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Nematic superconductivity in magic-angle twisted
bilayer graphene from atomistic modeling

Tomas Léthman® '™, Johann Schmidt!, Fariborz Parhizgar 1 & Annica M. Black-Schaffer® 1

Twisted bilayer graphene (TBG) develops large moiré patterns at small twist angles with flat
energy bands hosting domes of superconductivity. The large system size and intricate band
structure have however hampered investigations into the superconducting state. Here, using
full-scale atomistic modelling with local electronic interactions, we find at and above
experimentally relevant temperatures a highly inhomogeneous superconducting state with
nematic ordering on both atomic and moiré length scales. The nematic state has a locally
anisotropic real-valued d-wave pairing, with a nematic vector winding throughout the moiré
pattern, and is three-fold degenerate. Although d-wave symmetric, the superconducting state
has a full energy gap, which we tie to a n-phase interlayer coupling. The superconducting
nematicity is further directly detectable in the local density of states. Our results show that
atomistic modeling is essential and also that very similar local interactions produce very
different superconducting states in TBG and the high-temperature cuprate superconductors.
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possible to map the rich phase diagram of twisted bilayer

graphene (TBG)!2. Around the magic twist angle 6~ 1.1°
four spin-degenerate topological moiré flat bands are formed
around zero energy and the associated density of states (DOS)
peaks make TBG extremely prone to electronic ordering!~12.
Both correlated insulating states at integer flat band fillings
(v=1=1,2,3) and superconductivity have been found, with the
latter appearing as superconducting domes both flanking
the v = +2 insulating states>!3 and more broadly across the entire
moiré bands’.

While the superconducting transition temperature T, = 3 K is low
in TBG??, the ratio to the Fermi temperature is large T./Ts = 0.1,
exceeding the weak coupling regime'2. In fact, with super-
conductivity appearing in close proximity to correlated insulators
and a pseudogap state with reduced DOS above the superconducting
domes”~? with accompanied strange metal behavior!415, the phase
diagram of TBG shares striking similarities to the high-temperature
cuprate and pnictide superconductors'1617, This points to the
possibility of strong local electronic interactions being responsible
for superconductivity, although electron-phonon pairing is also a
plausible candidate!418-20,

The large scale of the moiré pattern (~10% carbon atoms at the
magic angle) and the non-trivial band topology have severely
hampered studies of superconductivity in TBG. Continuum models
reproduce the normal-state band structure?’-22, but are harder to
reconcile with the possibility of strong local electronic interactions.
Effective lattice models, using e.g. the moiré pattern or otherwise
rescaled lattice schemes, have been used in Hubbard-like tight-
binding studies, but must strike a difficult balance between accuracy
and orbital proliferation?3. Many of these studies have proposed a
time-reversal symmetry (TRS) breaking chiral d-wave state?3-30, as
also found in heavily doped graphene’!-32,

Finding chiral d-wave superconductivity is at first sight not
surprising, considering that the d,._ .-wave state of the cuprates
naturally transforms into the two d,._ - and d,,-wave states with
a symmetry enforced degeneracy at T, on lattices with three- or
six-fold symmetry, such as graphene’s honeycomb lattice and the
TBG moiré lattice’2-3>. On the honeycomb lattice, the chiral
dy>_, + id, -wave combination then becomes fully gapped, while
any real-valued nematic d-wave state always has a nodal spec-
trum, thus making the chiral state energetically favored and the
ground state at zero temperature31-33. A similar favoring could
naively also be expected to hold in TBG. However, in apparent
contrast to these basic expectations, different nematic super-
conducting states have very recently been proposed for TBG.
Some of these require higher order coupling to additional coex-
isting orders or pairing channels to energetically favor the
nematic state over the chiral state>>-38. More intriguing are direct
findings, i.e. without other orders or pairing channels, of a
nematic phase in a phase diagram region using either rescaled or
atomistic lattice models, although with seemingly varying
propertiesZ3’24’39. Experimentally, recent magnetotransport mea-
surements have also identified intrinsic nematicity in the super-
conducting state of TBG#0. Taken together, these results all
highlight the question of if and how nematic superconductivity
appears in TBG, as well as its measurable consequences.

In this work, to accurately capture superconductivity in TBG,
we use full-scale atomistic modeling, including all carbon atoms,
a dense k-point sampling, and electron interactions in agreement
with both current TBG experiments and known interactions in
graphene(-like) systems, as well as consistent with the cuprates.
By solving both the mean-field self-consistent and linear gap
equations using realistic transition temperatures, we find a highly
inhomogeneous and real-valued nematic d-wave superconducting

P recise twist angle and carrier density control have made it

state, with both atomic- and moiré-scale nematicity, dominating
the phase diagram and at the experimentally observed critical
temperatures. We further show directly measurable signatures of
the nematicity in the local density of states. Unexpectedly, the
nematic d-wave state also has a full energy gap, which we tie to a
strong 7-phase Josephson locking between the graphene layers.

Results

Normal state properties. TBG consists of two graphene layers
rotated by a twist angle 6, which produces a periodic moiré
interference pattern of length Ly = a/(2sin(6/2))2141, far
exceeding the graphene lattice constant a = 2.46 A, see Fig. la.
We model commensurate angle TBG with a full-scale tight-
binding model of all carbon atoms in the large periodic moiré
unit cell. The out-of-plane p, carbon orbitals hybridize in-plane
through standard nearest neighbor hopping t = 2.7 eV, while the
interlayer hybridization is captured by an exponentially decaying
hopping together with a Koster-Slater angular dependence?242,
see Methods section.

In reciprocal space, the Dirac cones from the graphene layers
are displaced by the twist and sit at the corners of the smaller
moiré Brillouin zone (MBZ), see Fig. 1b. As the twist angle
decreases, the Fermi velocity of the Dirac cones is reduced. The
layer and valley degrees of freedom then form four spin-
degenerate narrow bandwidth moiré bands that separate from the
remaining band structure?!, see Fig. 1c. As a consequence, TBG
has a large DOS around zero energy, peaking in two van-Hove
singularities (VHSs) that correspond to saddle points in the band
structure>?l. At the magic angle, the moiré bands become
essentially completely flat and the two VHSs merge, see Fig. 1d, e.

The states of the moiré bands are primarily localized to the AA
region of the moiré cell, where the carbon atoms of the two layers
are aligned, as shown by the inhomogeneous and three-fold
symmetric charge density Ny,(x) in Fig. 1f. Resolving the charge
density with respect to energy, Fig. 1g further shows the local
density of states (LDOS) along a periodic path passing the AB,
AA, and BA regions (black dotted line in Fig. 1f).

Modeling superconductivity. Many properties of the super-
conducting state in magic-angle TBG are still unknown. We
therefore employ a general model for the superconducting pair-
ing, guided by only a few constraints: the weak interlayer van der
Waals coupling motivates intralayer pairing, while the observed
suppression of superconductivity in in-plane magnetic fields and
no evidence for spin-polarized Cooper pairs, restrict us to con-
sider spin-singlet pairing?43. The strong on-site repulsion in
graphene, graphite*4, and TBGP® also points to spin-singlet pair-
ing, since in the strong coupling limit of the Hubbard model, the
resulting #-J model gives spin-singlet nearest-neighbor bond
interactions®!4. In fact, preference for bond spin-singlet con-
figurations, over double and single occupancies, was already
central in early treatments of pr-bonded planar organic molecules
(of which graphene is the infinite extension)?®, and subsequently
also used for cuprate superconductors?’. Spin-singlet bond pair-
ing has also recently been derived from spin-fluctuations in
TBG?* and also used in smaller rescaled lattice models?33.
Consequently, we model superconducting pairing in TBG by
spin-singlet order parameters on every in-plane nearest-neighbor
carbon bond, using a uniform coupling strength J, see Methods
section. Together these bond order parameters forms an order
parameter field A throughout the moiré cell.

We solve for the superconducting order parameter field with
each bond order parameter treated fully independently using
both the full non-linear, self-consistent and the linearized gap
equations, see Methods. The linear gap equation is valid at T, and
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Fig. 1 Lattice structure and normal state properties of twisted bilayer graphene (TBG). a Carbon lattice in one moiré cell of TBG with twist angle 6 ~ 3.9°
and moiré period L. b lllustration of TBG in reciprocal space, where 6 rotates the two hexagonal Brillouin zones (BZ) of the graphene layers (BZ1and BZ2),
displacing the Dirac cones at the BZ corners (K1 and K2) by AK = 2K sin(8/2), the reciprocal length of the moiré Brillouin zone (MBZ). Depicted are also
the high symmetry lines and points (7, g, €) in the MBZ. ¢ Low-energy band structure of TBG at § ~1.2° along the high symmetry lines in b, consisting of
four narrow spin-degenerate moiré bands (solid lines) separated from other bands (dotted lines) by finite energy gaps. The corresponding large density of
states (DOS), peaking at the upper and lower van Hove singularities (VHSs), is plotted on same energy axis to the right. Side inset: DOS for a larger energy
range, highlighting the massive moiré flat band (red) DOS peak. Inset: DOS as a function of the moiré band filling factor v in units of electrons per moiré
unit cell with VHSs at v~ £1 (dashed lines). d Energy of the upper and lower VHSs as a function of twist angle 8. e Maximum peak height of the two VHS
peaks as a function twist angle 8, peaking sharply at the magic angle. f Intensity plot of the top layer charge density N,,(x) of the completely filled moiré
bands, equivalent to integrating the LDOS in g. The scale bar shows a distance of 20a, where a = 2.46 A is the graphene lattice constant. g Local density of

states (LDOS) n(x, E) as a function of energy E and position along the dashed line in f, centered on the AA region.

has the same symmetry as the normal state, leading to its
solutions always belonging to one of the irreducible representa-
tions of the symmetry point group D; of TBG: the one-
dimensional A; and A,, or the two-dimensional E representation.
Below T, non-linear contributions enter, possibly further break-
ing the symmetry, which we capture by iteratively solving the full
non-linear and self-consistent gap equation at zero temperature.
This combined approach enables us to completely characterize
the superconducting state.

Moiré-scale nematicity. Starting with the results from the linear
gap equation, we show in Fig. 2a the four highest critical tem-
peratures T. as a function of coupling strength J at the magic
angle and with the Fermi level aligned with the upper VHS,
corresponding to v= 1. Across the wide range of all investigated
coupling strengths, the solution with highest T. (green highlight)
belongs to the E irreducible representation and is therefore two-
fold degenerate and spanned by two real-valued order parameter

fields: A, and Ay. In Fig. 2b we plot in color scale the normalized
amplitude of the A, order parameter field in the upper (left) and
lower (right) graphene layer in the moiré cell, while the amplitude
of Ay in the upper layer is plotted in Fig. 2c. Both A_ and A},
clearly break the C; rotation symmetry of the normal state and
are instead enhanced in the AA regions and along the C, nematic
axes aligned with the x- and y-axis, respectively.

In contrast to pristine graphene where superconductivity only
develops for J/t above the quantum critical point (QCP)
J.=1.76831:48:49 TBG shows substantially enhanced ordering in
Fig. 2a, with finite a T, even at very weak coupling. For weak
coupling, T, is approximately proportional to J/t, as expected for
an isolated flat band>9->3. For slightly stronger coupling, the
growth in T. however accelerates, especially when approaching
the graphene QCP. This both indicates contributions from
dispersive bands® and suggests that the low energy moiré flat
bands have a catalytic effect that at least partially triggers the QCP
cascade boosting T, at couplings also below the QCP.

Alongside T, extracted from the linear gap equation, we also
plot in Fig. 2a (blue line, right y-axis) the spatially averaged
amplitude of the self-consistent order parameter field, obtained
from the full non-linear gap equation at zero temperature (in
Kelvin). As seen, T, and the averaged order amplitude are directly
comparable, despite the strong amplitude inhomogeneity
over the moiré unit cell. After fixing J to match the experimentally
observed T.=4K2?% we tune the chemical potential
across all moiré band fillings. The resulting zero temperature
self-consistent order amplitude is shown in the inset of Fig. 2a.
The superconducting amplitude predictably drops sharply at the
two moiré band edges. In between, the amplitude is rather stable
but has two local maxima near the upper and lower VHS (dashed
lines) and a local minima at half filling (solid black line), largely
replicating the features of the normal-state DOS in Fig. 1c.
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Fig. 2 Properties of the nematic superconducting state in twisted bilayer graphene (TBG). a Critical temperatures T, (left y-axis) obtained from the linear
gap equation as a function of the coupling strength J/t with the Fermi level at the upper van Hove singularity (VHS). Plot marker color labels the symmetry of
each solution, gray lines guide the eye. The leading two-fold degenerate solution is highlighted in green. Highlighted in blue are the spatial averaged amplitude
order parameter, (|A(x,-)|)k‘7, (right y-axis) obtained from the non-linear self-consistency (SC) equation at zero temperature (T=10-"t). Inset: self-consistent
order parameter as a function of chemical potential y at weak coupling J= 0.42t. Vertical lines mark upper VHS (dashed red), lower VHS (dashed black), and
half-filling (solid black). b Plot of the order parameter field AX throughout the moiré cell in the top (left) and bottom graphene layer (right). Underlying color
intensity plot shows the amplitude, clearly depicting a global, moiré-scale, nematicity. The streamlines of the local vectors field y(x) illustrate the intricate atomic-
scale nematicity in the local d-wave bond order parameters, as well as the superconducting z-phase-shift between the two layers. ¢ Same as b but for Ay in the
top graphene layer. d Color intensity plot of the order paran:leter field amintude for the chiral A, +iA, solution in the top graphene layer. e Relative free energy
landscape at T= 0 for all independent linear combinations A(®, ¢) of the A, solutions. f Cut along the real-valued linear combinations of e, which due to gauge
invariance are located at the lines ¢ = 0, 2 (blue) and ¢ = z (green) in e. The line is a least square fit, showing a three-fold degenerate nematic ground state.
g Energy difference between the most and least favorable nematic combinations in f as a function of tuning the averaged order parameter amplitude, with dot
marking value for J= 0.43t. Inset: energy difference between most favorable nematic state and the time reversal symmetry (TRS) breaking chiral AX + iAy
combination. h-j Low-energy density of states (DOS) for most favorable nematic, least favorable nematic, and chiral combination, respectively, extracted at the
points of the same color in e. Plots show that the ground state is fully gapped, while the other combinations show a (partially) filled energy gap reflecting lower
superconducting condensation energies (given in figures). For all but panels a and g: J = 0.43t and chemical potential aligning the Fermi level with the upper VHS
(band filling v~ 1), but conclusions are unchanged for other J.

Degenerate ground state. To further investigate the ground state
symmetry at zero temperature, we introduce the parametrization
A(©, o) =| Al (cos @Ax + € sin @Ay). Here, || A || is the norm

of the order parameter field, the nematic angle ® controls the angle
between the C, nematic axis and the x-axis, and a relative complex
phase, ¢ =0, breaks TRS. Here, the (©,¢)e[0,7n/2]x [0,27]

Further analyzing the zero temperature self-consistent solu-
tions at different experimentally relevant couplings and band
fillings, we always find that they are exclusively real-valued, even
when self-consistency is achieved iteratively from an initial
complex number field configuration. In fact, we find that the self-
consistent solutions are always real-valued linear combinations of

the two leading and degenerate solutions A, and Ay of the
linear gap equation, see Methods. This makes TBG a nematic
superconductor®4, with nematic symmetry breaking on the moiré
length scale. As both the normal-state and electronic interactions
are fully isotropic, this nematicity is entirely due to spontaneous
symmetry breaking in the superconducting state.

manifold is a (Bloch) sphere because the ® = 0, 72/2 lines collapse to
points due to gauge invariance.

At T, all the states A(®, ¢) are degenerate solutions, but due to
non-linear contributions of a finite order field only specific
combinations are expected to be energetically favorable at zero
temperature. Demonstrating this symmetry lifting, we show in
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Fig. 2e the relative free energy of all possible A(®, ) at zero
temperature, confirming the self-consistent results, the free energy
minima are achieved for the real-valued linear combinations. The
free energy maxima (i.e. smallest condensation energy) are instead
attained around the rotationally symmetric (see Fig. 2e) TRS
breaking complex combinations A(/4, +7/2) = A_+ iAy. The
free energy maxima (i.e. smallest condensation energy) are instead
attained around the rotationally symmetric (see Fig. 2e) TRS
breaking complex combinations A, = A(r/4, +7/2) = A, +iA,.

On closer inspection, the energy splitting among the real-
valued combinations is six-fold symmetric as a function of the
nematic angle ©, see Fig. 2f. As a result, A is one of the three
gauge-inequivalent nematic ground states, all with the nematic
C,-axis directed towards one of the next-nearest-neighbor AA
regions. In contrast, Ay is one of the three least stable gauge-
inequivalent nematic states that instead has the C,-axis directed
towards one of the nearest-neighbor AA regions, as seen in
Fig. 2b, c.

The amplitude of the energy splitting among the real-valued
nematic states depends non-monotonically on the field norm (or
equivalently on J or T.), as seen in Fig. 2g, with notably large
values, up to 10% of kgT,, around the experimentally observed T.

In contrast, the energy of the TRS breaking chiral state A,
relative to the nematic ground state is large around the
experimentally observed critical temperatures and also increases
monotonically with the field norm (or T, or J/t). We thus find
that the nematic state is heavily favored in this regime, and even
more so at stronger coupling. Based on these results it is also not
surprising that nematic states have previously also been reported
in the strong coupling regime?3?4. While any degeneracy lifting
of the E manifold must necessarily vanish as the field norm goes
to zero, we do find that the chiral state, A, , just barely becomes
the ground state (beyond the resolution used in Fig. 2g) for very
small field amplitudes, before transitioning to the nematic state
for more realistic temperatures.

The energy split among the different superconducting states is
further reflected in the different gap structures among the A(®, ¢)
states, as revealed by the low-energy DOS in Fig. 2h-j at an

experimentally relevant temperature. The ground state A, =

A(0,0) is fully gapped with a resulting large condensation energy
achieved by pushing occupied VHS states down in energy in to
sharp coherence peaks. In contrast, the least favored nematic

states, including A},, are not fully gapped, in turn limiting the
condensation energy. For the least favored of all the states in the E

manifold, the TRS breaking chiral state A,, we find a
substantially reduced gap with coherence peaks that are closer
together, both features substantially reducing the resulting
condensation energy.

Based on the results above, we have demonstrated that TBG is
a nematic superconductor at experimentally relevant tempera-
tures with a strong dependence on the orientation of the C,
nematic axis affecting both the condensation energy and gap
structure. In particular, the real-valued nematic ground state is
energetically favored due to a fully gapped spectrum, which is in
sharp contrast to superconductivity in doped graphene where the
nematic state is always nodal while the chiral d-wave state is
energetically favored and has a full energy gap3!-32>°, In fact, our
findings of a d-wave nematic state with a full energy gap is overall
unexpected as d-wave symmetry traditionally is associated with a
nodal energy spectrum. However, it has recently been shown that
the situation can be more complicated in multiorbital or
multiband systems, where completely nodeless and gapped d-
wave superconducting states has recently been found>®-%0. This

points towards the large scale moiré pattern and the multiple
nearly degenerate moiré bands as having an important role in
determining the properties of the superconducting state. In
particular, we find that the gap structure sensitively depends on
the fine distinctions that arise with different C, nematic axis
orientations, and we also note that the gap structure of previously
reported nematic d-wave states have been found to be nodal in
rescaled lattice and continuum model while unreported in recent
atomistic model?3-2427. Moreover, we note that our results show
that the real-valued nematic ground state is favored over the
complex chiral combination directly in the E pairing channel of a
simple pairing model. Our nematic ground state is therefore
produced without any higher order coupling to additional
coexisting orders or nearly degenerate pairing channels that have
additionally been shown to otherwise favor nematicity3>-37.

Atomic-scale d-wave nematicity. Having established a nematic
superconducting state in TBG on the moiré length scale, we next
characterize the superconducting state on the atomic scale, where
the symmetry is well described by the point group Dy, of the
graphene honeycomb lattice. We accomplish this by introducing
a three-dimensional local order vector A(x) for the three nearest-
neighbor bond order parameters of each carbon and projecting
this vector onto the complete set of form factors f for the Dgy,
irreducible representations: an extended s-wave and two d-waves,
dy and d,._,., see Methods. Because the nematic state has a pure
local d-wave character with a negligible s-wave component
(<0.025%) and is also completely real, each local order vector is
uniquely expressed as a real-valued linear combination:
A(x;) = |A(x))| (cos T(xi)deLy2 + sin 7(x;)f dxy)’ where the vector

field x(x;) = cos 7(x;)x + sin 7(x;)y captures the spatially varying
d-wave orientation. As shown by the streamlines of the vector
field x(x;) in Fig. 2b, ¢, there exists a strong atomic-scale variation
in the nematicity, which is aligned with the moiré-scale nematic
axis in the central AA-region, but then also forms two vortex-
antivortex pairs of opposite circulation outside the AA region.
The two antivortices are always pinned to the center of the AB
and BA regions, independently of the C, nematic axis orientation,
while the two vortices stay close to the AA-region on opposite
sides of the nematic axis, following its orientation. This atomic-
scale nematic pairing vortex pattern consistently appears for all
investigated filling factors, coupling strengths J/t, and in both the
zero temperature self-consistent linear and the non-linear gap
equation solutions, making it a very robust feature of the
nematic state.

We also note that this nematic pairing vortex pattern is distinct
from superficially similar patterns of spontaneous supercurrents
found in TBG with a chiral ground state?>2427, since the time-
reversal invariant nematic ground state is necessarily free from
supercurrents. Still, a vortex pattern has also been found in the
normal-state Dirac mass term in a TBG continuum model®l,
which together might suggest an overall tendency for vortex
formation within large moiré patterns.

Nematic signatures in LDOS. The rotational symmetry breaking
of the nematic superconducting state is clearly visible in the
superconducting order parameter: the moiré-scale nematic C,
axis, the intricate atomic-scale d-wave nematicity pattern, and the
three-fold degenerate ground state. Nematic superconductivity is
also known to exhibit magnetic field directional dependencies in
various properties tied to superconductivity, such as the upper
critical field, as also recently found in superconducting TBG40.
In Fig. 3, we show that the nematic superconducting state in
TBG additionally gives rise to measurable signals in the electronic
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Fig. 3 Nematic signatures in the local density of states (LDOS). a-d Sublattice-resolved (sublattice A) top layer electronic LDOS np of the nematic

superconducting state contour plotted along four different real space cuts (black line shown in e-h). The moiré cell center, x/Ly = O, is marked by dashed
lines. e-h lllustrations of the line cuts along which the LDOS is shown in a-d, starting at the base and ending at the arrow tip. The cuts are shown on top of
the superconducting order parameter field amplitude where the dashed line shows the nematic axis of the order. In the normal state, the cuts a and ¢ are
equivalent by symmetry, and so are cuts b and d. The normal state LDOS is therefore the same in each pair of cuts and also symmetric around the moiré
cell center, but this symmetry is lifted by the nematic superconducting order in a-d. i-1 Contour plots of the sublattice LDOS polarization, i.e the LDOS
difference between sublattice A and B, na — ng, along the cuts of e-h, where green shades indicate a larger LDOS on sublattice A, while red shades indicate
a larger LDOS on sublattice B. The LDOS polarization is measured relative to the maximal LDOS, Max n, and each contour marks a 10% change relative to
this maximal LDOS. In all figures, the coupling strength is J=0.43t and the Fermi level is aligned with the upper van Hove singularity (conclusions are

qualitatively unchanged for other J/t).

local density of states (LDOS). In the main panels, a-d, we plot
the LDOS on sublattice A in the top layer along the
corresponding four different line cuts shown in e-h. In the
normal state, the three-fold rotational symmetry leads to
equivalent LDOS on the cuts of a, ¢ and b, d, respectively. In
the superconducting state, however, the four cuts in e-h form an
progressively increasing angle against the nematic C, axis (dashed
line), and the corresponding LDOS in a-d show an increasingly
pronounced asymmetry around the moiré cell center, unambigu-
ously demonstrating the nematic superconducting order. In fact,
the nematic superconducting state induces shifts, primarily in the
coherence peaks, that are up to almost half the maximal moiré
state LDOS in size. The sublattice LDOS polarization, i.e. the
difference in LDOS between the A and B sublattices, is shown in
i-1 along the cuts, demonstrating that all shifts occur in opposite
directions between the two sublattices. This means the observed
anisotropy washes out in a joint LDOS, which further highlights
the importance of atomistic modeling and might also explain why
no nematic anisotropy in the LDOS has been found in the
superconducting state in rescaled lattice models23. To summarize,
our results show that the nematic superconducting state in TBG is
clearly observable in sublattice-resolved scanning tunneling
spectroscopy/microscopy (STS/STM) measurements.

Interlayer 7-locked Josephson coupling. The superconducting
order parameters at both T, and zero temperature always show a
rigid interlayer m-shift in the superconducting phase and the
atomic-scale nematic vectors in Fig. 2b consequently reverse
direction between the two layers. This result is consistent with
earlier continuum model results predicting a 7-shift due to a large
layer counterflow velocity?!?7, and was also recently reported
numerically using atomistic modeling?4, albeit seemingly missing
for a rescaled model?3. This rigid m-shift suggests a strong and
unconventional interlayer Josephson coupling that we here
explore by manually tuning the interlayer phase of the self-
consistent order parameter, as is standard in Josephson setups.

Adding a phase factor A - e/®A in the bottom layer, we plot in
Fig. 4b the resulting superconducting condensation energy as a
function of the interlayer phase difference ¢. For roughly half of
the available phase space, the superconducting state is unstable
with a total energy higher than in the normal state. This
extraordinarily stiff energy-phase relationship proves that the 7-
shift is central for the existence of superconductivity.

The underlying reason for the strong interlayer Josephson
coupling is that the s-shift is responsible for the entire
superconducting gap of the nematic d-wave superconducting
state of TBG, as seen in the DOS color intensity plot in Fig. 4a,
with specific spectra extracted in Fig. 4c—e. At the self-consistent
solution, ¢ = 7, a full superconducting gap is present, whereas it
decreases and eventually disappears for ¢ approaching zero (or
equivalently 27). This result is in notable contrast to any real-
valued d-wave state in graphene or AA stacked bilayer graphene,
which are always nodal, regardless of interlayer phase difference.
We thus conclude that the moiré band structure generates the
interlayer 7-shift, which in turn results in the nematic d-wave
state of TBG being fully gapped and the ground state solution.

Conclusion

Using full-scale atomistic modeling of magic-angle TBG, we find
a highly inhomogeneous and nematic d-wave superconducting
state with a full energy gap at experimentally observed critical
temperatures. The large real-space inhomogeneity demonstrates
that atomic-scale modeling is crucial for TBG. Besides atomic
spatial resolution, we also find that a dense k-point sampling of
the MBZ and the moiré flat band structure is required to correctly
capture the superconducting order. In fact, if sampling only the
MBZ center, we instead find a chiral d-wave ground state?4 at the
experimentally relevant temperatures.

The only possible uncertainty left in our work is the exact
nature of the electronic interactions, where we assume intralayer
spin-singlet bond interactions. This choice is well motivated both
by experimental evidence>%*3 and theoretical work on TBG?4,
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Fig. 4 Interlayer Josephson coupling. a Color intensity plot of the density
of states (DOS) as a function of interlayer phase difference ¢, tuned by
shifting the phase of the order parameter in the bottom layer starting from
the the self-consistent solution found at ¢ = z. Away from ¢ = z energy
gap and coherence peaks are monotonically reduced with the gap closing
around ¢ = 0, 2z. b Superconducting condensation energy, i.e. energy of
superconducting state relative to the normal state (N) as a function of
interlayer phase ¢. Pink region marks positive condensation energy,
describing an unstable superconducting state. c-e DOS for interlayer
phases ¢ =0, n/2, x, respectively, taken as vertical cuts in a. Here, the
coupling constant is J=0.43t and Fermi level at the upper van Hove
singularity (conclusions are qualitatively unchanged for other J).

graphene3144%5 and pr-bonded organic molecules?®. Similar
interactions are also present in the cuprate superconductors®,
with which TBG shares many phase diagram features!2. More-
over, even if additional longer-range interactions were con-
sidered, results from the honeycomb lattice indicate that our
results will remain qualitatively correct32>°.

The only unknown parameter is then the coupling constant J/t.
Our results are however remarkably stable with the same nematic
ground state for all experimentally relevant coupling strengths J/t,
further supporting their validity. Quantitatively, we also find
experimentally observed T.s already at very weak coupling
J/t ~ 0.4, which clearly illustrates the strong tendency of the moiré
flat bands to electronically order®#0. Thus, the required coupling
strength J/t is easily attained and also compares favorably with
order of magnitude estimates of the super-exchange J/t = 4t/U ~ 1
from graphene based on ab-initio results and a strong coupling
scenario®*4,

We also note that we calculate the superconducting mean-field
pair amplitude A, while superconductivity in two dimensions is
reached only at the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition, marking the onset of phase coherence and requiring a
finite superfluid weight. Here our use of the full TBG band
structure with its non-trivial topology guarantees a finite geo-
metric superfluid weight3%62-64" While the BKT temperature is
always substantially lower than the mean-field temperature, they
have been shown to correlate directly in several TBG models®°.
Thus, the mean-field pair amplitude calculated in this work
should be a good measure of superconductivity, albeit it requires
us to consider appreciably higher mean-field critical temperatures
than those measured experimentally.

Finally, let us comment on the correlated insulating states
existing at integer fillings!~!2. In addition to the superconducting

state, a complete phase diagram should be supplemented by these
interspersing insulating states. With the insulating states surviv-
ing to higher temperatures, superconductivity then primarily
appears as domes flanking the insulating regions when tuning the
filling. In fact, this is a universal feature of flat band systems:
superconductivity always thrives further away from high DOS
peaks compared to any particle-hole (insulating) order, thus
naturally forming domes®3. This universal picture is consistent
with current TBG experiments and notably independent of the
mechanisms behind the insulating behavior and super-
conductivity being the same or competing in nature. As such, our
results are not sensitive to the exact nature of the insulating states.
In conjunction with this, it is interesting to point out that, despite
similar phase diagram features and electronic interactions for the
cuprate superconductors and TBG!2, we find a remarkably dif-
ferent (fully gapped, highly inhomogeneous, and nematic) d-wave
superconducting state in TBG. We might expect any insulating
state to also display similar atomic-scale inhomogeneity, opening
up for a wide range of different behaviors in TBG and other
moiré systems.

Methods

Moiré lattice structure. In the first layer of TBG, the two graphene unit vectors
are a;, = ax, a,, = (a/2)x + (3a/2)y, while in the second layer, the lattice is
rotated by the relative twist angle 6 and spanned by the rotated unit vectors

a,; = R(0)a,;, where R(0) is the rotation matrix in two dimensions. With two
carbon atoms per graphene unit cell, there are in both layers two sublattices, A and
B, of carbon atoms placed at {na;, + may, + Sgzn, + (dy0,/2)z} for n,m € Z,
1=1,2,and S€ A, B, where 1, = a_y, n, = R(0)y,, a. = a/~/3, # is the unit vector
perpendicular to the layers, dy = 3.35 A, and 8 = (—1). The two layers produces a
periodic moiré interference pattern of period length Ly, = a/(2sin8/2).

We perform calculations using a large and periodically repeated moiré unit cell
with the unrelaxed lattice positions®>-¢’. This requires using commensurate twist
angles, for which the lattices of the two layers periodically match up:

11811 + N1, = M1ay; + My, for integers m;, n;. Twist angles satisfying this
condition are given by cos(6) = (3¢ — p*)/(3¢> + p*) and parametrized by a
relative prime integer pair (ged(p, q) = 1, greatest common divisor), with p,q € IN,
p =g > 0%, Specifically, the number of carbon atoms in the moiré unit cell is
N.(p,q) = 4gcd(3,p)(p* + 3¢%)/ ged (p — 3¢, p + 3q)*. We choose p=1 with g
0dd, as this results in the fewest number of carbon atoms within the moiré unit cell
for a given twist angle. In particular, we focus in the main text on the
commensurate unit cell (p, q) = (1, 55), which gives the twist angle 6 = 1. 2° closest
to the magic angle, defined as where the Fermi velocity vanishes. We here also note
that the commensurate condition is independent of the twist center. Since we use a
gcd(3, p) = 1 commensurate moiré lattice constructed from an AA stacked bilayer
and twisted around an axis passing through two carbon atoms, the resulting lattice
has a D5 point symmetry group. Due to the long wave length moiré pattern at small
twist angles, this lattice also has an an approximate Dg symmetry that even
becomes exact if the twist axis is instead taken through the center of a honeycomb
lattice hexagon®®.

Normal state Hamiltonian. We employ a standard tight-binding model including
all carbon atoms: Hy = Hintra + Hinter- The intralayer Hamiltonian is given by
graphene:

i i
Hinea = =4 2 CioyCiot — tz(ciglcjol + H~C-)7 1)
ia,l (-r/’)

with in-plane nearest neighbor hopping t between the carbon p, electrons, created
by the operator cjﬂ_, on the site i, layer /, and spin . The overall occupancy is
regulated by the chemical potential y. Further, the interlayer hybridization has been
shown to be well-captured by hopping amplitudes decaying exponentially with
distance and with Koster-Slater factors for the bond angle dependence??:

Hinter == % tij (C[Tal Cio2 + H'C) (2)

ty = —te(“ﬂ”v)/)\sinz([ﬁfj) + tae(d“”v)/)\coszﬁfj, 3)
where r;; is the displacement between the carbon sites i and j and cos [3; =tz
The input parameters are fixed by matching to the electronic band structure single
and AB-stacked bilayer graphene??: t=2.7 eV, t,=0.48 eV, and A = 0.1844,.. To
keep the Hamiltonian matrix sparse, we cutoff ¢; for distances d > 6a, resulting
in ~250 interlayer bonds per atom. This long-ranged cutoff is needed to preserve all
symmetries of the TBG lattice, while a larger cutoff does not affect our results.
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Superconducting pairing. We model superconductivity by:

‘2

Aj
4
HSC—ZA (,TCN—CWCJT)—&-HC +T, )

with a homogenous coupling strength J. We solve for the superconducting spin-
singlet bond order parameters A;; using both the full non-linear self-consistent and
the linearized gap equations:

SA; =3 |— 9Lsy) oA, = z Sp(T)8A,,, (6)
Y (r,s) aA

where sT c:l ch The non-linear self-consistency gap equation, Eq. (5), is

i
CinGjy
equlvalent to oF/ BA = 0, and thus finds the order parameters A; which minimize

the Free energy F. ThlS equation is solved iteratively until convergence is reached.
The linear gap equation, Eq. (6), only has solutions for the infinitesimal order field
A (defined up to a complex constant) when the stability matrix S5 (T) has at least
one eigenvalue equal to 1, which implicitly defines the critical temperature T.. This
equation is equivalent to the Free energy Hessian 3*F/0A,;0 ;) /08 +

8,,0;,/] changing signature with a zero eigenvalue in the normal state (A =0) and
the emerging order therefore lowers the Free energy below T..

Rational pole expansion. Solving the gap equations, Eqgs. (5)-(6), using the
standard approach of matrix diagonalization is prohibitively expensive for TBG
due to large degrees of freedom. We instead calculate the Fermi operator Fg(H) =
@+
rational approximation of J. E. Moussa that minimizes the uniform norm ¢ =
maX,e_gp oo [Fp(2) — 2,11 R, /(Bz — P,)| for N, poles at P, with residues R,,
because of its rapid convergence at low temperatures’!.

To illustrate the method, we first show that all single particle (anomalous)

expectation values are elements of Fg(Hpqg(k)), within the Bogoliubov de-Gennes
(BdG) formalism. In the 2N, dimensional block Nambu-spinor basis

Xie = (exp by {ci,w })T, the complete Hamiltonian H = Hy + Hsc for the N, carbon
atoms and spins has the BdG bilinear form
Ho(k) AR

;q( T( > r+C
Al(k)  —Hy(=k) ?)
= X]Hpy(®)X; + C

using a rational pole expansion®®70. Specifically, we use the minimax

HZ(
k

with the constant energy shift C = — N, + >_(; 3|A;|%/J. The BdG bilinear form is
diagonalized by a unitary transformation with the block structure

_(ulk)  v(k)
=% wn) ®
U9 Higo(OUK) = ER) = diag (1Ey), (—E_,)). ©)

The accompanying canonical transformation defines the fermionic Bolgoliubov
quasiparticles of opposite energy + E,

Vo= 0, ) X = UBY, (10)

In this diagonal basis, the Fermi operator is

. G(k) F(k)
Fy(Hpyg(k)) = U(k)Fg(E(k) U (k) = ( ) (11)

Fih) G (k)

where the blocks are:

G (k) = ulk)F(Eu’ (k) + v(k)F5(—E_)v (k)
G (k) = H—K)Fg(E V" (=k) + u(—k)F5(—E_)u" (k)
F(k) = u(k)Fg(EQ)v" (—k) + v(k)F5(—E_pu" (k)

From the transformations of Eq. (10), we find that all single-particle expectation
values are indeed given by the elements of Fg(Hpqg(k)):

{6uaty) = [, (g, Ju (k)
+ v;,(k)Fg(—E V()] (12)
=¢ Fﬁ(HBdG(k))ei = [G<(k)]j[
(e i) = [ 4, (K)F g(Ey,, v, (—k)

jl/(k)Fﬁ( E kl/)um( k)] (13)
= ej Fﬁ(HBdG(k))hi = [F(k)]ji

where we introduce 2N, dimensional basis vectors for the electron [e,-]j = (Sij and
hole [h;]; = 8, blocks of the BAG Matrix, respectively.

Next, we apply the rational pole expansion. Specifically, the (anomalous)
expectation values for g; =e; (q; = h;) are

c (l)n%) = e}Fﬂ(HBd(;(k))Qi

N, B
> R,e] [BHyac(k) — P,] g, (14)

N, Yoo
= rgl R,ellzq; = ngl R,e/p},

where we define the “propagated” vectors [fHpgyq(k) — P, 7lqi = II}q; = p.
Thus, by solving the set of linear equations for the propagated vectors

[BHpac(k) — P,|p = gq;, (15)

we can calculate the anomalous expectation values in Eq. (5) within the rational
pole expansion of the Fermi operator using N,, terms.

Finally, we also need access to derivatives, or generally a static response, in Eq.
(6). Given a perturbation A to Hpgg, the static response of any expectation value,
can also be computed using the rational pole expansion. Namely, using that

A7 = —A'[0,4,]A;" for a matrix A, the static response is,
I OHpao(k) 1,
T Z BR,€ {Hk e Hk} 4. (16)

In particular, for derivatives with respect to the superconducting order parameter
A, only the off-diagonal blocks A(k) are non-zero. In addition, Hggg(k) is block

diagonal and contains only the normal state Hamiltonian when evaluated at A = 0,
as is the case for the linear gap equation. As a consequence we find

]

o{c_gicy)
oA

s

x! (17)

i

Z BR, ()’
where x]' and y}' are N dimensional vectors satisfying the linear equations:
[BHy(k) = P, ]! =i [BHy(—k)+ pnb’; =j (18)

where [i], = 8 and [j], = J..

Together, Egs. (14) and (17), show how both (anomalous) expectation values
and their static response are computed using the rational pole expansion. Thus
solving the gap equations Egs. (5)-(6) is simply reduced to solving the respective
sets of linear equations of Egs. (15)-(18). The main advantage of this approach is
that all linear equations can be solved in parallel. Additionally, we solve these
equations with the minimal residual method’2, which, based on Lanczos iterations,
takes advantages of the sparseness of Hpyg, and thus only requires sparse matrix-
vector multiplications. The total computational time has therefore a close to linear
scaling in the problem dimensions. For many Lanczos iterations, a known risk is
that roundoff errors may give numerical instabilities from loss of orthogonality”>.
We have verified by comparing with direct diagonalization of Hp4g for rotation
angles down to 6= 1.5°, that all calculated expectation values are within the
expected accuracy with no evidence of numerical instability.

Solving for and analyzing the superconducting order. We solve the gap equa-
tions, Eqgs. (5) and (6), using the rational pole expansion of the Fermi operator, Egs.
(14) and (17), with a maximal error <10~8%. More specifically, to solve the linear
gap equation we first compute the static response matrix I';(T) = —d(s;) /A, at
the fixed temperatures T, = 6.25 x 2105t = 2" K for n =0, 1 .6, with a uniform
ks x kg grid sampling of reciprocal space (k; = 4). Then the largest eigenvalues
A(T.) of T were found using the eigenvalue solver PRIMME’4, Finally, for each
eigenvalue, the coupling strength of J,(T.) = 1/A,(T.) ensures that Eq. (6) is
satisfied. That is, at J,,(T.) the nth (subordinate) order has the critical temperature
of T.. In Fig. 2a we present the (J,(T.), T.) pairs for the fourth largest eigenvalues at
the fixed T..

The eigenvectors corresponding to each solution (J,,(T.), T.) are symmetry-
classified on the moiré length scale. For this, we construct the irreducible
representation (Irrep) projection operators P; = (d;/ |G gecX] (9)T(g) of the
point group G = D;, where I index the Irreps of dimension d; with group characters
x: and where ['(g) is the action of the symmetry operations g on all the
superconducting order parameters in the moiré unit cell. Because an eigenvector of
a symmetric static response matrix necessarily belongs to only a single Irrep, only
the corresponding projection operator leaves the eigenvector invariant, while all
other Irrep projection operators annihilates it, thereby allowing the symmetry of
the eigenvector to be easily identified. Nonetheless, the same classification is also
obtained with more insight by considering only the linear subspace consisting of
the six order parameters on the nearest-neighbor bonds of two layer-aligned A-
sites, since together these six order parameters form a closed set under the
symmetry operations ['(g) of the Dy symmetry group and necessarily with the same
symmetry as the whole eigenvector. In particular, this linear subspace is the direct
sum of the D; Irreps: A1, A2 and two E, with Irrep basis vectors (up to
normalization) obtained from the non-zero eigenvectors of the projection
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Table 1 Irreducible representation decomposition.

Irrep Basis vectors

Al 1,1,1,1,1,1

A2: 1,1,1,-1,-1,-1

E: (2,-1,-1,0,0,0), (0,1,-1,0,0,0)
E: 0,0,0,2,-1,-1,(0,0,0,0,1, -1

Basis vectors of the D3 irreducible representation (Irrep) decomposition of the six dimensional
linear subspace of the superconducting nearest-neighbor bond order parameters surrounding

the aligned carbons, pierced by the twist rotation axis. The first (last) three dimensions are for
the bond order parameters in the top (bottom) layer.

Table 2 Attributes of the density of states (DOS) figures.

Figure(s) Spectrum ks K, (meV)
Fig. 1c Normal 60 1/20

Fig. 1d, e Normal 16 or 32 1/2 or1
Fig. 2h-j BdG 48 1/5

Fig. 4c-e BdG 24 2/5

The figure(s) in each row (first column) either show the DOS of the normal state or a
superconducting Bogoliubov de-Gennes (BdG) Hamiltonian matrix spectrum (second column).
In all figures the DOS s plotted as a kernel density estimation from a ks x ks point sampling of
the Brillouin (third column) and with a Gaussian width of K,, (last column).

operators and listed in Table 1. We then easily classify the moiré-scale symmetry of
each eigenvector by projecting each subset of bonds on these Irrep basis vectors.

As previously noted, the moiré lattice model also has an approximate Dg
symmetry, besides the exact D; symmetry%8. We have verified that also the leading
superconducting order in Fig. 2a has an approximate Ds symmetry by calculating
that it has a 99% weight in the E, Irrep of Ds. Here the weight || P;A||%/ || A|? in the
Dg Irrep I is calculated from the projection operators with the Dg geometric
transformations T(g) that interchanges all bonds of TBG with a zeroth order
interpolation around the nearest hexagon center to the AA region.

We also extract, throughout the moiré unit cell, the local atomic-scale symmetry
of the superconducting order. We do this by using the basis vectors of the Irreps of
the graphene symmetry group Dg,. Expressed on all nearest neighbor bonds these
are f, = (1,1,1)/+/3 for the identity representation A, (s-wave symmetry),
fdxz,yz =2,-1,-1)//6 (d,2_,2-wave) and fdxy =(0,-1,1)/+/2 (dyy-wave) for
the two-dimensional E,, representation’!. The atomic-scale symmetry of the three-
dimensional bond order parameter vector A(x;) = (Aijl , Aijz,A%) at site x; is then
extracted by projection on to these form factors.

Complimentary to the linear equations Eq. (6), we also solve the fully non-
linear self-consistency equations Eq. (5) using Eq. (15) at an effective zero
temperature (T = 10~7¢) and with the same k-point sampling (k, = 4) as the linear
equation Eq. (6). We find that the zero temperature self-consistent solutions Asc
are always completely contained in the eigenspace A; of the leading solutions of the
linear equation. Formally, this is established by the projection || Py, Ascl?/ Il Agc|?

being as high as 0.99993 for J = 0.43t and 0.99992 for ] = 1.0t, where || A =
A /Zﬁlj) \Aij\z is the order parameter field norm.

Additional physical properties. We additionally compute a number of different
physical properties using the following methods.

Band plot. For the band plot in Fig. lc, the 16 lowest eigenvalues of the normal
state were computed evenly along the high symmetry cuts shown in Fig. 1la with
PRIMME74,

Density of states. From the lowest eigenvalues computed with PRIMME, the
density of states, DOS(E) = >_,8(E — E,), was computed as the kernel density
estimation with Gaussian width K,, using on a regular k, x k grid in reciprocal
space for both the normal and the superconducting states, see Table 2 for para-
meters of each figure. Furthermore, in Fig. 1d, e, the DOS was calculated for the
commensurate angles parametrized as (p, q) with p=1 and ¢=21,23,...,71 and
then normalized by the area of the moiré unit cell. For g <31 we used K,=1 meV
and k, = 32, while for 31 <g, K,=1/2meV and k= 16. The energy of the VHSs
shown in Fig. 1d were defined as the position of the two local maximum in the
resulting density estimation. Similarly, the value at the two local maxima define the
VHS DOS in Fig. le. For Fig. 4a, we used a two-dimensional Gaussian Kernel

density estimation with a kernel widths of 1/10 meV for the energy and 71/10 for the
interlayer phase.

Local density of states. From the lowest eigenvalues together with eigenvectors
computed with PRIMME, the normal state local density of states (LDOS) of Fig. 1g
was computed using

(19)

where U);(k) is the i-site amplitude of the A eigenvector. For the superconducting
state in Fig. 3 we instead used the electronic part of the LDOS:

n(x;,E) = Ni! ,\21:( lup () 8(E — Eyy) + vy () 6(E + Eyy)

n(x;, E) = Ni! AX,:( [Uy(k)|*8(E — Ey)

(20)

where u;(k) and v;)(k) are the particle and hole amplitudes of the Nambu-spinor
eigenvector. For both cases, we computed the LDOS as the weighted Kernel density
estimation with the same Gaussian kernel width K, = 1/8 meV and k, = 24.

Charge density. The charge density of the moiré flat band N,,(x) in Fig. 1f was
obtained by first computing the particle occupation N;(¢) = Zg(c;cw) using Eq.
(14) at each site i of the top graphene layer for two different uniform chemical
potentials: y; =7.5 meV and y, =21.4 meV. The lower (upper) y is in the band
gaps below (above) the moiré bands. The change in particle occupation between
the two us, Ni(x;) = Ni(2) — Ni(u1), is thus the charge density of the moiré bands
and is also equivalent to the integrated LDOS: N, (x) = [’ :1 ? n(x, E)dE. To obtain
the joint charge density of both A and B sublattices with in each unit cell, the
density on each sublattice was first linearly interpolated as a function of position
and then summed on an hexagonal grid in Fig. 1f.

Relative energy differences. The relative energy differences in Fig. 2e, f, were
calculated by reinserting the linear combinations A(®, ¢) of the T=1.25 x 104
eigenvectors Aw in to the BdG Hamiltonian with same field amplitude || A || as the
zero temperature self-consistent solution of the corresponding coupling strength
J(T.) = 0.43t. The zero temperature energy difference between the A®, @) state and
the ground state at A(0,0) were then computed as

AE®, ¢) = nzk 6(—E¢ 0,4)Ere.o — 0(—Eko0)Ek 00 (21)
for the eigenenergy bands Eg ; , indexed by n. Note that all other terms in the free
energy cancel between the two solutions. For the k-vector sum, the same k-point
sampling (ks = 4) was used as when solving the gap equations.

For the results in Fig. 2g we calculated in the same way the relative energy
differences for A(®, @) but over a range of field norms || A ||, i.e. not constrained to
the self-consistent values at the appropriate coupling strength. Since the used basis
vectors AX’Y(TC) might change with T, and thus field norm, this is technically an
approximation. However, we find that basis vectors Ax_y(Tc) of the leading solution
are remarkably stable, and that the resulting energy differences are insensitive to
the AW(TC) used for the variation, a result we checked by using both eigenvectors
from T=10"3t and T = 1.25 x 10, as well as a higher (k, = 6) k-point sampling.
To accurately capture the energy difference also in the very small || A || regime, we
computed the energy difference using a very high k-point sampling (k; = 20).

Condensation energies. The zero-temperature condensation energies in Fig. 2h-j, as
well as the the maximum condensation energy of the self-consistent ¢ = 7 state in
Fig. 4b, were computed using all the eigenvalues of the normal state and of the BdG
Hamiltonian attained with Armadillo’>”®, In terms of the eigenvalues E" of Hamil-
tonian, the normal state energy is Ey = N 'Y, (6(—Ej)E}, while the energy in the

superconducting state E(A) = N'Y, (0(—Ej(A)EL(A) — 2uN, + 2iig) A,jlz/],
also contains the constant energy shift C of the BdG form, see Eq. (7). The zero-
temperature condensation energy is then just the difference E_,,y = Ey — E(A).

Streamlines. The streamlines in Fig. 2b, ¢ were constructed by numerically inte-
grating the flow equation 0,r(f) = x(r) both forwards and backwards starting from
initial points on a hexagonal grid throughout the moiré cell. Here the vector field
x(x;) = cos 7(x;)x + sin 7(x;)y was the linearly interpolated from the angle

7(x;) = arctan(A(x;) - f da JAx) - f, dxy)’ with separate accounting for the appro-

priate quadrant for the angle.

Data availability

Data are available from the corresponding authors upon request.

Code availability
Computer program source codes used for all calculations and analysis are available for
review from the corresponding authors upon request.
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