tie ranges in the left panel of Fig. 4. As shown in the
figure, all social ties have a large likelihood of evolving into short
ties. In particular, for longer ties, i.e., those with a tie range of= 5
or ≥6, their probability of evolving into a tie range equal to 2 is
the largest: 32% or 36%, respectively. Few short ties become long
ties, since such an evolution requires that all their common
neighbors dissolve with either of them. In addition, long ties
appear to be a stable status. For example, a social tie range ≥6 in
phase 1 has a probability of 34% or 15% to have a tie range of 5 or
≥6 in phase 2, respectively.

We further analyze the tie range dynamics in phase 4 and
phase 8, which are presented in the middle and right panels of
Fig. 4. We find the patterns in phases 4 and 8 are largely
consistent with the pattern in phase 2. In particular, for those
with a tie range= 5 or ≥6 in phase 1, they have a probability of
26% or 38%, respectively, to persist with a tie range ≥5 in phase 4;
they also have a probability of 41% or 52%, respectively, to persist
with a tie range ≥5 in phase 8. These results indicate that although
long ties have a high probability of becoming short ties, they can
also persist as long ties. This finding suggests that it is not
necessary for a social tie to become a short-range tie to be long-
lasting.

Next, we proceed to jointly investigate tie range and tie
strength (i.e., the frequency and the total duration of interac-
tions). As shown in Fig. 5, in general, those ties that become
short-range (e.g., tie range= 2) are those with more interactions;
for social ties that have an arbitrary initial tie range but later
change to a tie range of 2, the interaction frequency and duration
are always the greatest. For the persistence probability, the same
trend generally holds. The one exception here is for those with a
tie range ≥6: if they continue to be social ties with a tie range ≥6,
their tie strength remains strong. Note that although we are only
discussing phase 1 and phase 2, our results are equally robust
when we examine any phase t and its first subsequent phase, t+ 1
(see Supplementary Fig. S9).

Explaining the results: three hypotheses. In the previous sec-
tions, we show that long ties are not only stronger but also last
longer. Moreover, quite a few strong long ties continue to be long

ties. To discuss the plausible explanations for the observed pat-
terns, We next propose and discuss three hypotheses pertaining
to degree heterogeneity, survival bias, and valuable long
ties below.

Degree heterogeneity. First, one plausible explanation for the
observed patterns is degree heterogeneity. As shown in Supple-
mentary Fig. S10, we find that individuals who have fewer friends
are more likely to have long ties. Thus, they tend to retain rela-
tionships with a small number of friends, but with greater tie
strength.

To reduce the impact of degree heterogeneity, we plot the
results conditional on the degree subgroup (see Supplementary
Note 6). Specifically, we separate individuals by their degree and
obtain multiple degree subgroups. We then plot the main results
for each degree subgroup in Supplementary Fig. S11. We find that
the patterns observed in our main text are found in all degree
subgroups. This finding shows that although degree heterogeneity
may provide an explanation for the observed patterns, it does not
fully explain our main results.

Survival bias. The second plausible explanation is survival bias
—that only very valuable long ties survived—even though
newly formed long ties are likely to be weaker than newly-
formed short ties. Therefore, surviving long ties tend to con-
tinue to persist, or perhaps even become stronger, while others
dissolve rapidly. To test this hypothesis, we need to examine
(1) whether newly formed long ties are weaker than newly
formed short ties in the beginning and (2) whether newly
formed long ties have a smaller persistence probability, such
that only very strong long ties survive. We find that while (1) is
supported, (2) is not supported; thus, survival bias cannot fully
explain our results.

To investigate these two ideas, we divide social ties into one of
two categories: existing ties, and new ties. An existing tie is one
that has had any interactions in the previous phase, while a new
tie has had no such interactions. After separating all ties into
existing or new ones, we perform the same analysis as that found
in the previous sections. We use the tie range in phase 2 as the
reference, and we investigate whether there was non-zero
interaction frequency or duration in order to determine if it is
a new or existing tie.

We first examine whether newly formed long ties are weaker
initially than newly formed short ties. In Fig. 6, we show that
while existing ties present a “U-shape” in the relationship
between interaction frequency (duration) and tie range in phase 2,
this “U-shape” pattern does not hold for new ties. Instead, as

Fig. 4 Transition probability matrix of tie range from this to the next phase. The y-axis and x-axis represent tie range of social ties in phase 1 and in a
subsequent phase, respectively. Social ties that dissolved in the corresponding phase are disregarded in the analysis. The numbers on the cells indicate the
corresponding transition probabilities from phase 1 to (a) phase 2, (b) phase 4, and (c) phase 8.
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indicated by Fig. 6, for new ties, the longer the new tie is, the
fewer interactions the two people have in phase 2. This result
supports our conjecture that newly formed long ties are likely to
be weaker than newly formed short ties.

Next, we investigate whether newly formed long ties have a
smaller persistence probability. However, we observe that for
newly formed ties, there exists a “U-shape” between tie range and
persistence probability; newly formed long ties have the highest
persistence probability (see Supplementary Note 7). This finding
contradicts our conjecture that the persistence probability of
newly formed long ties would be the smallest. Thus, for the two
notions we examined, we find that (1) is supported while (2) is
not supported. Therefore, the survival bias hypothesis does not
fully explain our main results.

Valuable long ties. Our last hypothesis is that long ties tend to be
more valuable. This hypothesis is consistent with weak tie theory
and the roles of long ties, as conjectured in previous studies1,14.
However, while most computational models that simulate real-
world networks highlight homophily43—the phenomenon that
individuals with similar attributes tend to be friends—previous
models do not typically consider the benefits of social exchange

between people with different skills or information sets42. Recent
work42, provides an example of how one can consider homophily
and social exchange jointly, but this work is restricted to static
social networks. Below, we propose a computational model that
combines game theory and machine learning in order to examine
long tie dynamics. This model helps support our hypothesis on
valuable long ties, while also incorporating the first two
hypotheses.

The model explaining long ties’ persistency. Here, we propose a
game-theoretical computational model that simulates the
dynamics of social networks. Specifically, the model combines the
embedding techniques in machine learning39–41,44 and the stra-
tegic network formation in economics7,45. Compared to the
common network formation game models in the economics lit-
erature, our model stresses the high-dimensional heterogeneity, as
well as the values of social exchange. Compared to network
embedding techniques, our model helps understand the social
network formation mechanisms. Ultimately, our model integrates
the strategic network formation approach to explain the
mechanisms, while the embedding techniques improve the

Fig. 5 Interaction duration, frequency, and persistent probability in the subsequent phase when tie range evolves. The y-axis and x-axis represent tie
range of social ties in phase 1 and in phase 2, respectively. Interaction duration is measured by call volume in seconds. Interaction frequency is the number
of calls or texts. Persistence probability is defined as the probability of social ties persisting from phase 1 to phase 2. The numbers on the cells indicate (a)
the log means of interaction duration, (b) the log means of interaction frequency, and (c) the probability of persisting in the next phase.

Fig. 6 Interaction duration and frequency for newly formed ties and existing ties conditional on an existing tie in phase 2. An existing tie is one that has
had any interactions in the previous phase, while a new tie has had no such interactions. All ties are classified according to their tie range in phase 2. The
curves represent (a) the average (log) interaction duration and (b) the average (log) interaction frequency in phase 2 of newly formed ties and existing ties
with the given tie range, respectively. Error bars are 95% confidence intervals for the means (assuming normal distribution). Note that error bars are
sometimes smaller than the data point markers.
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predictability of the computational model. Our study echoes
Hofman’s recent paper that discusses the trade-off between
explanation and prediction in computational social science46.

Our model considers two procedures during the formation of
social ties: the meeting procedure, and the choice procedure. This
two-step model takes into account the dynamics of social ties –
that people first meet others randomly, and then make their
rational decisions about the choice of friends. The meeting
procedure models reality, wherein people meet each other at
random. There may exist many potential neighbor candidates
who are mutually beneficial (e.g., some potentially valuable long
ties), but the extremely low meeting probability can prevent the
social tie from being formed. Moreover, when first meeting a new
neighbor, a person may lack sufficient information to assess the
person, and they are unable to make a rational decision about the
social tie. After getting to know a new friend over a period of time
(one phase in our study), the individual can then start to make a
rational decision about that person. The choice procedure
assumes that individuals are rational when choosing their
network neighbors and that each individual maximizes their
utility function.

Formally, let I be the set of individuals and let i (or j, ℓ) be
their index. Additionally, let t index the discrete time steps (or
phases), and thus, t 2 Nþ. Also, let A(t) denote the adjacency
matrix in phase t. AðtÞ

ij ¼ 1 indicates that i and j are connected in

phase t. AðtÞ
ij ¼ 0 indicates that i and j are disconnected in phase t.

For simplicity, we only consider an undirected network, i.e.,
AðtÞ
ij ¼ AðtÞ

ji for all i; j 2 I , and for all, t 2 Nþ. To account for the
heterogeneity of individual attributes, we use the “endowment
vector” wi, which is a K-dimensional vector as in the embedding
techniques39,40. As embedding techniques do, each dimension
measures a certain latent attribute of an individual, such as a type
of skill or useful information. A larger wik indicates that the
individual retains a high endowment of the kth dimension.

In each phase, the neighbor’s set of i consists of two
components: the new friend set MðtÞ

i , and the existing friend
set N ðtÞ

i ; which echoes our analysis newly formed ties and existing
ties. The new friend set is formed in the random meeting
procedure. We assume each pair of individuals has a different
meeting probability. The concept of a “meeting probability” is
found widely in several econometric studies that aim to model
social network formation45,47,48. Specifically, for each pair of
individuals, i and j, they have a probability of pðtÞij to “meet” each

other in phase t. If Aðt�1Þ
ij ¼ 1, that is, the two individuals were

connected in phase t− 1, then the pðtÞij is a large probability.

Otherwise, pðtÞij is a small probability, dependent on the network
topology between i and j. Inspired by our previous comparison
between newly formed ties and existing ties, we can imagine that
if this is a long tie, the probability would be much smaller.
Formally, we parametrize pðtÞij as follows:

pðtÞij ¼
dt�1ði; jÞ Aðt�1Þ

ij ¼ 0

q Aðt�1Þ
ij ¼ 1

(
ð2Þ

The distance metric dt−1(i, j) depends on the network topology
between individual i and individual j in phase t− 1. We define
the distance metric to be proportional to the probability of
random walks from i to j. Here, q is set to describe the probability
of maintaining the meeting procedure in phase t.

The second component is the existing friend set N ðtÞ
i , which is

determined by the rational choice procedure. It is a subset of all
friends in phase t− 1, i.e., N ðtÞ

i 2 Mðt�1Þ
i ∪N ðt�1Þ

i . This means

that individuals make rational decisions after maintaining their
friendships for a period of one phase. The rationale behind this
notion is that individuals need a significant amount of time to
assess the value of an existing friend, so the rational choice
procedure happens in the phase immediately following the
meeting procedure. For a connected social tie in phase t− 1, the
friendship must survive both the meeting procedure (a random
draw from Bern(q)) and the rational choice procedure. The
choice procedure is modeled using the following utility function:

U ðtÞ
i ðcðtÞi Þ ¼ ∑

j2Mðt�1Þ
i ∪N ðt�1Þ

i

cðtÞij ∑
k

σ wjk � wik

� ���

þ ∑
‘2Mðt�1Þ

j ∪N ðt�1Þ
j

δσ w‘k � wik

� �1A� cðtÞij
� �2

1
A; where ∑

j
cðtÞij

� �2
¼ 1:

ð3Þ
Here, U ðtÞ

i is the utility function of individual i in phase t.

cðtÞi 2 ½0; 1�Mðt�1Þ
i ∪N ðt�1Þ

i , which can be understood as a function
that maps any j in the neighbor set in phase t− 1, i.e., each
element in Mðt�1Þ

i ∪N ðt�1Þ
i , to a real number in [0, 1]. The utility

function sums over all i’s neighbors in phase t− 1. σ is the
ReLU function: if wjk−wik > 0, the output is wjk− wik; otherwise,
0. ℓ enumerates over all j’s neighbors in phase t− 1, which are
also i’s “friends’ friends.” The depreciation factor δ, which
ranges in (0, 1), measures how the value of a potential friend
depreciates as the distance on the network increases. We refer to
σðwjk � wikÞ þ∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j
δσðw‘k � wikÞ as the benefit that j

brings to i. In addition, we separate the benefit into two: the
direct benefit, σ(wjk− wik), and the indirect benefit,
∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j
δσðw‘k � wikÞ. The design of these benefit terms

was intended for our valuable long tie hypothesis – we hope to
observe that long ties have, on average, larger values in the direct
benefit term.

cðtÞij measures the time investment of i in j. A non-zero value of
cðtÞij indicates that j belongs to N t

i . The restriction of the sum of

squared cðtÞij reflects that people have limited time or energy to
invest in their neighbors. The benefit of each neighbor is
proportional to the time or energy investment in each neighbor j;
this is why we multiply the benefit term by cðtÞij . At the same time,

the squared term cðtÞij
� �2

is used to measure the cost of time or

energy. The design of cðtÞij echoes our degree heterogeneity
hypothesis – that those with many ties may have less investment
in any one individual neighbor.

By the Cauchy-Schwarz inequality, Eq. (3) can be solved by

ðcðtÞij Þ
� / ∑

k
σ wjk � wik

� �
þ ∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j

δσ w‘k � wik

� �0
@

1
A;

and ∑
j

ðcðtÞij Þ
�� �2

¼ 1:

ð4Þ
In particular,

j 2 N ðtÞ
i iff cðtÞij

� ��
> 0; j =2 N ðtÞ

i iff cðtÞij
� ��

¼ 0: ð5Þ

In other words, if the optimal solution informs cðtÞij
� ��

¼ 0,
then this indicates that i and j are no longer connected.

Otherwise, cðtÞij
� ��

is the fraction of the call duration during

which i interacts with j at time t among i’s total call duration at
time t.
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This model provides major improvements based on the
framework proposed in prior work42. First, different from their
paper, we establish a model for network dynamics. In particular,
we incorporate a meeting procedure; this addresses the
phenomenon that, in reality, there are many neighbor candidates
who do not form links purely because they have no opportunity
to meet. Second, our model also takes into account the “weight”
(i.e., the interaction frequency or duration) of the links. This is
different from Yuan et al.42, where the weights between the links
are binary. Third, Yuan et al.42 assumes that the marginal utility
of additional neighbors is not dependent on other existing
neighbors; by contrast, our model does not incorporate this
assumption, and it also accounts for the network externality (i.e.,
the benefits of friends of friends)7. We provide additional analyses
to verify our modeling fitting capacity in Supplementary Note 8.

Figure 7 provides the main implications derived from the
learning results of our model. We first present the average benefit,
i.e., σðwjk � wikÞ þ∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j
δσðw‘k � wikÞ, given the dif-

ferent tie range in Panel (a) of Fig. 7. The average is taken over all
candidate neighbors in Mðt�1Þ

j ∪N ðt�1Þ
j given the tie range in

phase t− 1. From this, we find a “U-shape”, i.e., the average
benefit decreases with the tie range at the beginning, but later
increases with the tie range. This is consistent with our previous
findings regarding the “U-shape” between tie range and tie
strength.

Next, we separate the benefits in Eq. (3) into the direct effect
and the indirect effect. We present the average direct effect, which
is σ(wjk−wik) in Panel (b) of Fig. 7. We observe an increasing
pattern with the tie range, indicating that as the tie range
increases, the average benefit that a tie brings also increases. This
result supports our hypothesis that long ties tend to be
more valuable, which also explains the results in the previous
sections. We also compute the average indirect effect, i.e.,
∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j
δσðw‘k � wikÞ. In our model, only social ties with

common friends, i.e., those with a tie range of 2, have indirect
effects. We plot the relationship between the number of common
neighbors and the average indirect effect. The indirect effect
echoes our previous discussion on patterns of social ties with a tie
range of 2. As observed in Panel (c) of Fig. 7, we find an
increasing pattern. In particular, by examining the first several
data points in the plot, we observe a seemingly convex pattern,
indicating the increasing marginal utility of common neighbors.

Overall, the results from our learning model suggest that long
ties are generally more valuable (with greater direct effects). This

model also takes into account degree heterogeneity and survival
bias hypotheses, although they are probably not the primary
drivers. We also compare our model with other baseline models
in Supplementary Note 9, but they cannot provide the
implications as we plot in Fig. 7.

Conclusion
In this study, we combine empirical analysis and an inter-
disciplinary computational model to investigate the dynamics of
long ties. We find that long ties persist longer than shorter-range
ties and that many long ties are persistently long. These results
are contrary to what is suggested by several prior theories and
prediction models. To better understand our results, we propose
three hypotheses—degree heterogeneity, survival bias, and valu-
able long ties—and then go on to discuss the limitations of both
the degree heterogeneity hypothesis and the survival bias
hypothesis. Finally, we discuss an interdisciplinary model that
combines game theory and machine learning to support our
valuable long-tie hypothesis. Verified by real-world data, our
model partly explains why long ties are more persistent than what
has previously been suggested by existing theories and models.

Our results also signal the importance of social interventions
that promote the formation of long ties, such as mixing diverse
people with diverse backgrounds. For example, both our
empirical analysis and modeling results indicate that people who
are dissimilar in certain attributes or who are distant in a social
network may have significant mutual benefits to one another.
However, as indicated by our model, the small likelihood of those
people meeting can hinder the formation of their future
interactions.

Based on this study, there are several interesting research
directions that could be investigated. First, although we examine a
large-scale social network with very few missing nodes, the gen-
eralizability of our results should be interrupted cautiously. On
the one hand, our study replicates the U-shape in Park et al.25

which examines multiple static phone communication and
Twitter networks. The successful replication provides confidence
in the potential generalizability of our additional dynamic ana-
lyses to these networks. On the other hand, there are many other
types of social ties rather than phone communications, such as
social media, offline interactions, or collaboration networks. We
appeal for more studies on this important topic to verify the
external validity of our conclusions. Second, although most
existing studies on long ties, including ours, use the aggregate
data to measure the tie range, it is interesting to investigate how

Fig. 7 Average benefits, average direct effects, and average indirect effects learned by our model. The curves represent (a) the average benefits, (b)
average direct effects, and (c) average indirect effects for each tie range learned from our model, respectively. Error bars are 95% confidence intervals for
the benefits (assuming normal distribution). Note that error bars are sometimes smaller than the data point markers.
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to leverage advanced methods of analyzing temporal networks to
further understand the mechanisms of dynamics of long ties,
which can examine events occurring on network paths on a more
fine-grained level49–51. Finally, there may be intriguing variants of
our model. For example, our model only reflects the absolute
advantages that other people bring, but it would be interesting to
incorporate comparative advantages in our model, as well.

Methods
Data description. In our study, we use a nationwide call detail record dataset.
Users’ private information has been anonymized and thus we are unable to identify
them. This data provider is a company that functions as the main service provider
for most of the mobile phone users in a European region. The time period covered
by the data starts from Jan. 2015 to Dec. 2016. In the dataset, we retrieve the total
number of calls, texts, as well as the duration of calls between any two people in
each month. See Supplementary Note 1 for more details.

We establish a temporal social network with the dataset. We consider discrete
time steps (or phases): for each phase, we construct a “snapshot” of the network,
where the node indicates a user and the edge represents the interaction between
two users. A key question is how we determine the length of the time window of
each phase. In our main results, we treat every three months as a phase. In
Supplementary Note 2, we also use one month or six months to verify the
robustness of our results.

To maintain a temporal network where the node set is stable and the global
network structure does not change dramatically with the dynamics of a few nodes,
we only consider the interactions among users who have at least one call or text in
every phase. We construct a temporal directed network with 45,192 nodes and
385,533 edges on average for each phase.

In terms of the weight of the directed network, we consider two variables as
mentioned in the main text: interaction frequency and duration. Interaction
frequency is the total number of calls or text that node i sends to j; there are a few
calls with zero-second duration and we filter those calls out. Interaction duration is
the total time length that i calls j in each phase, and does not account for texting.

Tie range and long ties. Tie range14,25 is defined as the length of the second
shortest path between two connected nodes (Fig. 1). It indirectly reflects the net-
work distance of the connection. Consistent with previous long tie studies22,25,
there is no clear cutoff of tie range that decides whether a tie is short or long. A
good reference is the Milgram experiment, which suggested that the average net-
work distance between every two people is ~6. In our study, we treat social ties with
a tie range of 2 as short ties, and ties with 5 or ≥6 as long ties. Besides, we do a
sensitive check of our results by randomly dropping a proportion (5%) of nodes or
edges (see Supplementary Note 3). Our main results are verified not sensitive to a
few nodes or edges happening to exist on the network.

Details in learning. Based on Eq. (4), we construct the loss function to minimize
the MSE Loss between cij and its right hand side. We use stochastic gradient
descent to optimize the loss function. For each epoch, we construct our loss
function as below:

L ¼ Lpos þ Lneg ; ð6Þ

The loss function is composed of the loss functions of positive (connected
pairs), and negative samples (disconnected pairs).

Lpos ¼ ∑
i2sampled

∑j2 N ðt�1Þ
i ∪Mðt�1Þ

ið Þ\N ðtÞ
i
ĵcðtÞij � cðtÞij j

∑j2 N ðt�1Þ
i ∪Mðt�1Þ

ið Þ\N ðtÞ
i
1

0
@

1
A; ð7Þ

Lneg ¼ ∑
i2sampled

∑j2 N ðt�1Þ
i ∪Mðt�1Þ

ið ÞnN ðtÞ
i
ĉðtÞij

∑j2 N ðt�1Þ
i ∪Mðt�1Þ

ið ÞnN ðtÞ
i
1

0
@

1
A: ð8Þ

The set “sampled” denotes the set of sampled nodes in each epoch. For positive
samples, we minimize the difference between cðtÞij , the time investment of i on j, and

the predicted time investment denoted by ĉðtÞij .

cðtÞij ¼
log DðtÞ

ij þ 1
� �

∑j2Mðt�1Þ
i ∪N ðt�1Þ

i
log DðtÞ

ij þ 1
� � ; ð9Þ

where DðtÞ
ij is the interaction duration between i and j in phase t. To reduce the

impact of extreme values, we take the logarithm of DðtÞ
ij . Since DðtÞ

ij ≥ 0, cðtÞij ≥ 0.

ĉðtÞij ¼
exp ∑k σ wjk � wik

� �
þ∑

‘2Mðt�1Þ
j ∪N ðt�1Þ

j
δσ w‘k � wik

� �� �	 

∑j02Mðt�1Þ

i ∪N ðt�1Þ
i

exp ∑k σ wj0k � wik

� �
þ∑

‘2Mðt�1Þ
j0 ∪N ðt�1Þ

j0
δσ w‘k � wik

� �� �	 
 :

ð10Þ
When minimizing the loss function, we treat the time investment of i in j, which

is calculated by the interaction duration or frequency, as the input and endowment
vectors in this loss function as the variables to be inferred. Note that the existence
of the δ may result in an uncontrollable gradient issue. We thus use grid search for
this variable and check the robustness of our results in Supplementary Note 8.
Moreover, we also discuss the selection of the number of dimensions of the
endowment vectors in Supplementary Note 8.

To facilitate the learning process, we apply mini-batch stochastic gradient
descent with Adam optimizer52. Consistent with conventional network embedding

algorithms, node sampling probability is proportional to node degree (d
3
4)53. In this

case, the endowment vectors of both these sampled nodes and their neighbors will
be updated in each epoch in the gradient descent. In Supplementary Note 8, we
show that our learning converges under this setting. Details in the machine
learning implementation are also discussed in Supplementary Note 8.

Data availability
Data is available at https://github.com/DingLyu/Investigating-and-Modeling-the-
Dynamics-of-Long-Ties. Differential privacy is applied to protect the privacy of users.

Code availability
Code is available at https://github.com/DingLyu/Investigating-and-Modeling-the-
Dynamics-of-Long-Ties.
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