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Homophily impacts the success of vaccine roll-outs
Giulio Burgio1, Benjamin Steinegger 1 & Alex Arenas 1✉

Physical contacts do not occur randomly, rather, individuals with similar socio-demographic

and behavioral characteristics are more likely to interact among them, a phenomenon known

as homophily. Concurrently, the same characteristics correlate with the adoption of pro-

phylactic tools. As a result, the latter do not unfold homogeneously in a population, affecting

their ability to control the spread of infectious diseases. Focusing on the case of vaccines, we

reveal that, provided an imperfect vaccine efficacy, three different dynamical regimes exist as

a function of the mixing rate between vaccinated and not vaccinated individuals. Specifically,

depending on the epidemic pressure, vaccine coverage and efficacy, we find the final attack

rate to decrease, increase or vary non monotonously with respect to the mixing rate. We

corroborate the phenomenology through Monte Carlo simulations on a temporal real-world

contact network. Besides vaccines, our findings hold for any prophylactic tool that reduces

but not suppress the probability of transmission, indicating a universal mechanism in

spreading dynamics.
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Vaccines have been crucial in humanity’s struggle to protect
itself from infectious diseases1. In the 20th century, vac-
cines enabled to control a series of diseases2 as well as

the eradication of smallpox3. Nevertheless, vaccines are not
uniformly adopted in the population. While on a world-wide
scale a lack of access impedes equitable adoption of vaccines4,5,
among high income countries vaccine hesitancy is the primary
barrier6–8.

Vaccine hesitancy widely correlates with age, socio-economic
status, education level, or ethnicity9–12. Concurrently, these same
factors shape the interaction patterns in society, leading to what is
commonly referred to as homophily13, i.e., similarity of social
contacts. As a consequence, social interactions are relatively
homogeneous with regard to many socio-demographic or beha-
vioral characteristics13, and vaccination status is not an
exception6,7,14–19. This non-uniform, clustered vaccine adoption
strongly determines how, and whether, the virus spreads in the
population. A great example of this effect is provided by the
recurrent measles outbreaks in high-income countries caused by
clusters of vaccine hesitant individuals6,7,14–16,18.

These recurring outbreaks sparked modeling studies that
analyzed the impact of homophilic vaccine adoption on the dis-
ease dynamics20–24. Due to the high quality of vaccines against
measles, these models assumed vaccine efficacy of almost 100%,
and showed that clustered adoption always increases the final
attack rate. In contrast, vaccines as the ones against influenza or
variants of concern of SARS-CoV-2 have relatively low efficacy,
between 20% and 80%25,26.

In this work, through the joint exploration of imperfect
immunization and vaccine uptake, we offer a wider picture in
which vaccination clustering is not always detrimental. Adjustable
interaction rates allow us to model different contact structures
with respect to the vaccination status of the interacting indivi-
duals. In such mean-field approximation, we reveal the existence
of three dynamical regimes in relation to how the vaccination
assortativity affects the epidemic size. This phenomenology is
then corroborated by simulations on a real-world temporal
contact network. Overall, integrating recent findings on the effect
of homophilic adoption of digital proximity tracing apps27, we
point out a general mechanism in spreading dynamics, implied by
any prophylactic measure that reduces but not suppress the
probability of transmission.

Results and discussion
Modeling the contact structure and the spreading dynamics.
We consider the standard susceptible-infected-recovered (SIR)
model, with transmission probability β, recovery rate μ, and
contact rate k. Accordingly, in the absence of protected indivi-
duals, and assuming homogeneous mixing, the basic reproduc-
tion number of the disease is R0= βk/μ28. The fraction of people
who received a vaccine is fixed as V 2 0; 1½ �. Upon encounter, an
infected individual transmits the infection to a vaccinee at a
reduced probability β 1� εð Þ, where ε∈ [0, 1] represents the
vaccine efficacy.

Under random mixing, the effective reproduction number
would be given by R ¼ R0 1� εVð Þ. In order to include
homophilic interactions, we now parametrize the mixing relation
between vaccinated and not vaccinated people, i.e., the contact
matrix K, with a parameter α∈ [0, 1]. We denote the entries of K
as kij with i, j∈ {V, N}, where ‘V’ and ‘N’ stand for ‘vaccinated’
and ‘not vaccinated’, respectively. We introduce α through the
relation kNV= αVk, hence interpolating from complete homo-
phily (α= 0) to random mixing (α= 1). The remaining contact
rates follow from the balance equation (1−V)kNV= VkVN and the
constraint k= kNN+ kNV= kVV+ kVN. Accordingly, K has the

following entries:

kNV ¼ αVk ð1Þ

kNN ¼ 1� αV½ �k ð2Þ

kVN ¼ αð1� VÞk ð3Þ

kVV ¼ 1� αð1� VÞ½ �k: ð4Þ
The degree of homophily regarding vaccine uptake, h, i.e., the

probability that during a contact both individuals are either
vaccinated or not, thus reads

h ¼ 1
k

ð1� VÞkNN þ VkVV
� � ¼ 1� 2αV 1� Vð Þ: ð5Þ

Note that α may take values larger than one (with an upper
bound depending on V), indicating disassortative mixing. Broad
sociological evidence13,29,30, however, largely excludes this
possibility. Recently, the adoption of contact tracing apps has
been shown to strongly correlate with age, income and
nationality31–33, effectively leading to homophilic (assortative)
patterns.

Similarly, we tried to estimate assortativity in vaccine uptake
indirectly through age-stratification. We leverage the correlations
in the contact patterns among age groups and the levels of vaccine
coverage within each age group (see the “Methods” section for
details). Specifically, for each region/country considered, we
combined the age-stratified contact matrices34 with the data on
vaccine adoption against SARS-CoV-2 (counting full vaccinations
only), from January 2021 –when first full vaccinations appeared–
to September 202135–38. As shown in Fig. 1, the estimated mixing
rate stays well below 1 for almost all the time, sometimes
fluctuating around it only for very low levels of vaccine coverage
(V≲ 0.02 for Catalonia).

It must be said, however, that it would be naïve to take the
temporal trends in Fig. 1 as ready-to-use data. Indeed, we neglect
other important features beyond age such as socio-economic
classes or spatial patterns9,12. Including these additional features
would reinforce the homophilic structure and thus decrease the
mixing rate. Therefore, the results deriving from our simple
analysis must be solely understood as a qualitative indication in
line with existing literature reporting homophily in health
behavior17,30,33, hence with the choice α∈ [0, 1]. The latter is
always kept fixed here, leaving the study of its implicit time-
dependence for future work.

0.6

0.7

0.8

0.9

1.0

Apr Jul Oct

α

Catalunya France Italy Switzerland

0.0

0.2

0.4

0.6

Apr Jul Oct

V

Fig. 1 Mixing parameter from age-stratified data on vaccine uptake.
Weekly moving average of the mixing parameter, α, as inferred for different
countries/regions starting from the contact matrix among age groups and
the SARS-CoV-2 vaccines uptake of each group (whose aggregate, V, is
shown in the inset plot) from January to September 2021.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00849-8

2 COMMUNICATIONS PHYSICS |            (2022) 5:70 | https://doi.org/10.1038/s42005-022-00849-8 | www.nature.com/commsphys

www.nature.com/commsphys


We denote with XY≡ XY(t) the fraction of vaccinated (Y=V)
and not vaccinated (Y=N) people in compartment X 2 S; If g at
time t. Then, the differential equations governing the dynamics
read as

_INðtÞ ¼ β kNNINðtÞ þ kNVIVðtÞ
� �

SNðtÞ � μINðtÞ ð6Þ
_IVðtÞ ¼ β kVNINðtÞ þ kVVIVðtÞ

� �ð1� εÞSVðtÞ � μIVðtÞ ð7Þ
_SNðtÞ ¼ �β kNNINðtÞ þ kNVIVðtÞ

� �
SNðtÞ ð8Þ

_SVðtÞ ¼ �β kVNINðtÞ þ kVVIVðtÞ
� �ð1� εÞSVðtÞ: ð9Þ

Calculation of the reproduction number. Linearizing Eqs.
(6)–(9) around the disease-free equilibrium (IN, IV, SN, SV) ≈ (0,
0, 1, 1), we note the Jacobian matrix J to act as the null matrix in
the (SN, SV) two-dimensional subspace, having only zero entries
in the respective columns. This subspace thus provides two zero
eigenvalues. The other two are provided by the 2 × 2 block JI
related to the IN and IV compartments, taking the form

JI ¼
βkNN � μ βkNV
βð1� εÞkVN βð1� εÞkVV � μ

� �
: ð10Þ

The effective reproduction number, R, is found from the
spectral radius ρ(J) as R= ρ(J)+ 139. Since
ρðJÞ ¼ max 0; ρðJIÞ

� �
, we can just look at ρ(JI). If ρ(JI) > 0

(R > 1) the disease-free equilibrium is unstable and a finite
fraction of the population gets infected. By computing the
spectral radius and inserting the explicit expressions of the K
matrix entries, one gets

R ¼ R0

2
2� αþ αεð1� VÞ � ε þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α� αεð1� VÞ þ ε½ �2 � 4αεV

q	 

:

ð11Þ
One can easily check that R/R0 decreases monotonously with

respect to all the figuring parameters. The monotonous
dependence on α was expected, as the higher is the latter, the
lower is the number of effectively susceptible people an infected
individual can come in contact with. The monotonic shape of R
distinguishes the adoption of vaccines from contact tracing apps,
for which R can show instead a non monotonous dependence on
the mixing rate27.

As anticipated, Eq. (11) reduces to R ¼ R0 1� εVð Þ for α= 1,
i.e., random mixing. Interestingly, the symmetry between vaccine
efficacy, ε, and coverage, V, holding for random mixing, breaks
for homophilic adoption. As proved in the “Methods” section and
illustrated in Fig. 2, when keeping the product εV fixed, a higher
coverage lowers the reproduction number more than a higher
efficacy.

By imposing R= 1 and solving for α, we find the critical value
of mixing, αc, above which the disease cannot thrive, to be

αc ¼ 1� 1
R0

� �
1� R0ð1� εÞ

1� R0ð1� εÞ � εð1� VÞ ; ð12Þ

given that αc ≥ 2ð1� 1=R0Þ � ε
� �

= 1� εð1� VÞ½ �, with R0 > 1, is
satisfied. In particular, the condition is always met for ε= 1 and
never met for ε= 0 (meaning eradication is not possible in this
case, i.e., R > 1). The critical values of vaccine uptake, Vc, and
efficacy, εc, are found from Eq. (12) by solving for the respective
variable.

Three dynamical regimes. The final attack rate, understood as
the final fraction of individuals that got infected (and eventually
transitioned to the recovered/removed compartment) throughout
all the duration of an outbreak, exhibits three different dynamical

regimes with respect to its dependence on the mixing rate, α.
This is shown in Fig. 3a, where, by increasing the basic repro-
duction number, R0, the dependence of the final attack rate on α
is first monotonously decreasing, then concave and finally
monotonously increasing. Following previous work27, we refer to
these three regimes as critical, intermediate, and saturated,
respectively.

These overall regimes result from the competition between two
nearly complementary regimes, as illustrated in Fig. 3b, c. With
no mixing at all (α= 0), vaccinated and not vaccinated form two
disconnected components. Accordingly, the disease is free to
spread in the not vaccinated cluster whenever R= R0 > 1; on the
other hand, R= R0(1−ε) < R0 in the vaccinated one, so the spread
does not occur if ε is high enough to ensure R < 1. Increasing the
mixing (i.e., α), each cluster is ‘diluted’ with nodes from the other.
As a consequence, the reciprocal protection that vaccinated
people provide among them to keep infection chains localized is
partially lost. Instead, not vaccinated individuals profit from
vaccinated individuals in their vicinity and are thus subject to a
lower infection probability. Mixing is therefore beneficial for not
vaccinated people and detrimental for vaccinated ones. Then,
depending on the basic reproduction number, R0, the vaccine
coverage, V, and the vaccine efficacy, ε, the overall system falls in
one of the three dynamical regimes. .

The same qualitative picture holds for the peak of prevalence
(see Fig. 3d–f), i.e., the maximum number of simultaneously
infectious people during the epidemic. Note that, for each set of
fixed parameters, the respective regimes of the peak of prevalence
and of the final attack rate may not coincide. For example, at
R0= 3, the final attack rate is in the intermediate regime while the
peak of prevalence is in the critical one (Fig. 3a). In Fig. 4, we
show how the three regimes can be also accessed by varying the
vaccine coverage, V, or the vaccine efficacy, ε, or both.
Specifically, increasing V and/or ε makes the dynamics pass
from the saturated to the critical regime, going through the
intermediate one. Accordingly, a sufficiently high efficacy makes
random mixing always beneficial.

In the case of a perfect vaccine, i.e., ε= 1, the system is always
in the critical regime. Indeed, in this case, we see from Eqs.
(6)–(9) that the dynamics reduces to a standard SIR model within
the not vaccinated sub-population (SN, IN). Such dynamics is then
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Fig. 2 Analytical mean field prediction for the reproduction number as a
function of vaccine efficacy and coverage. Normalized reproduction
number, R/R0, respect to the the basic reproduction number, R0, as a
function of the vaccine efficacy, ε, and of εV, the product between vaccine
efficacy and vaccine coverage, V. The normalized reproduction number is
computed from Eq. (11). For any given value of εV (a horizontal slice of the
heatmap), ε can vary from that value to 1 (respectively, V varies from 1 to
that value), for εV ≤ ε (respectively, ≤V).
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solely driven by the contact rate kNN, which is a linearly
decreasing function of the mixing rate, α.

As mentioned in the section “Introduction”, it has been
recently27 revealed that the same three dynamical regimes found
here for vaccination, are also induced by the homophilic adoption
of digital proximity tracing apps for epidemic containment.
Indeed, the existence of these regimes can be understood within a
common underlying mechanism, enclosing a broad class of
prophylactic measures. The essential ingredient is the lack of
sufficient individual, independent protection offered by the
prophylactic tool to the adopter. This is evident for contact
tracing apps, as adoption does not directly protect the adopter;
instead, individuals only indirectly benefit if adoption is
sufficiently widespread such that transmission chains between
adopters can be stopped. Similarly, if the vaccine is imperfect,
isolated adoption in a high prevalence environment may not
substantially reduce the individual infection probability.

Widespread adoption among an individual’s contacts is thus
necessary to provide mutual protection.

Accordingly, for both vaccines and contact tracing apps, if
coverage is low in comparison to the epidemic pressure, only an
assortative/clustered adoption can provide mutual protection and
thus non adopters cannot be protected (saturated regime). On the
contrary, if coverage is high, protection is sufficiently strong such
that nonadopters can be protected and thus mixing between
adopters and nonadopters is beneficial (critical regime). In
between we then find the intermediate regime. In all three cases,
this phenomenology holds for any prophylactic measure that
reduces the transmission probability since it is mathematically
equivalent to the model presented here. In this sense, equivalent
results could be found for the use of face masks or the adoption of
social distancing.

Monte Carlo simulations on a real-world contact network. To
corroborate our theory, we performed numerical simulations
upon a temporal contact network estimated via Bluetooth signal
exchanges in the Copenhagen Networks Study40. The data was
collected during a month with almost 700 participants. In order
to study different levels of assortativity in vaccine adoption, we
distribute vaccines algorithmically until a preset value of α is
reached (see the “Methods” section for details)41.

The results for the final attack rate, and the peak of prevalence,
respectively, reported in Fig. 5a, b for ϵ= 1.0, in Fig. 5c, d for
ϵ= 0.8, and in Fig. 5e, f for ϵ= 0.6, confirm the existence of the
three dynamical regimes identified by our model. Accordingly,
the beneficial effect of random mixing vanishes when the vaccine
does not provide sufficient protection. In the saturated regime,
mixing is slightly detrimental. Furthermore, as in the mean-field
case, we observe that final attack rate and peak of prevalence can
be in different dynamical regimes . Particular structural
constraints of this aggregated network do not allow for arbitrarily
small values of α, making the saturated regime less evident.
Nonetheless, higher homophilic levels (even α ≈ 0) can be reached
by artificially controlling the mixing, in which case the decrease in
the final attack rate would be better appreciated.

Fig. 3 The three dynamical regimes as predicted by the mean field model. Final attack rate a–c and peak of prevalence d–f as functions of the basic
reproduction number, R0, and the mixing parameter, α, as resulting from the numerical iteration of the differential equations governing the system
dynamics (Eqs. (6)–(9)). Here, the vaccine coverage is V= 0.7 and the vaccine efficacy ε= 0.8. In order to highlight the competing processes at the base
of the dynamics we show, besides the results for the population overall (a, d), those for the vaccinated individuals (b, e) and for the not vaccinated ones
(c, f), separately. The white solid line indicates the critical curve, αc≡ αc(R0), at which R= 1, as computed from Eq. (12). The orange and red vertical lines,
demarcate the boundaries between, respectively, the critical and the intermediate regime, and the intermediate and the saturated one, for both the final
attack rate (a) and the peak of prevalence (d).
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Fig. 4 Final attack rate for different values of vaccine efficacy and
coverage. Final attack rate as a function of the mixing parameter, α, for
different combinations of vaccine efficacy, ε, and coverage, V, given a basic
reproduction number R0= 2.5. As a complement to Fig. 3, this plot
illustrates how all three dynamical regimes can be also explored by varying
V or ε, or both.
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Conclusions
Depending on the need and the available information, the model
can be applied to different specific populations and at different
scales. Currently, many epidemic models only implicitly consider
the mixing between not vaccinated and vaccinated individuals
through stratification according to age (Fig. 1)42,43 or socio-
economic status44. Our findings urge also to account for the
impact that subgroup-specific levels of mixing, can have on the
system as a whole. Such approaches may provide a further tool to
interpret epidemiological data. Additionally, more realistic
models can act as useful guides for policy makers to design non-
pharmaceutical interventions.

For instance, with respect to the current COVID-19 pandemic,
various countries require the green pass to enter restaurants or
the workplace. The intention behind the green pass is to nudge
individuals to get vaccinated or that non vaccinated individuals
reduce their number of physical contacts45. However, at the same
time, the green pass reshapes the social fabric46 effectively
reducing the mixing rate between vaccinated and non vaccinated
individuals. In light of our results, due to the associated reduction
in the mixing rate, models that do not include homophily in
vaccine adoption may actually overestimate the impact of the
green pass. Overall, our results show that more detailed infor-
mation on the correlations between social interactions and health
behavior (vaccination, face mask, social distancing, contact tra-
cing apps) would lead to a more comprehensive analysis.

Shortly after having finished this analysis, we became aware that
Hiraoka et al. 47 and Watanabe et al. 48 made an analysis very
similar to ours. The phenomenology they uncover is equivalent to
the one we found here. In this sense, the findings are very robust
regarding model assumptions, as Hiraoka et al. 47 consider ran-
dom networks and an all-or-nothing vaccine49, while we focus on
the mean-field case and a temporal real-world network assuming a
leaky vaccine49. Additionally, Fefferman et al. 50,51 showed that
the presence of homophily adds interesting phenomenology
regarding the temporal trajectory of the epidemics beyond the
three dynamical regimes in the final attack rate.

From a more theoretical standpoint, we showed that the pre-
sence of homophily in vaccine adoption leads to three different
dynamical regimes (critical, intermediate, saturated). Further-
more, the phenomenology presented here also extend to any
prophylactic measure that reduces the transmission probability
such as the use face masks48, social distancing52, as well as digital
contact tracing27,53. Accordingly, the phenomenology induced by
the presence of homophily is robust with respect to the adoption
of different health behaviors. This robustness of our findings
across prophylactic tools hints to a general feature of spreading
dynamics. Eventually, the results highlight how correlated meta-
data such as vaccination status can add rich phenomenology
beyond the network structure itself54–57.

Methods
Homophily level of SARS-Cov-2 vaccine adoption. We infer the mixing para-
meter α of SARS-CoV-2 vaccine adoption through an age-stratified approach. We
exclusively focus on the heterogeneous adoption and contact structure with respect
to age strata. Due to limited data availability, we neglect further correlations such as
socio-economic factors. In this sense, the inferred value of α likely represents an
upper bound.

To calculate α we make use of the empirical contact matrix C34 and the
vaccination coverage vi(t) in age-strata i= 1, 2,…,M at time t35–38. The entry Cij of
the contact matrix represents the average number of daily contacts of an individual
in age-strata i with an individual in age-strata j. Vaccination data is stratified into
intervals of 10 years (0−9,10−19,…,70−79,80+), while the contact matrices use 5
year bins. Therefore, as a first step, we average the empirical contact matrices to
transform them into 10 year bins according to the census data.

Generally, the empirical contact matrices do not respect the balance equation
CijNi= CjiNj, where Ni represents the number of individuals in age-strata i. There
are various approaches to fix this issue58. Here, we defined the matrix C as

Cij ¼
Ni

eCij þ Nj
eCji

Ni

ð13Þ

such that the balance equation is met, being eC the empirical matrix. To infer α(t)
we leverage its relation with h(t), i.e., Eq. (5). Namely, we first calculate h as

hðtÞ ¼
∑
M

i¼1
∑
M

j¼1
CijNi viðtÞvjðtÞ þ ð1� viðtÞÞð1� vjðtÞÞ

h i

∑
M

i¼1
∑
M

j¼1
CijNi

: ð14Þ

Fig. 5 The three dynamical regimes confirmed for a real-world temporal contact network. Final attack rate and peak of prevalence, respectively, for
vaccine efficacy, ε= 1.0 (a, b), ε= 0.8 (c, d), and ε= 0.6 (e, f) as functions of the mixing parameter, α, resulting from the numerical simulations performed
on top of a real-world temporal contact network from the Copenhagen Networks Study40. This consists of N= 672 nodes and 374,884 edges (pairwise
interactions) spread over 8064 timestamps, binning 4 weeks of recording time into 5-min intervals. Dots indicate the median value, whereas the shaded
area indicates first and third quartiles. Each point is obtained by averaging over 2 × 104 runs. We fixed the vaccine coverage to V= 0.5, the recovery rate to
μ= 4.6 × 10−4 (corresponding to a mean infection time of 7.5 days) and the transmission probability to β= 1.142 × 10−1, yielding R0= 6 from the
estimation R0= βκ/μ, where κ ¼ s2=�s, being �s (s2) the network average of the (squared) number of contacts per timestamp.
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From Eq. (5), we find the mixing rate as α(t)= (1−h)/[2V(1−V)], where V
corresponds to the fraction of vaccinated individuals in the overall population.

Asymmetry between vaccine efficacy and coverage in lowering the repro-
duction number. Here we prove that, when keeping fixed the product εV between
vaccine efficacy, ε, and coverage, V, a higher coverage is more effective than a
higher efficacy in lowering the reproduction number, R. To this end, it is con-
venient to rewrite Eq. (11) in the form

R ¼ R0

2

	
2� αð1þ εVÞ � εð1� αÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ð1� αÞ2 þ ε 2αð1� αÞð1þ εVÞ½ � þ αð1þ εVÞ½ �2 � 4αεV

q 

:

ð15Þ

Differentiating Eq. (15) with respect to ε while keeping the product εV fixed,
one finds

∂R
∂ε

����
εV¼const:

¼ R0

2
ð1� αÞ �1þ εþ αð1þ εV � εÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εð1� αÞ½ �2 þ ε 2αð1� αÞð1þ εVÞ½ � þ c2ðεVÞ
q

2
64

3
75:
ð16Þ

This is zero for α= 1. Supposing α≠ 1 and imposing ∂R/∂ε∣εV=const. ≥ 0, after some
algebra, one gets the condition 4αεV ≥ 0, which is always satisfied. Therefore, it holds
(∂R/∂ε)∣εV=const.≥ 0 and, in a complementary manner, (∂R/∂V)∣εV=const.=− (ε/V)(∂R/
∂ε)∣εV=const.≤ 0, which completes the proof.

Assortative seeding of vaccines on a network. We consider the temporal
contact network from the Copenhagen Networks Study40 that was inferred through
Bluetooth signals. We retained those interactions with an associated received signal
strength indication (RSSI) not lower than −74 dBm, corresponding to physical
distances approximately up to 2 m59. The resulting temporal network involves
N= 672 individuals and 374,884 pairwise interactions spread over 8064 time-
stamps, binning 4 weeks of recording time into 5-min intervals.

To distribute the vaccine in the population, we provisionally aggregate the
temporal network to get a weighted, static one, where the weight of an edge, wij, is
the duration of time its end nodes interacted, understood as the number of 5-min
bins this occurred. Accordingly, the homophily, h, is computed as the sum of the
weights (duration of contacts) over the homophilic edges, normalized by the sum
over all the edges. In line with Eq. (5), given the vaccination status, vi (vi= 1 if
vaccinated and 0 otherwise), of an individual i, we can express h as

h ¼
∑
N

i¼1
∑
N

j¼1
wij vivj þ ð1� viÞð1� vjÞ

h i

∑
N

i¼1
∑
N

j¼1
wij

: ð17Þ

Then α is obtained from Eq. (5) as α= (1−h)/[2V(1−V)].
To reach a desired mixing level α, we initially distribute the vaccine at random

(α ≈ 1) and then iteratively swap the vaccination status of two randomly selected
neighboring nodes whenever this leads to a decrease in α, until the latter attains the
preset value (±0.01). Additionally, if the average strength (number of contacts) of
vaccinated individuals is higher (lower) than that of not vaccinated ones, a swap is
only allowed if it increases (decreases) the strength of not vaccinated ones. Without
this condition, the algorithm induces a spurious correlation between vaccination
status and the strength of a node. Given the role that frequently interacting nodes
play in driving the spreading dynamics, such correlation can importantly affect the
results. Therefore, as done in Burgio et al. 27—but not in a previous, related
work17—only innocuous, not correlating swaps are carried out. The code for the
seeding of the vaccine is publicly available41.

Data availability
All the data used in this study is publicly available and accordingly referenced.

Code availability
The code to reproduce all the results presented here is available at github and archived at
zenodo.org41.
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