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Tensor-network study of correlation-spreading
dynamics in the two-dimensional Bose-Hubbard
model
Ryui Kaneko 1✉ & Ippei Danshita 1✉

Recent developments in analog quantum simulators based on cold atoms and trapped ions

call for cross-validating the accuracy of quantum-simulation experiments with use of quan-

titative numerical methods; however, it is particularly challenging for dynamics of systems

with more than one spatial dimension. Here we demonstrate that a tensor-network method

running on classical computers is useful for this purpose. We specifically analyze real-time

dynamics of the two-dimensional Bose-Hubbard model after a sudden quench starting from

the Mott insulator by means of the tensor-network method based on infinite projected

entangled pair states. Calculated single-particle correlation functions are found to be in good

agreement with a recent experiment. By estimating the phase and group velocities from the

single-particle and density-density correlation functions, we predict how these velocities vary

in the moderate interaction region, which serves as a quantitative benchmark for future

experiments and numerical simulations.
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State-of-art experimental platforms of cold atoms and trap-
ped ions as analog quantum simulators have offered unique
opportunities for studying far-from-equilibrium dynamics

of isolated quantum many-body systems. Thanks to their high
controllability and long coherence time, these platforms have
already addressed a variety of intriguing phenomena that are in
general difficult to simulate with classical computers, such as
correlation spreading1–3 and relaxation4–6 after a quantum
quench, many-body localization in a disorder potential7–9, and
quantum scar states10,11. Nevertheless, accurate numerical
methods using classical computers are highly demanded at the
current stage of the studies of quantum many-body dynamics,
since the classical computation still has complementary advan-
tages over the quantum simulation in that it is free of noise and
much more accessible owing to its wide dissemination. In this
sense, it is important to cross-check the validity of quantum-
simulation experiments and some numerical methods by com-
paring them with each other.

In particular, direct comparisons between experimental and
numerical outputs have been made for dynamical spreading of
two-point spatial correlations of the Bose-Hubbard
model1,3,12–15, which can be realized experimentally with ultra-
cold bosons in optical lattices16. The correlation spreading has
attracted much theoretical interest12–15,17–27 in the sense that it is
closely related to fundamental phenomena, including the pro-
pagation of quantum information and the thermalization. In one
spatial dimension, quasi-exact numerical methods based on
matrix product states (MPSs) have been used to validate the
performance of the quantum simulators1,3,12. In two dimensions
(2D), by contrast, accurate numerical simulations are challenging.
Indeed, the comparisons with respect to a single-particle corre-
lation have shown that a few types of the truncated Wigner

approximation (TWA) fail to capture the real-time evolution
accurately enough to extract the propagation velocity of the
correlation3,14. Moreover, while the propagation velocities
obtained by a two-particle irreducible strong-coupling (2PISC)
approach quantitatively agree with the experimental value, and
the approach is applicable to much weaker interaction than in the
experiment, it does not necessarily provide the exact value of the
correlation itself15.

In this paper, we present quantitative numerical analyses of the
correlation-spreading dynamics of the 2D Bose-Hubbard model
starting from a Mott insulating initial state with unit filling. To
this end, we employ the tensor-network method based on the
infinite projected entangled pair state (iPEPS)28–35 or the tensor
product state36–40, which is an extension of MPS to 2D systems
(see Fig. 1a). The iPEPS studies on real-time dynamics of
isolated41–49 and open41,42,50–52 quantum systems in 2D have
begun very recently. Previous simulations suggest that iPEPS can
represent relatively low-entangled states in short-time dynamics
for simple spin 1/2 systems41–44 and some itinerant electron
systems46. This observation may be valid for real-time dynamics
in Bose-Hubbard systems; however, little is known about it until
now. We find that the single-particle correlation computed with
iPEPS, as well as the estimated propagation velocity of the cor-
relation front, agrees very well with the experimental result3,
demonstrating that iPEPS can be useful for actual quantum-
simulation experiments. We also conduct numerical simulations
in a moderate interaction region, which has not been addressed
by the previous experiments1,3. From the real-time evolution of
the single-particle and density–density correlations, we show that
the phase and group velocities approach each other when the
interaction decreases.

Results
Model. We consider the Bose-Hubbard model on a square
lattice53,54. The Hamiltonian is given as

Ĥ ¼ �J ∑
hiji
ðâyi âj þ âyj âiÞ þ

U
2
∑
i
n̂iðn̂i � 1Þ � μ∑

i
n̂i; ð1Þ

where âyi and âi are the creation and annihilation operators at site
i, n̂i ¼ âyi âi is the number operator, J is the strength of the
hopping between nearest-neighbor sites, U is the strength of the
onsite interaction, and μ is the chemical potential. The notation
〈ij〉 indicates that sites i and j are nearest neighbors. For sim-
plicity, we ignore the effects of the trap potential and the Gaussian
envelopes of optical lattice lasers, which do not affect short-time
dynamics. We set the lattice spacing dlat to be unity. The ground
state at the commensurate filling is the Mott insulating (super-
fluid) state for U ≫ J (U ≪ J). Hereafter, we will consider a
sudden quench and a quench with a short time (see Fig. 1b and
Supplementary Note 1 for details).

Quench starting from the Mott insulator: comparison with the
exact diagonalization and the experiment. Let us first focus on
the case of a sudden quench. We compare our results of iPEPS
with those of the exact diagonalization (ED) method and obtain
consistent results in a short time. In the ED simulations using the
QuSpin library55,56, we choose the system sizes Lx × Ly up to 5 × 4
and use the periodic-periodic boundary condition. We examine
to what extent the energy is conserved in the iPEPS simulations.
The grand potential density hĤi at T= 0 starting from the Mott
insulator �i ni ¼ 1

�
�

�
should remain constant. They well con-

verge for the bond dimensions D ≥ 6 and remain nearly constant
up to t ~ 0.4ℏ/J (see Supplementary Note 2 for the time depen-
dence of the grand potential density). We also investigate how the

Fig. 1 Setup for numerical simulations of quench dynamics. a Schematic
figure of infinite projected entangled pair state (iPEPS) with a two-site unit
cell. Sublattice sites are represented by A and B. A rank-five tensor at each
site is represented as a circle with four thin lines and one thick line. The
former lines correspond to the virtual degrees of freedom with the bond
dimension D, while the latter line corresponds to the physical degrees of
freedom with the dimension of the local Hilbert space Dphys. The wave
functions become more accurate as D increases. b Time dependence of the
hopping J (a red solid line) and the onsite interaction U (a blue dashed line)
with a finite-time quench. The parameter U/J is varied from ~99.4 to ~19.6
for −τQ < t < 0 with τQ being a finite quench time. In the case of a sudden
quench, we discard the region −τQ < t < 0.
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single-particle correlations converge with increasing bond
dimensions. The equal-time single-particle correlation function at
a distance r= (x, y) for the system size Ns is defined as

Csp
r ðtÞ ¼ 1

2Ns
∑
i;j

0hâyi ðtÞâjðtÞ þ âyj ðtÞâiðtÞi: ð2Þ

Here ∑0
i;j denotes the summation over (i, j) that satisfies ∣xj−

xi∣= x and ∣yj− yi∣= y. In the iPEPS simulations, 1=Ns ´ ∑0
i;j is

replaced by 1=2 ´ ∑i¼A;B ∑
0
j with A and B being sublattice sites

because of the translational invariance. As shown in Fig. 2,
Csp
jrj ¼ 1ðtÞ :¼ ½Csp

r¼ð1;0ÞðtÞ þ Csp
r¼ ð0;1ÞðtÞ�=2 exhibits a peak at

t ~ 0.15ℏ/J in both results, and they overlap in this short time. For
t≳ 0.15ℏ/J, the correlation functions of ED start to exhibit a
significant finite-size effect, whereas those of iPEPS converge for
D ≥ 6. We observe similar behavior for Csp

jrj ¼ ffiffi
2

p ðtÞ :¼ Csp
r¼ð1;1ÞðtÞ.

The iPEPS results are better simulated up to a longer time (see
also Supplementary Note 3 for other interaction parameter
regions).

Next, we compare the correlations of iPEPS with those of the
experiment3 for a finite quench time. In the experiment, a quench
to the Mott insulating region has been investigated so far.
Figure 3a–c show the time evolution of correlations at distances
∣r∣= 1, 2, and 3, respectively. Qualitative behavior is essentially
equivalent to the case of the sudden quench, although the
correlation function shifts to an earlier time. For ∣r∣= 1, both data
show a peak at t ~ 0.12ℏ/Jfinal. Similarly, the first-peak times are
consistent with each other for ∣r∣= 2 and 3, and they become
longer with increasing distances. When the energy is approxi-
mately conserved (namely, for t≲ 0.4ℏ/Jfinal, see the time
dependence of the grand potential density in Supplementary
Note 4), the intensities of correlations also overlap very well. They
are also consistent with those obtained by TWA3,13,14, while the
iPEPS simulations can deal with a slightly longer time and
capture the correlation peaks more clearly (see also

Supplementary Note 5 for a detailed comparison with the TWA
results). To see how well they match more quantitatively, we also
compare the first-peak position of iPEPS with that of the
experiment3 as shown in Fig. 3d. Both iPEPS and experimental
results agree very well.

Estimates of group and phase velocities in the moderate
interaction region. Having confirmed the applicability of iPEPS
simulations to real-time evolution of the Bose-Hubbard model,
we study how information propagates by a sudden quench in the
moderate interaction region. There are two kinds of velocity that

Fig. 2 Single-particle correlation functions Csp
r ðtÞ in the case of a sudden

quench. Comparison is made between the infinite projected entangled pair
state algorithm (iPEPS, blue lines with symbols) and the exact
diagonalization method (ED, gray lines). The unit of time is taken as the
inverse of the strength of the hopping J. U is the strength of the interaction.
D is the bond dimension. Ns is the system size. The correlations at
distances (a) ∣r∣= 1 and (b) jrj ¼

ffiffiffi
2

p
are shown. Both results overlap in a

short time.

Fig. 3 Single-particle correlation functions Csp
r ðtÞ in the case of a finite-

time quench. Comparison is made between the infinite projected entangled
pair state algorithm (iPEPS, blue lines with symbols) and the experiment
(red circles with error bars). The unit of time is taken as the inverse of the
strength of the hopping Jfinal after the quench. U is the strength of the
interaction. D is the bond dimension. The correlations at distances
(a) ∣r∣= 1, (b) ∣r∣= 2, and (c) ∣r∣= 3 are shown. The error bars represent
the standard error of five independent measurements3. d Comparison of
the first-peak time between the iPEPS and experimental results. The error
bars represent the fitting errors3. The iPEPS and experimental results agree
within the experimental errors in all cases.
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are relevant to the correlation spreading. One is the group velo-
city vgr, which corresponds to the propagation of the envelope of
the wave packet and is a suitable quantity to characterize the
spreading of correlations. In non-relativistic quantum many-body
systems, vgr is bounded above, and the upper bound is known as
the Lieb-Robinson bound23–27,57,58. Notice that the Lieb-
Robinson bound for the Bose-Hubbard model has not been rig-
orously derived with a few exceptions for limited
situations18,23–27. The phase velocity vph is the other character-
istic quantity, which corresponds to the propagation of the first
peak of the wave packet, and does not have to obey the Lieb-
Robinson bound.

Although the exact Lieb-Robinson bound is not known for the
Bose-Hubbard model, there are some values that can be used as a
guide. As discussed in previous studies1,3,12 in the weak interaction
region, the single-particle dispersion up to constant is approxi-
mately given as ϵU� J ðkÞ � �2J∑α cos kα (α= x, y in 2D), which
is equivalent to the dispersion of free particles. The velocity of the
correlation spreading would be well characterized by the group
velocity of the single-particle excitation. The largest velocity of a
single quasiparticle (along the horizontal or vertical direction α) is
described by the maximal slope of the dispersion and is given by
v ¼ maxkα ½djϵU� J ðkÞj=dkα�=_ ¼ 2J=_. Because both doublon
and holon quasiparticles propagate with the group velocity v, the
front of the correlation function moves at the speed of vfront, which
should be smaller than vmax ¼ 2v ¼ 4J=_. Therefore, this speed
vmax can be regarded as the Lieb-Robinson-bound-like value.
Likewise, in the strong interaction region, the doublon and holon
dispersions up to constant are approximately given as ϵðdÞU � JðkÞ �
�4J∑α cos kα and ϵðhÞU � Jð�kÞ � �2J∑α cos kα, respectively.
Because the doublons and holons propagate with respective
velocities 4J/ℏ and 2J/ℏ, vfront should be smaller than these two
sum vmax ¼ 6J=_. Although we know the approximate limit
values, the intermediate interaction region is yet to be explored.

To estimate the group velocity from the single-particle
correlations, long-time simulations are required in general.
However, it is challenging in the iPEPS simulations. To
circumvent the difficulty, we estimate the group velocity by the
density–density correlation. It is known that the propagation
velocity of the first peak of this correlation agrees very well with
the group velocity1,12. The equal-time density–density correlation
function at a distance r= (x, y) for the system size Ns is defined as

Cdd
r ðtÞ ¼ 1

Ns
∑
i;j

0hn̂iðtÞn̂jðtÞic; ð3Þ

where 〈⋯〉c denotes a connected correlation function. In our
simulations, hn̂iðtÞn̂jðtÞic ¼ hn̂iðtÞn̂jðtÞi � 1 because hn̂iðtÞi ¼ 1
for all sites and time steps. As in Csp

r ðtÞ, the summation is
replaced by that within sublattice sites in the iPEPS simulations.
The parity-parity correlation closely related to the
density–density one can be measured in experiments by using
the quantum-gas microscope techniques1.

We extract the propagation velocities from the first peak in
both correlations for ∣r∣= 1, 2, and 3. For simplicity, we consider
the sudden quench hereafter. When the interaction becomes
weaker, we have confirmed that the energy is conserved in a
longer time frame; typically, t≲ 0.9ℏ/J for U/J ~ 5 (see Supple-
mentary Note 6 for the time dependence of the grand potential
density in the weaker interaction region). All the correlation
peaks for ∣r∣≤3 appear in this time frame (see Fig. 4). The first
peak of the single-particle correlation appears at t ~ 0.35ℏ/J for
∣r∣= 1, while it appears at t ~ 0.65ℏ/J for ∣r∣= 3. By contrast, the
first peak of the density–density correlation appears at t ~ 0.25ℏ/J
for ∣r∣= 1, while it appears at t ~ 0.7ℏ/J for ∣r∣= 3. It takes a long

time for propagation in the latter case. (See also the correlations
for other interaction parameters given in Supplementary Note 7.
Extraction of propagation velocities in the intermediate and
strong interaction regions is summarized in Supplementary
Notes 8, 9, respectively.) The first-peak time is almost a linear
function of the distance, and the system exhibits the light-cone-
like spreading of correlations (see the time dependence of
distance summarized in Supplementary Note 8).

We summarize the interaction dependence of the group and
phase velocities in Fig. 5. In the weak interaction region, the
estimated group velocities are vgr ~ 4J/ℏ. They are similar to those
obtained by the TWA at filling factor ν= 1013. They are also
consistent with the group velocity vgr(U= 0)= 4J/ℏ of a single
particle13. In the strong interaction region, the estimated group
velocity vgr ~ (8 ± 2)J/ℏ at U/J= 19.6 coincides with that obtained
by the 2PISC approach15 within the error bar of extrapolation. It
is also comparable to the group velocity vgrðU � JÞ ¼
6J=_ ´ ½1 þ OðJ2=U2Þ� of a quasiparticle in the large U
limit1,3,12. Similarly, the estimated phase velocity agrees very well
with the results of the 2PISC approach15 and the experiment3. In
the intermediate region, the estimated group velocity is closer to
the single-particle group velocity in the superfluid region, whereas
it is comparable to the 2PISC result near and above the critical
point Uc/J ~ 16.759–61.

In all parameter regions, no anomalies appear in the
propagation velocities. As for the real-time dynamics after a
sudden quench, there is no sign of the superfluid-Mott insulator
quantum phase transition. This is because non-universal high-
energy excitations come into play during the time evolution. The
quantum phase transition at zero temperature does not have to
affect the time-evolved states.

Fig. 4 Single particle and density–density correlation functions used to
extract the propagation velocities. a Single-particle [Csp

r ðtÞ] and
(b) density–density [Cdd

r ðtÞ] correlation functions per bond at the
interaction strength U/J= 5 for the bond dimension D= 8. The unit of time
is taken as the inverse of the strength of the hopping J. The normalization
factor at a distance r= (x, y) is given as Nbond= 2 for x≠ y (∣r∣= 1, 2, and
3), while it is Nbond= 4 for x= y (jrj ¼

ffiffiffi
2

p
). The black symbol corresponds

to the first peak in the correlation function obtained by cubic spline
interpolation of data points. The propagation velocities along the horizontal
or vertical axis are extracted by the data at ∣r∣= 1, 2, and 3. The velocity
estimated from the density–density correlation functions is slower than that
from the single-particle correlation functions.
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Both group and phase velocities gradually converge to the same
value as U/J is decreased. This phenomenon can be understood in
terms of the separation of the energy scales. When the interaction
U is much stronger than the hopping J, the correlation function
oscillates rapidly as a function of time12,22. The correlation
function exhibits the envelope of the wave packet. The time scale
of the period of oscillation is ~1/U, which determines the phase
velocity vph ~U. On the other hand, the time scale of the period of
the envelope is ~1/J, which determines the group velocity vgr ~ J.
Hence, the group and phase velocities differ as long as U ≫ J.
When the interaction U becomes comparable to the hopping J,
they start to coincide by slowing down the vibration. Note that
this phenomenon occurs irrespective of the presence or absence
of phase transitions.

Conclusions
We have studied real-time dynamics of the 2D Bose-Hubbard
model after a sudden quench starting from the Mott insulator
with unit filling. We have employed the 2D tensor-network
method based on the iPEPSs, which are the 2D extension of the
well-known MPSs in one dimension. Calculated single-particle
correlation functions reproduce the recent experimental results
very well. The iPEPS algorithm can simulate real-time dynamics
long enough for extracting the propagation velocities from cor-
relations. This fact suggests that, for the quench dynamics starting
from the Mott insulator in the 2D Bose-Hubbard model, time-
evolved states are not so highly entangled before and even slightly
after the time at which the correlation front is reached. This
finding raises questions about our understanding of how quan-
tum states get entangled with real-time evolution.

We have also estimated the group and phase velocities in the
moderate interaction region, in which the 2PISC approach and
the TWA are not applicable. The estimated group velocities are
continuously connected without singularity in the middle. Our
findings would be useful in the future analog quantum simulation
and in the future examination of the rigorous Lieb-Robinson
bound of Bose-Hubbard systems. The ability of the tensor-

network method that accurately calculates the real-time dynamics
of 2D quantum many-body systems opens up the possibility of
applying it to other quantum-simulation platforms, such as
Rydberg atoms, trapped ions, and superconducting circuits.

Methods
Real-time evolution by infinite projected entangled pair states. We prepare
iPEPS with a two-site unit cell (see Fig. 1a). The symbols D and Dphys denote the
virtual bond dimension and the dimension of the local Hilbert space, respectively.
The former improves the accuracy of the wave function, whereas the latter corre-
sponds to the maximum particle number nmax as Dphys ¼ nmax þ 1. Although
nmax can take infinity in Bose-Hubbard systems, it is practically bounded above in
the presence of interaction62,63. We can choose finite Dphys in the simulations of
real-time dynamics. In the case of a sudden quench to the Mott insulating region
(U/J >Uc/J ~ 16.759–61), we set the dimension of the local Hilbert space as Dphys= 3
because the number of particles deviates only slightly from unity62,63. For U/J <Uc/J,
we choose Dphys= 5 so that the wave functions can further take into account the
effect of particle fluctuations. When U is close to zero (at U/J= 2 in our simula-
tions), we use slightly larger Dphys= 7 (see Supplementary Note 10 for the details of
the choice of the dimensions of the local Hilbert space). The initial Mott insulating
state �i ni ¼ 1

�
�

�
can be represented with the bond dimension D= 1. As for static

properties, the Bose-Hubbard model was investigated by finite PEPS or iPEPS, and
the phase transition between the Mott insulating and superfluid phases was
reproduced64–72.

The wave function at each time ΨðtÞ
�
�

� ¼ e�itĤ=_ Ψð0Þ
�
�

�
is obtained by real-

time evolving iPEPS41–43. The real-time evolution operator in a small time step
dt can be approximated by the Suzuki-Trotter decomposition73–75 as

e�idtĤ=_ � Q
hijie

�idtĤij=_ , where Ĥij ¼ �Jðâyi âj þ âyj âiÞ þ U ½n̂iðn̂i � 1Þ þ
n̂jðn̂j � 1Þ�=ð2zÞ � μðn̂i þ n̂jÞ=z with the coordination number z= 4 is the local

Hamiltonian satisfying Ĥ ¼ ∑hijiĤij. After applying the two-site gate e�idtĤij=_ to
neighboring tensors, we approximate the local tensors by the singular value
decomposition in such a way that the virtual bond dimension of iPEPS remains D. In
the actual simulations, the second-order Suzuki-Trotter decomposition is used for this
simple update algorithm32,76, and the tensor-network library TeNeS77–79 is adopted.
The wave functions are optimized up to the bond dimension D= 9. Qualitative
behavior of correlation functions is found to be nearly the same for D ≥ 6. When
extracting the propagation velocities, we mainly use the data for D= 8 and D= 9 to
ensure sufficient convergence of physical quantities. We do not preserve the U(1)
symmetry during the calculation. Even without respecting the symmetry, we have
numerically found that at these values of D, the number of particles is nearly
conserved during the real-time evolution starting from the Mott insulator.

Physical quantities in the thermodynamic limit are calculated by the corner
transfer matrix renormalization group method33–35,37,80–86. The bond dimension
of the environment tensors is chosen as χ= 2D2 to ensure that physical quantities
are well converged.

To compare our results obtained by iPEPS with the experiment3, we consider a
quench with a short time τQ= 0.1 ms13,14 (see Fig. 1b). For −τQ < t < 0, both J and
U are controlled. The wave function is updated as Ψðt þ dtÞ

�
�

� � e�idtĤðtÞ=_ ΨðtÞ
�
�

�

with the time-dependent Hamiltonian ĤðtÞ in this region. For t > 0, both
parameters are fixed. We take Jfinal= J(t= 0) ~ 0.0612ℏ/τQ as the unit of energy.
The discrete time step for the real-time evolution is set to be dt/(ℏ/Jfinal)= τQ/
(ℏ/Jfinal)/15 ~ 0.00408 for all t. To compare the iPEPS results with the exact real-
time dynamics in finite-size systems, we also consider a sudden parameter change
and set the time step as dt/(ℏ/J)= 0.005. We have checked that the simulations
with doubled and halved dt do not change the results significantly.

Data availability
The data obtained by the iPEPS and ED simulations in this paper are available at https://
doi.org/10.5281/zenodo.6085592. The experimental data3 and the data obtained by the
TWA simulations13 in this paper are available from the authors upon request.

Code availability
The codes in this paper are available from the authors upon request.
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