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Emergent half-metal at finite temperatures in a
Mott insulator
Gour Jana1, Abhishek Joshi1, Subhajyoti Pal1 & Anamitra Mukherjee 1✉

Sustaining exotic quantum mechanical phases at high temperatures is a long-standing goal of

condensed matter physics. Among them, half-metals are spin-polarized conductors that are

essential for realizing room-temperature spin current sources. However, typical half-metals

are low-temperature phases whose spin polarization rapidly deteriorates with temperature

increase. Here, we first show that a low-temperature insulator with an unequal charge gap for

the two spin channels can arise from competing Mott and band insulating tendencies. We

establish that thermal fluctuations can drive this insulator to a half-metal through a first-order

phase transition by closing the charge gap for one spin channel. This half-metal has 100%

spin polarization at the onset temperature of metallization. Further, varying the strength of

electron repulsion can enhance the onset temperature while preserving spin polarization. We

outline experimental scenarios for realizing this tunable finite temperature half-metal.
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Spin-polarized metals are of great technological importance,
having applications in diverse fields ranging from spintronic
devices to quantum computation1,2. Thus material realiza-

tions of half-metals continue to be a significant research direction
on both theoretical3–12 and experimental fronts13–15. Candidates
for half-metals such as double perovskites4–7, Heusler
alloys8–10,13–15, and manganites16,17, have therefore been exten-
sively investigated, among others. Introducing vacancies in
transition metal oxides such as NiO, MnO18, fluorinated BN,
ZNO19, and ferrimagnetic inverse spinels such as Fe3S420 have
also been proposed as systems that can host half-metallicity.
However, the degradation of spin polarization with temperature
increase and experimental challenges in material growth21 has
long been barriers to producing spin current sources at room
temperature in all half-metal candidates. Thus, predictions of
half-metallic states in simple models are vital for uncovering
novel mechanisms for half-metallicity and subsequent material
realizations that can potentially circumvent the aforementioned
difficulties.

In this context, we consider the ionic Hubbard model (IHM),
with local repulsion U and staggered onsite “ionic” potential Δ,
introduced initially for studying charge transfer effects in organic
crystals22 and for modeling ferroelectric perovskites23. In the
half-filled IHM for U= 0, a finite Δ opens up a band-gap that
promotes large occupation of the sub-lattice with −Δ potential. In
the opposite limit, for Δ= 0 and large U, singly occupied sites are
preferred on both sub-lattices. The simultaneous presence of the
two agencies leads to a competition that causes a zero tempera-
ture band insulator to Mott insulator transition with increasing U,
for a fixed Δ. This band to Mott insulator transition has been
demonstrated in one dimension24–28 and using dynamical mean-
field theory (DMFT) on square29,30 and Bethe lattice29,31,32. More
importantly, the half-filled model in one dimension33 and on
square lattice using DMFT34 have been shown to support zero
temperature half-metallic state on introducing next nearest
neighbor (nnn) hopping. However, transport response and sur-
vival of spin polarization of this half-metal, in presence of thermal
fluctuations, has remained largely unaddressed.

In this article, by computing spin-dependent transport
response at finite temperatures, we first establish a low-
temperature antiferromagnetic half-metal (HM1), bracketed by
a paramagnetic band insulator for U <UB and an anti-
ferromagnetic Mott insulator for U >UM. The spin polarization of
HM1 is maximized as T→ 0. Next, we reveal a ferrimagnetic half-
metal (HM2) that emerges out of thermal excitations of the Mott
insulating state for U values in the vicinity of UM. We show that,
unlike HM1, the Mott insulating ground state ensures that half-
metallicity in HM2 occurs only above an onset temperature via a

thermally driven first-order insulator to metal transition. We
demonstrate that at the onset temperature of metallization, HM2

is fully spin-polarized. We find that the onset temperature is
highly sensitive to correlation strength, acting as a control knob
for tuning the temperature window of half-metallicity. Raising the
onset temperature does not degrade the spin polarization in its
vicinity. We explain the origin of HM2 and map out the para-
meter space of its stability. We close with a discussion on the
experimental realization of HM2 in correlated oxides and cold
atomic systems.

We define the IHM on a square lattice as follows,

H ¼ �t ∑
hi;ji;σ

ðcyiσcjσ þ h:cÞ � t0 ∑
hhi;jii;σ

ðcyiσcjσ þ h:cÞ

þΔ ∑
i2A

ni � Δ ∑
i2B

ni þ U ∑
i
ni"ni# � μ∑

i
ni

ð1Þ

where, cyiσ (ciσ) are electron creation (annihilation) operators at
the site i with spin σ. t and t0 are respectively the nearest and nnn
hopping amplitudes. We choose t0=t<0 in our study. niσ ¼ cyiσciσ
is the number operator for spin σ at a site i and ni is the spin
summed local number operator. Δ is the magnitude of “ionic”
potential and takes positive (negative) values on the A (B) sub-
lattice. U is the local Hubbard repulsion. μ denotes the chemical
potential, and is adjusted to maintain half-filling. We employ a
recently developed semiclassical Monte Carlo approximation (s-
MC)35–37 to investigate the finite temperature properties of IHM
on large lattice sizes.

“Methods” sub-sections titled, Treatment of the interaction
term, Solution strategy, and The nature of approximation cover
the (s-MC) scheme in detail. In particular, in the “Methods”—
The nature of approximation, it is discussed that s-MC is
numerically inexpensive, can capture results beyond finite tem-
perature mean-field theory, and has a reasonable quantitative
agreement with Determinantal Quantum Monte Carlo (DQMC)
over a wide temperature range35,37–39.

Results
Transport response regimes. In Fig. 1, we show the spin-resolved
resistivity, ρσ(T), extracted from the low-frequency optical con-
ductivity, as discussed in the “Methods”—Optical conductivity.
We show the case of low U band insulator in Fig. 1a, followed by
two intermediate U examples in Fig. 1b and Fig. 1c that, as will be
detailed below, support HM1 and HM2 respectively. Finally in
Fig. 1d we provide an example of the large UMott insulator. In all
the plots, triangles and squares denote ρ↑(T) and ρ↓(T) respec-
tively. We first compare the small U band insulator in Fig. 1a with
the large U Mott insulator in Fig. 1d. In Fig. 1a, we find typical
insulating nature (dρσ/dT < 0) for both spin channels. We can see

Fig. 1 Temperature evolution of spin-dependent transport. a–d Show spin-resolved resistivity, ρσ(T) for correlation strength U values as indicated. ρσ(T) is
calculated in units of (πe2/ℏa0), with e, ℏ and a0 being the electronic charge, the Planck’s constant divided by 2π and the lattice spacing respectively. The
next nearest neighbor hopping t0=t and charge transfer energy Δ/t are chosen to be −0.2 and 1.0, respectively. The squares denote ρ↓ and triangles
represent ρ↑. The inset in b shows the low T(= 0.005t), spin-resolved density of states (DOS), Nσ(ω) for U/t= 3.2, with a small arrow at the bottom
indicating the Fermi energy. The up and down spin channels are also indicated by arrows. The inset in c shows the total resistivity ρ(T) for U/t= 4.8.
d ρσ(T) for the robust Mott insulator at U/t= 5.5. Results are shown for 322 system size with periodic boundary conditions. Standard deviation of the low-
frequency optical conductivity data is used to estimate error bars in the resistivity plots. Symbol sizes used are larger than the error bars.
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in Fig. 1a that dρ/dT remains negative for all temperatures. This is
because the correlation strength is insufficient to screen the one
body potential and close the charge gap as temperature increases.
Similar behavior was found in DQMC study of IHM for the
t0 ¼ 040. For the chosen values of Δ and t0, this band insulating
response occurs for U <UB(=2.8t), while the Mott insulator lies
beyond UM(=4.75t). We see typical Mott insulating behavior
representative of large U(=5.5t) in Fig. 1d with diverging resis-
tivity as T→ 0. Further, we see that the sign of dρσ/dT for both
spin channels changes from negative to positive around
T/t ~ 0.12, signaling a crossover from an insulator to a metal,
mediated by thermal fluctuations. This temperature scale is the
analog of T* in the standard half-filled Hubbard model, with zero
Δ and t0, that governs the crossover from a paramagnetic insu-
lator to a paramagnetic metal, previously seen in DQMC41 and
s-MC35.

In contrast to these limiting cases, in the regime UB <U <UM

and UM <U < 5t, we find distinctly different thermal evolution of
resistivity. Representative data for these two regimes are shown in
Fig. 1b, c respectively. In Fig. 1b, spin resolved resistivity for
U/t= 3.2 shows that dρ↓/dT is negative for T < 0.04t, while dρ↑/dT
exhibits metallic behavior for all temperatures. At T= 0.04t, the
of sign dρ↓/dT changes and ρ↑ becoming equal to ρ↓. We define
T/t= 0.04 as TP, the lowest temperature where ρ↑ and ρ↓ become
identical. We will later show that below TP, we have a spin-
polarized metal, whose polarization approaches 100% as T→ 0.
We refer to this half-metallic regime as HM1 and TP define a
deporalization temperature scale, above which spin polarization is
completely lost.

In the resistivity data shown in Fig. 1c for U/t= 4.8, we find
diverging ρσ as T→ 0, as is expected in a Mott state. However, at
T/t= 0.02, dρ↑/dT switches sign while dρ↓/dT continues to
remain negative up to T/t= 0.09. From the inset in Fig. 1c,
showing the total resistivity as a function of temperature, we
identify T/t= 0.02 as the onset of metallic response, where dρ↑/dT
had changed its sign. We denote this onset temperature by TS.
Also as for HM1, we denote T/t= 0.09 as TP, the temperature
above which ρ↑(T)= ρ↓(T). Thus, for U≳UM, we find a window
in temperature, TS < T < TP, where the Mott insulating ground
state gives way to a finite-temperature half-metal, HM2. We will
show that, within numerical accuracy, HM2 is fully spin polarized
near the onset temperature TS.

Density of states and spin polarization. The inset in Fig. 1b
shows the spin-resolved density of states (DOS), Nσ(ω), defined in
the “Methods”—The spin-resolved DOS. The result is shown for
U/t= 3.2 and at the lowest temperature of our calculation
(T/t= 0.005). We find that only one “up” spin channel con-
tributes to the weight at Fermi energy for very low temperature,
as would be expected for usual half-metals. In contrast, low-
temperature DOS for U/t= 4.8 in Fig. 2a shows a finite charge
gap that is unequal for the two spin channels. Consequently, we
find that the temperature-induced filling of the charge gap is
much more rapid for the “up” than for the “down” spin channel.
We see this behavior in Fig. 2b, which shows the temperature
evolution of Nσ(0), the spin-resolved spectral weight extracted
from the DOS, at ω= μ. The filling of the charge gap starts at
TS(=0.02t) in a “spin asymmetric” manner, and the asymmetry
persists up to TP(=0.09t). We discuss the origin of this spin-
asymmetric filling of the charge gap later in the paper. We add
that the Mott state at low temperature is always characterized by
an unequal charge gap for the spin channels for all U values
investigated in our study. However, beyond U/t= 5, the
temperature-induced filling of the charge gap occurs equally for
both spin channels as seen in Supplementary Fig. 1a presented in

Supplementary Note 1, and prohibits the formation of the HM2

phase. The low-temperature s-MC DOS qualitatively agrees with
DMFT calculations at T= 034.

To quantify the spin polarization of the half-metals at finite
temperature, we define the transport spin polarization as
PðTÞ ¼ hJx" � Jx#i=hJx" þ Jx#i, where Jxσ is the spin resolved current
operator along the x-direction. Here and later in the paper, the
angular brackets indicate quantum as well as thermal averaging.
Details of the calculation are provided in “Methods”—Optical
conductivity. Fig. 2c, shows P(T) for U/t= 3.2, 4.8 and 4.9. For
HM1 at U/t= 3.2, we find 100% spin polarization or P(T) ~ 1 at
T= 0.005t. With temperature increase, the “down” spin channel
that was gapped in the ground state, e.g. the inset of Fig. 1b, starts
to fill up, causing the polarization to decay, eventually suppres-
sing it to zero beyond TP(=0.04t). P(T) for HM2, at U/t= 4.8, is
shown by circles. We find that P(T)= 0 in the insulating regime,
for T < TS(=0.02t). It then abruptly jumps to 1 at TS, the onset of
half-metallicity. With temperature increase beyond TS, P(T)
drops until it reaches zero at TP= 0.09t, coinciding with the
closing of the window of asymmetric charge gap filling, as seen in
Fig. 2b. We also see that while TS increases from 0.02t for
U= 4.8t to 0.06t for U= 4.9t, P(T) at TS, remains unchanged. We
thus find an unexpected property that TS enhancement does not
sacrifice spin polarization for HM2. We note that at TS, for all
parameter points of HM2, the insulating to metallic spin channels
resistivity ratio is ~102−103. This translates into P(T) ~ 1 or
100% spin polarization at TS, as can be seen from the expression
of P(T) in the “Methods”—Optical conductivity.

Ferrimagnetic half-metal at finite temperature. To define
magnetic order at finite temperature in two dimensions, we add a
small SU(2) symmetry breaking magnetic field, as described in
the “Methods”—The treatment of the interaction term. In Fig. 3a,
we show the thermal evolution of the average sub-lattice mag-
netizations, Szα � ðhnα"i � hnα#iÞ=2, α∈ {A, B} for U/t= 4.8. We
present the formulae for spin and sub-lattice resolved densities in
“Methods”—The spin and sub-lattice resolved density. For T < TS,
we find that SzA ¼ �SzB, indicating long-range antiferromagnetic
order. However, for TS < T < TP, we see that jSzAj> jSzBj, while the
staggered nature of magnetic order remains unchanged.

In Fig. 3b, we show the temperature evolution of the difference
between the average sub-lattice local moments (δM=MA−MB),
where Mα=〈nα〉− 2〈nα↑nα↓〉, and α∈ [A, B]. We find that
δM= 0 for T < TS, but has a finite value in the window
TS < T < TP. Fig. 3c shows the net spin polarization of the system
for U/t= 4.8 with triangles, δn=〈n↑〉−〈n↓〉. The correla-
tion between these δM and δn is apparent from Fig. 3b and c. The
temperature dependence of the sub-lattice magnetizations in
Fig. 3a follows from the relation SzA þ SzB ¼ δn=2. Due to the
unequal magnitude of the staggered sub-lattice magnetizations,
we refer to HM2 as a ferrimagnetic half-metal. We also observe
that, as a generic feature of HM2, δn, δM, and P(T) undergo an
abrupt jump at T= TS, as seen here for U/t= 4.8. This behavior
strongly indicates a thermal fluctuation-induced “first-order”
transition from an antiferromagnetic Mott insulator to a
ferrimagnetic half-metal. In Supplementary Fig. 1b reported in
Supplementary Note 2, we provide typical hysteresis behavior for
δM associated with the first-order transition, obtained through a
cooling and heating protocol for HM2. Since our calculation uses
fixed temperature steps that only bracket the actual critical
temperature for the insulator to metal transition, we refer to the
temperature scale of metallization as an “onset” scale. We find no
discontinuity in the temperature evolution of sub-lattice magne-
tization for HM1 as seen in Supplementary Fig. 1c presented in
Supplementary Note 3.
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To understand the above temperature-driven behavior, we first
note that finite Δ causes a double occupation penalty of U+ 2Δ
(U− 2Δ) on the A (B) sub-lattice in the zero hopping limit. This
differential penalty persists for finite hopping, albeit with a
renormalized value. Supplementary Fig. 1d in Supplementary
Note 4 shows typical temperature evolution of the sub-lattice
double occupations 〈nα↑nα↓〉 with α∈ (A, B) for HM2 for
U= 4.8t. It clearly shows that, 〈nB↑nB↓〉 >〈nA↑nA↓〉 at all
temperatures. In Fig. 3a, we see that the larger cost of double
occupation at A, initially triggers a finite magnetization SzA at
TP(= 0.09t), while SzB becomes non-zero only at a lower
temperature. It also maintains jSzBj< jSzAj and consequently a
finite δn following SzA þ SzB ¼ δn=2, below TP and down to TS.
The sub-lattice local moments difference δM in Fig. 3b, also
follows from this differential double occupation penalty. How-
ever, energetically, the large build-up of 〈nB↑nB↓〉 becomes
untenable at low temperatures. Below TS, the difference in the
sub-lattice double occupations is reduced through a first-order
transition, making the sub-lattice magnetizations equal, which
quenches δn and limits the half-metallic state HM2 to finite
temperature. From Fig. 1c, we find that the conduction electron
spin direction is identical to the net spin polarization δn, ‘up’ in
this instance. It also translates into N↑(0) >N↓(0) for TS < T < TP,
and can be interpreted as thermal fluctuation driven spin-
asymmetric filling of charge gap, as seen in Fig. 2b.

U-T phase diagram. We now discuss the U− T phase diagram,
Fig. 3d, to investigate the stability of HM2 and the tunability of
TS. For T/t ≤ 0.02, UM(=4.75t) separates HM1 and M-I phases.
Figure 3d is a part of the full phase diagram shown in Supple-
mentary Fig. 2 and discussed in detail in Supplementary Note 5.
As seen in Supplementary Fig. 2, HM1 starts at U= 2.8t and the
TP (triangles) increases with U, reaching a maximum of (0.055t)
close to UM. From static magnetic structure factor discussed in
the “Methods”—Static magnetic structure factor, we find the
HM1 has an antiferromagnetic background and the magnetic
transition temperature TN, coincides with TP. Supplementary Fig.
1c discussed in Supplementary Note 3 depicts typical temperature
dependence of the sub-lattice magnetizations for HM1. The HM2

phase emerges from the M-I in the range UM <U < 5t and above a
U-dependent TS, indicated by diamonds. The ferrimagnetic order
in HM2 is destabilized at the corresponding TP values (squares),
as seen for example, in Fig. 3a for U= 4.8t. Circles represent the
antiferromagnetic transition temperature for the M-I phase
beyond the HM2 window or U > 5t.

We also see that TS increases rapidly with U for HM2. This
behavior follows from the need of greater thermal energy to close
the Mott gap at larger U values. However, as U grows, we also
move deeper into the Mott state, progressively suppressing the
effect of Δ. The increasingly dominant role of U manifests as a
systematic reduction in magnitudes of δM and δn as is seen in

Fig. 2 Thermal evolution of density of states (DOS) & polarization. a This shows the low T density of states, Nσ(ω) for U/t= 4.8. The large arrows denote
the spin channels. b It shows thermal evolution of Nσ(0), the spectral weight at the chemical potential for U/t= 4.8. Here triangles denote N↑(0) and
squares indicate N↓(0). The locations of the onset temperature of half metallicity TS and depolarization temperature TP are marked with black arrows.
c Shows spin polarization P(T) as defined in Section 2 of the main text titled “Density of states and spin polarization”, for indicated U values. Various TS and
TP are demarcated with arrows color coded with the symbols. Lines are a guide to the eye. All results are shown for t0=t ¼ �0:2 and Δ/t= 1.0. Error bars in
b and c are computed from the standard deviation in the spin-resolved DOS, and low-frequency optical conductivity data respectively. Symbol sizes used
are larger than the error bars.

Fig. 3 Magnetism & U− T phase diagram. a It shows the sub-lattice magnetizations SzA and SzB for U/t= 4.8. b, c Show the difference in sub-lattice local
moments (δM) and the total spin polarization of the system (δn) respectively, for U/t= 4.8 4.9 and 4.95. In each case, the dashed lines between two
temperature points indicate the location of the onset temperature for half-metallicity. d This shows the U− T phase diagram with a low-temperature
antiferromagnetic half-metal HM1 to antiferromagnetic Mott insulator (M-I) transition at UM= 4.75t. Triangles indicate TP, the depolarization temperature
of half metallicity for HM1. The red shaded region refers to the finite-temperature ferrimagnetic half-metal HM2 for UM < U < 5t and bounded by the onset
temperature of polarization TS and the depolarization temperature TP. The TS (TP) scales for HM2 are demarcated by diamonds (squares). Circles refer to
TN, the temperature above which the M-I state loses long-range antiferromagnetic order. All results are for t0=t ¼ �0:2, Δ/t= 1.0 and on 322 system.
Standard deviations in the sub-lattice magnetization in a and the various ordering temperature scales in d are smaller than the symbol sizes; Error bars for
U= 4.8t are generated from standard deviations the sub-lattice local moments in b and spin-resolved densities in c. Error bars for U= 4.9t and U= 4.95t
are similar in magnitude to that for U= 4.8t in b and c.
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Fig. 3b, c. In these plots, we compare the temperature profiles of
δM and δn for three U values. We find that while with U increase,
the window of finite δM and δn move to higher temperatures,
their magnitudes are systematically suppressed. As the sub-lattice
moment magnitudes approach each other with increasing U, TP
and TS merge into a single transition temperature TN, of the (M-
I) phase beyond U= 5t. Finally, from Fig. 3d, we see that TS
increases by 350% over the window in U for which HM2 is stable.
In the discussion section, we propose 4d transition metal
element-based double perovskites as potential candidates for
realizing HM2. We obtain a realistic estimate of the TS and TP
using a hopping scale of 0.2–0.3 eV for double perovskite. It yields
TS to be about 70–100 K and TP about 230–350 K in the middle of
HM2 in Fig. 3d at U/t= 4.875.

In concluding this section, we would like to briefly discuss the
role of t0 in stabilizing HM2. t0 acts as a source of frustration that
inhibits formation of long-range antiferromagnetic order and
promotes metallic tendency. In fact, both half-metallic phases are
absent for jt0=tj< 0:05. Increase in the magnitude of t0=t beyond
0.05, systematically shifts UM to larger U values to overcome
frustration effects and consequently increases TS as seen in
Supplementary Fig. 3a discussed in Supplementary Note 6.
However, once UM gets too big for a large enough jt0=tj, the
reduced impact of Δ is inadequate to support HM2, i.e., the
temperature-driven gap-filling becomes spin symmetric, as
previously described. We find that HM2 is no longer realized
for jt0=tj≥ 0:3, at Δ/t= 1. In Supplementary Fig. 3b, presented in
Supplementary Note 6, we show preliminary results from an
exhaustive numerical search, from which we infer that HM2 can
be stabilized for Mott insulators with Δ/U ~ 0.2–0.3, over a large
window of U and Δ. Thus, HM2 has a broad stability window in
the U � Δ� t0 parameter space, and Fig. 3d depicts only a fixed
Δ� t0 cross-section of this regime.

Discussion
Unlike all previous proposals where half metallicity is a ground
state property, here we have demonstrated that a half-metal can
emerge from a Mott insulating ground state. The insulating
ground state ensures that the half-metal with 100% spin polar-
ization occurs at a finite temperature and protects against
temperature-induced depolarization effects. The correlation
strength-dependent enhancement of the onset temperature
naturally carries the fully spin-polarized metal to higher tem-
peratures without depolarizing. We want to emphasize that the
low-temperature half-metal HM1, has negligible δn and zero TS
due to the reduced effect of U and, in this respect, is different
from HM2. Lastly, HM2 does not require interaction between
large Hund’s coupled core spins and itinerant electrons like in
the double exchange mechanism; it is different from the
Slater–Pauling rule-based, low-temperature half-metallic Heusler
alloys and T= 0 half-metallicity in doped Mott insulators away
from half-filling42. The experimental realization of this unique
finite-temperature half-metal will be a significant step toward the
goal of creating spin-polarized current sources at room tem-
perature. With this in mind, we close with a discussion on the
possible realization of HM2 in solid-state and cold atomic
experimental setups.

For correlated oxides representing the IHM, we consider epi-
taxial thin films of cubic double perovskites, X2ABO6. Here, A
and B represent two species of 4d transition metal (TM) atoms,
and X can be rare-earth, alkaline-earth, or alkali elements. To
prevent high U and Hund’s coupling effects, we do not consider
3d TM elements. In addition, we avoid 5d TM elements with
strong spin-orbit coupling. In the 4d TM series, {Zr,Nb,Mo,
Tc, Ru and Rh} starting with Zr, difference in the charge transfer

energy (Δ) between successive elements range between 0.2 eV and
0.7 eV43. Also the local correlation strength U is moderate, ran-
ging between 1eV and 3eV44,45. Hence, Δ/U ~ 0.3 required for
(HM2), can be achieved. In an octahedral crystal field, the 4d
orbitals are split by 3–4 eV46, into high energy eg and low energy
t2g levels. We expect that (A, B) combinations of 4d TM elements
with a small Δ and relatively large crystal field splitting will
facilitate the formation of partially filled t2g bands. Suitably
chosen X site element can achieve half-filled t2g manifold and also
can tune U by controlling the electronic bandwidth. Finally, nnn
hopping is relevant for 4d TM elements47,48. Hence one can
potentially identify a number of candidates that are insulators
with small charge gap, such as Sr2RuMoO6

49. Based on the above-
mentioned literature we can crudely estimate URe/Mo ~ 3 eV,
Δ ~ 1−2 eV and a t2g− eg splitting of 3 eV. These estimates yield
Δ/U ~ 0.3−0.6 eV, which is within the ballpark of the ratio nee-
ded for HM2 for Sr2RuMoO6. We expect complete quenching of
orbital angular momentum in a half-filled t2g 4d orbital; however,
one has to investigate the role of small Hund’s coupling50, prior
to identifying realistic material candidates.

While the model has not yet been realized on a square lattice in
the cold atomic setup, the experimental techniques for such a
realization exist. For example IHM has already been realized for
fermionic cold atomic systems for hexagonal lattice51. This
experiment investigated the band to Mott insulator transition by
tracking suppression of double occupation over wide variations of
Δ and U [0, 41t] and [0, 30t], respectively, in the units of nearest-
neighbor hopping strength t/h ~ 174 Hz. This range of parameter
variation should be easily possible for the square lattice as well.
t0=t ratio can be tuned over a large window on shaken optical
lattices52. Also, the highest TS/t ~ 0.1 is within the ballpark of the
experimental temperature scales of 0.2t53,54. We suggest that, δn
would be the natural quantity to measure as a signature of HM2,
analogous to spin polarization measurements for metallic
(Stoner) ferromagnets in cold atomic systems53.

Methods
We briefly present the formal derivation of the s-MC approximation scheme,
calculation method, nature of the approximation, and definitions of observables.

Treatment of the interaction term. To set up the semiclassical Monte-Carlo s-MC
method, we first decouple the interaction term in Eq. (1) using standard
Hubbard–Stratonovich (H–S) transformation, by introducing auxiliary fields (Aux. F.).
For this we express the interaction term at each lattice site as the sum of square of the
local number operator ni and the local spin operator Si as follows:

Uni"ni# ¼ U
1
4
ðniÞ2 � ðSi:Ω̂Þ2

� �
ð2Þ

here, the spin operator at the ith site (running over A and B sub-lattices) is
Si ¼ 1

2∑αβc
y
iασαβciβ , with ℏ≡ 1 and Ω̂ is an arbitrary unit vector. The partition

function for the IHM Hamiltonian, H≡H0+H1 is Z= Tre−βH with H0 and H1

containing the one body and interaction terms respectively. The trace is taken over the
occupation number basis. β= 1/T, is the inverse temperature where kB is set equal to 1.
The window [0, β] is divided into M equally spaced slices separated by interval Δτ,
with β=MΔτ. The slices are labeled by l. In the limit Δτ→ 0 by using Suzuki-Trotter

decomposition, we write e�βðH0þH1Þ � ðe�ΔτH0 e�ΔτH1 ÞM to the first order in Δτ. For a
given imaginary time slice ‘l’, the partition function for the interaction term can then
be written as,

const: ´
Z

dϕiðlÞdξiðlÞ ´ e�Δτ ∑i
ϕi ðlÞ2
U þiϕiðlÞniþ

ξi ðlÞ2
U �2ξ iðlÞΩ̂:Si

� �� �
ð3Þ

Here, we have introduced (Aux. F.)’s ϕi(l) and ξi(l) at each site and imaginary time
slice. Following literature55, we combine the unit vector Ω̂ and ξi(l) as a new vector
auxiliary fieldmi(l), defined as ξiðlÞΩ̂. ϕi(l) couples to the local charge density operator
and mi(l) couples to the local spin operator. Thus the full partition function is pro-
portional to,

Tr
Y1
l¼M

Z
dϕiðlÞdmiðlÞ ´ e�Δτ Hoþ∑i

ϕi ðlÞ2
U þiϕiðlÞniþ

mi ðlÞ2
U �2miðlÞ:Si

� �� �
ð4Þ

In the above, the integrals are taken over {ϕi(l),mi(l)}, and the order of product for the
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slices run from l=M to the l= 1. We note that at this stage the partition function is
exact, manifestly SU(2) symmetric and the {ϕi(l),mi(l)} fields fluctuate in space and
imaginary time. We now make the approximation of (i) retaining only the spatial
dependence of the (Aux. F.) variables and (ii) use a saddle point value of the (Aux. F.)
ϕi(l) equal to iU〈ni〉/2. This allows us to extract the following effective spin-fermion
type Hamiltonian Heff where fermions couple to classical (Aux. F.) {mi}. For further
details, we refer to our earlier work35.

Heff ¼ Ho þ
U
2
∑i ðhniini � 2mi:SiÞ þ

1
2
ðmi

2 � hnii2Þ
� �

ð5Þ

In H0, we include a small SU(2) symmetry-breaking magnetic field term. The
field avoids well-known Mermin-Wagner issues and allows for an unambiguous
definition of long-range magnetic order in two dimensions at finite temperature. It
also provides a global axis for the definition of up and down spin components. We
have checked that the spin polarization in the band insulator and the HM1 phases
are zero within numerical accuracy, establishing that the small symmetry breaking
term does not induce spurious spin polarizations. We solve the spin-fermion model
by well-established cluster-based exact diagonalization coupled with classical
Monte-Carlo (ED+MC) method36,56. Below we briefly outline the main steps of
the ED+MC and refer to our earlier work detailing the solution methodology35.

Solution strategy. We start the calculation at high temperature T/t= 1 with
random {mi} and {〈ni〉} fields at each site. The {〈ni〉} fields define the {ϕi}
variables, as mentioned above. We then sample the {mi} fields by sequentially
visiting all lattice sites. For this, we first diagonalize Heff for the chosen (Aux. F.)
configuration and then propose an update at a site. To decide the acceptance of a
proposed update formi at the ith site, we employ a standard Metropolis scheme. In
this approach, the usual Boltzmann factor governs the acceptance probability,
which depends on the energy from the exact diagonalization before and after the
proposed update. This update process done sequentially at all lattice sites con-
stitutes a Monte-Carlo system sweep. We conduct 6000 sweeps at each tempera-
ture. After every 20 sweeps, we perform a self-consistency loop to converge the
{〈ni〉} fields for a fixed {mi} configuration. We leave the first 2000 sweeps for
equilibration and compute observables from the remaining 4000 sweeps, skipping
every five sweeps to avoid self-correlation effects. We reduce the temperature in
small steps and repeat the above protocol at each temperature. Finally, we average
all observables over 20 separate runs with independent random initial choices of
{mi} and {〈ni〉} configurations at the starting (high) temperature.

Nature of the approximation. Earlier work35 has established that at low tem-
peratures, the Monte Carlo sampling leads to uniform mi configurations akin to
unrestricted Hartree-Fock results. However, at higher temperatures where thermal
fluctuations begin to dominate quantum fluctuations, the thermal sampling of the
(Aux. F.)’s {mi} captures temperature effects considerably more accurately than a
simple finite temperature mean-field theory, making s-MC a progressively superior
approximation. s-MC based study of the half-filled Hubbard model in two and
three dimensions35,36, and with nnn hopping37, have revealed that this approach
can capture several results that are beyond simple finite temperature mean-field
theory. These include non-monotonic dependence of antiferromagnetic ordering
scale on U, finite T paramagnetic insulating phase with local moments, pseudo-gap
to normal-metal crossover, and specific heat systematics with temperature.
Moreover, these results have a reasonable quantitative agreement with DQMC38,39.
s-MC is free of the usual fermion sign problem, analytical continuation issues and
is numerically inexpensive. Recent s-MC based studies include finite-temperature
properties of the Anderson-Hubbard model57, and temperature-driven Mott
transition in frustrated triangular-lattice Hubbard model58.

Observable definitions. Here we define the various observables used in the paper.

Optical conductivity. The total d.c conductivity σdc along the x-direction, is
computed from the Kubo-Greenwood formula59 for optical conductivity.

σðωÞ ¼ πe2

N_a0
∑
α;β
ðnα � nβÞ

jf αβj2
ϵβ � ϵα

δðω� ðϵβ � ϵαÞÞ ð6Þ

fαβ are the matrix elements for the current operator. The explicit form of
fαβ is 〈ψα∣Jx∣ψβ〉. The current operator is given by
Jx ¼ �ia0∑i;σ ½tðcyi;σciþa0 x̂;σ

� h:cÞ þ t0ðcyi;σciþa0 x̂þa0 ŷ;σ
� h:cÞ�. Here, ψα

�� 	
and ϵα are

single-particle eigenstates and associated eigenvalues respectively. nα= f(μ− ϵα) is
the Fermi function. We calculate the average d.c. conductivity, σdc, by integrating
over small frequency window, σdc ¼ ðΔωÞ�1 R Δω

0 σðωÞdω. The interval is chosen to
be Δω ~ 0.005t. For the spin-resolved conductivity, σdc,σ, we use appropriate spin
resolved states and operators to construct f σαβ ¼ hψαjJσx jψβi in the conductivity
expression. The resistivity is obtained for the inverse of average dc conductivity.

Finally, P(T) is calculated from
σdc;"ðμÞ�σdc;#ðμÞ
σdc;"ðμÞþσdc;#ðμÞ using Jσx / σdc;σ , with the convention

that the ‘up’ refers to the spin channel of the electrons that delocalizes to form the
half-metal.

The spin resolved DOS. The spin-resolved DOS is defined as follows:
Nσ(ω)=∑γα∣〈α, σ∣ψγ〉∣2δ(ω− ϵγ), where ϵγ and jψγi are the eigenvalues and
eigenvectors of Heff. Here α ∈ {A, B}, the two sub-lattices and σ refers to spin.
Lorentzian representation of the above δ−function is used to compute DOS.
The broadening of the Lorentzian is ~BW/2N with BW being the non-
interacting bandwidth and N is the total number of lattice sites.

The spin and sub-lattice resolved density. The average spin and sub-lattice
resolved density is given by

hnασ i ¼
2
N

∑
i2α;γ

jhiσjψγij2f ðϵγ � μÞ ð7Þ

where, i is the site index. α∈ A, B, and σ is the spin index. ϵγ, jψγi and f(ϵλ− μ) are
as defined above. N is the total number of lattice sites. The sub-lattice resolved
occupation is calculated by summing over densities for A and B, for each spin
channel independently. The magnetization in Fig. 3a are constructed from these
densities.

Static magnetic structure factor. Sq as defined below, is computed for q= (π, π),
from which TN is extracted for the various phases.

Sq ¼
1
N
∑
i;j
eiq�ðri�rjÞhSi � Sji ð8Þ

All symbols have the usual meaning as defined above and i, j run over all
lattice sites.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
Codes used to produce the findings of this study are available from the corresponding
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